
Ehcache Operations Guide

Version 2.10

April 2015

This document applies to Ehcache Version 2.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EHC-OG-210-20150415

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

M
Table of Contents

Ehcache Operations Guide Version 2.10 3

Table of Contents

Tuning Garbage Collection... 5
About Garbage Collection and Ehcache.. 6
Tuning the Garbage Collector.. 6

Monitoring and Management Using JMX.. 7
About Using JMX..8
MBeans... 9
JMX Remoting.. 9
ObjectName Naming Scheme.. 9
The Management Service.. 10
JConsole Example..11
JMX Tutorial..12
Performance Considerations.. 12

Logging... 13
SLFJ Logging..14
Recommended Logging Levels.. 14

Shutting Down Ehcache..15
About Shutdown... 16
ServletContextListener..16
The Shutdown Hook...16
Dirty Shutdown... 17

Debugging and Monitoring Replicated Caches..19
About the Remote Debugger... 20
Using the Debugger... 20

M
Even Header

Ehcache Operations Guide Version 2.10 4

M
Odd Header

Tuning Garbage Collection

Ehcache Operations Guide Version 2.10 5

1 Tuning Garbage Collection

■ About Garbage Collection and Ehcache ... 6

■ Tuning the Garbage Collector .. 6

M
Even Header

Tuning Garbage Collection

Ehcache Operations Guide Version 2.10 6

About Garbage Collection and Ehcache
Applications that use Ehcache can be expected to use large heaps. Some Ehcache
applications have heap sizes greater than 6 GB. Ehcache works well at this scale.
However, large heaps or long held objects, which is what a cache is composed of, can
place strain on the default Garbage Collector (GC). With Ehcache 2.3 and higher, this
problem can be solved with BigMemory Go, an in-memory data management product,
which provides an additional store outside of the heap. For more information, see the
BigMemory Go product documentation.

Detecting Garbage Collection Problems

A full garbage collection event pauses all threads in the JVM. Nothing happens during
the pause. If this pause takes more than a few seconds, it will become noticeable.

The clearest way to see if this is happening is to run jstat. The following command will
produce a log of garbage collection statistics, updated every ten seconds.
jstat -gcutil <pid> 10 1000000

The thing to watch for is the Full Garbage Collection Time. The difference between the
total time for each reading is the amount of time the system was paused. A jump of more
than a few seconds will not be acceptable in most application contexts.

Tuning the Garbage Collector
Tuning suggestion for virtual machines with large heaps using caching:
java ... -XX:+DisableExplicitGC -XX:+UseConcMarkSweepGC
-XX:NewSize=<1/4 of total heap size> -XX:SurvivorRatio=16

Note that it is beer to use -XX:+DisableExplicitGC, instead of calling System.gc(). It
also helps to use the low pause collector -XX:+UseConcMarkSweepGC.

M
Odd Header

Monitoring and Management Using JMX

Ehcache Operations Guide Version 2.10 7

2 Monitoring and Management Using JMX

■ About Using JMX ... 8

■ MBeans .. 9

■ JMX Remoting .. 9

■ ObjectName Naming Scheme ... 9

■ The Management Service .. 10

■ JConsole Example ... 11

■ JMX Tutorial ... 12

■ Performance Considerations .. 12

M
Even Header

Monitoring and Management Using JMX

Ehcache Operations Guide Version 2.10 8

About Using JMX
JMX creates a standard way of instrumenting classes and making them available to a
management and monitoring infrastructure.

The net.sf.ehcache.management package contains MBeans and a ManagementService for
JMX management of Ehcache . It is in a separate package so that JMX libraries are only
required if you want to use it. There is no leakage of JMX dependencies into the core
Ehcache package.

Use the net.sf.ehcache.management.ManagementService.registerMBeans(...) static
method to register a selection of MBeans to the MBeanServer provided to the method. If
you want to monitor Ehcache but not use JMX, use the existing public methods on Cache
and CacheStatistics.

The Management package is illustrated in the following image.

Note: As an alternative to using JMX, the Terracoa Management Console (TMC)
is available for standalone Ehcache. TMC replaces Ehcache Monitor for
monitoring, management, and administration. For information about the
TMC, see the Terracoa website.

http://terracotta.org/

M
Odd Header

Monitoring and Management Using JMX

Ehcache Operations Guide Version 2.10 9

MBeans
Ehcache supports Standard MBeans. MBeans are available for the following:

CacheManager

Cache

CacheConfiguration

CacheStatistics

All MBean aributes are available to a local MBeanServer. The CacheManager MBean
allows traversal to its collection of Cache MBeans. Each Cache MBean likewise allows
traversal to its CacheConfiguration MBean and its CacheStatistics MBean.

JMX Remoting
The Remote API allows connection from a remote JMX Agent to an MBeanServer via
an MBeanServerConnection. Only Serializable aributes are available remotely. The
following Ehcache MBean aributes are available remotely:

Limited CacheManager aributes

Limited Cache aributes

All CacheConfiguration aributes

All CacheStatistics aributes

Most aributes use built-in types. To access all aributes, add ehcache.jar to the remote
JMX client's classpath. For example:
jconsole -J-Djava.class.path=ehcache.jar

ObjectName Naming Scheme
CacheManager

"net.sf.ehcache:type=CacheManager,name=<CacheManager>"

Cache
"net.sf.ehcache:type=Cache,CacheManager=<cacheManagerName>,name=<cacheName>"

CacheConfiguration
"net.sf.ehcache:type=CacheConfiguration,CacheManager=<cacheManagerName>,
 name=<cacheName>"

M
Even Header

Monitoring and Management Using JMX

Ehcache Operations Guide Version 2.10 10

CacheStatistics
"net.sf.ehcache:type=CacheStatistics,CacheManager=<cacheManagerName>,
 name=<cacheName>"

The Management Service
The ManagementService class is the API entry point.

There is only one method, ManagementService.registerMBeans, which is used to initiate
JMX registration of a CacheManager's instrumented MBeans. The ManagementService
is a CacheManagerEventListener and is therefore notified of any new Caches added or
disposed and updates the MBeanServer appropriately.

Initiated MBeans remain registered in the MBeanServer until the CacheManager shuts
down, at which time the MBeans are deregistered. This ensures correct behavior in
application servers where applications are deployed and undeployed.
/**
* This method causes the selected monitoring options to be be registered
* with the provided MBeanServer for caches in the given CacheManager.
*
* While registering the CacheManager enables traversal to all of the other
* items, this requires programmatic traversal. The other options allow entry
* points closer to an item of interest and are more accessible from JMX
* management tools like JConsole. Moreover CacheManager and Cache are not
* serializable, so remote monitoring is not possible for CacheManager or
* Cache, while CacheStatistics and CacheConfiguration are.
* Finally, CacheManager and Cache enable management operations to be performed.
*
* Once monitoring is enabled caches will automatically added and removed from the
* MBeanServer as they are added and disposed of from the CacheManager. When the
* CacheManager itself shutsdown all registered MBeans will be unregistered.
*

M
Odd Header

Monitoring and Management Using JMX

Ehcache Operations Guide Version 2.10 11

* @param cacheManager the CacheManager to listen to
* @param mBeanServer the MBeanServer to register MBeans to
* @param registerCacheManager Whether to register the CacheManager MBean
* @param registerCaches Whether to register the Cache MBeans
* @param registerCacheConfigurations Whether to register the CacheConfiguration
MBeans
* @param registerCacheStatistics Whether to register the CacheStatistics MBeans
*/
public static void registerMBeans(
 net.sf.ehcache.CacheManager cacheManager,
 MBeanServer mBeanServer,
 boolean registerCacheManager,
 boolean registerCaches,
 boolean registerCacheConfigurations,
 boolean registerCacheStatistics) throws CacheException {

JConsole Example
This example shows how to register CacheStatistics in the JDK platform MBeanServer,
which works with the JConsole management agent.
CacheManager manager = new CacheManager();
MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
ManagementService.registerMBeans(manager, mBeanServer, false, false, false,
true);

CacheStatistics MBeans are then registered. The following shows CacheStatistics MBeans
in JConsole.

M
Even Header

Monitoring and Management Using JMX

Ehcache Operations Guide Version 2.10 12

JMX Tutorial
See this online tutorial.

Performance Considerations
Collection of cache statistics is not entirely free of overhead, however, the statistics
API switches on/off automatically according to usage. If you need few statistics, you
incur lile overhead; on the other hand, as you use more statistics, you can incur more.
Statistics are off by default.

http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html

M
Odd Header

Logging

Ehcache Operations Guide Version 2.10 13

3 Logging

■ SLFJ Logging ... 14

■ Recommended Logging Levels ... 14

M
Even Header

Logging

Ehcache Operations Guide Version 2.10 14

SLFJ Logging
As of 1.7.1, Ehcache uses the slf4j logging facade, so you can plug in your own logging
framework. The following information pertains to Ehcache logging. For information
about SLF4J in general, refer to the SLF4J website.

With SLF4J, users must choose a concrete logging implementation at deploy time. The
options include Maven and the download kit.

Concrete Logging Implementation use in Maven

The maven dependency declarations are reproduced here for convenience. Add one of
these to your Maven POM.
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>1.5.8</version>
</dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.5.8</version>
</dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.5.8</version>
</dependency>

Concrete Logging Implementation use in the Download Kit

The slf4j-api jar is in the kit along with the Ehcache jars so that, if the app does not
already use SLF4J, you have everything you need. Additional concrete logging
implementations can be downloaded from SLF4J website.

Recommended Logging Levels
Ehcache seeks to trade off informing production-support developers of important
messages and cluering the log. ERROR messages should not occur in normal
production and indicate that action should be taken.

WARN messages generally indicate a configuration change should be made or an
unusual event has occurred. DEBUG and TRACE messages are for development use.
All DEBUG level statements are surrounded with a guard so that no performance cost
is incurred unless the logging level is set. Seing the logging level to DEBUG should
provide more information on the source of any problems. Many logging systems enable
a logging level change to be made without restarting the application.

http://www.slf4j.org
http://www.slf4j.org

M
Odd Header

Shutting Down Ehcache

Ehcache Operations Guide Version 2.10 15

4 Shutting Down Ehcache

■ About Shutdown ... 16

■ ServletContextListener ... 16

■ The Shutdown Hook .. 16

■ Dirty Shutdown ... 17

M
Even Header

Shutting Down Ehcache

Ehcache Operations Guide Version 2.10 16

About Shutdown
Ehcache is shut down through the Ehcache API. Note that Hibernate automatically shuts
down its Ehcache CacheManager.

The recommended way to shutdown Ehcache is:

To call CacheManager.shutdown()

In a web app, register the Ehcache ShutdownListener

Though not recommended, you can also register a JVM shutdown hook.

ServletContextListener
Ehcache provides a ServletContextListener that shuts down the CacheManager. Use this
to shut down Ehcache automatically, when the web application is shut down. To receive
notification events, this class must be configured in the deployment descriptor for the
web application. To do so, add the following to web.xml in your web application:
<listener>
 <listener-class>
 net.sf.ehcache.constructs.web.ShutdownListener</listener-class>
</listener>

The Shutdown Hook
The CacheManager can optionally register a shutdown hook. To do so, set the system
property net.sf.ehcache.enableShutdownHook=true. This will shut down the
CacheManager when it detects the Virtual Machine shuing down and it is not already
shut down.

Use the shutdown hook when the CacheManager is not already being shutdown by a
framework you are using, or by your application.

Note: Shutdown hooks are inherently problematic. The JVM is shuing down, so
sometimes things that can never be null are. Ehcache guards against as many
of these as it can, but the shutdown hook should be the last option to use.

The shutdown hook is on CacheManager. It simply calls the shutdown method. The
sequence of events is:

Call dispose for each registered CacheManager event listener.

Call dispose for each Cache.

Each Cache will:

Shutdown the MemoryStore. The MemoryStore will flush to the DiskStore.

M
Odd Header

Shutting Down Ehcache

Ehcache Operations Guide Version 2.10 17

Shutdown the DiskStore. If the DiskStore is persistent (“localRestartable”), it will
write the entries and index to disk.

Shutdown each registered CacheEventListener.

Set the Cache status to shutdown, preventing any further operations on it.

Set the CacheManager status to shutdown, preventing any further operations on it.

The shutdown hook runs when:

A program exists normally. For example, when System.exit() is called, or when the
last non-daemon thread exits.

The Virtual Machine is terminated, e.g., CTRL-C. This corresponds to kill -
SIGTERM pid or kill -15 pid on Unix systems.

The shutdown hook will not run when:

The Virtual Machine aborts.

A SIGKILL signal is sent to the Virtual Machine process on Unix systems, e.g., kill
-SIGKILL pid or kill -9 pid.

A TerminateProcess call is sent to the process on Windows systems.

Dirty Shutdown
If Ehcache is shutdown dirty, all in-memory data will be retained if Ehcache is
configured for restartability. For more information, see “Configuring Restartability and
Persistence” in the Configuration Guide for Ehcache.

If using Open Source disk persistence when shut down dirty, then any persistent disk
stores will be corrupted. They will be deleted, with a log message, on the next startup.

M
Even Header

Ehcache Operations Guide Version 2.10 18

M
Odd Header

Debugging and Monitoring Replicated Caches

Ehcache Operations Guide Version 2.10 19

5 Debugging and Monitoring Replicated Caches

■ About the Remote Debugger ... 20

■ Using the Debugger ... 20

M
Even Header

Debugging and Monitoring Replicated Caches

Ehcache Operations Guide Version 2.10 20

About the Remote Debugger
The ehcache-1.x-remote-debugger.jar can be used to debug replicated cache operations.
When started with the same configuration as the cluster, it will join the cluster and then
report cluster events for the cache of interest. By providing a window into the cluster it
can help to identify the cause of cluster problems.

Packaging

From version 1.5 it is packaged in its own distribution tarball along with a maven
module. It is provided as an executable JAR on the Ehcache download page.

Limitations

This version of the debugger has been tested only with the default RMI-based
replication.

Using the Debugger
It is invoked as follows:
java -jar ehcache-debugger-1.5.0.jar ehcache.xml sampleCache1 path_to_ehcache.xml
[cacheToMonitor]

It takes one or two arguments:

the first argument, which is mandatory, is the Ehcache configuration file e.g. app/
config/ehcache.xml. This file should be configured to allow Ehcache to join the
cluster. Using one of the existing ehcache.xml files from the other nodes normally is
sufficient.

the second argument, which is optional, is the name of the cache e.g.
distributedCache1

If only the first argument is passed, it will print our a list of caches with replication
configured from the configuration file, which are then available for monitoring. If the
second argument is also provided, the debugger will monitor cache operations received
for the given cache. This is done by registering a CacheEventListener which prints out
each operation.

Note: Use the Class-Path aribute inside a manifest file to add any additional
libraries to the debugger's classpath. Be sure to leave a blank line at the end of
the file. Following is an example of Class-Path aribute inside a manifest file
(showing two separate JARs added to the classpath):
Class-Path: lib/my.jar lib/myLoggerjar

http://ehcache.org/downloads/catalog

M
Odd Header

Debugging and Monitoring Replicated Caches

Ehcache Operations Guide Version 2.10 21

Output

When monitoring a cache it prints a list of caches with replication configured,
prints notifications as they happen, and periodically prints the cache name, size
and total events received. See sample output below which is produced when the
RemoteDebuggerTest is run.
Caches with replication configured which are available for monitoring are:
 sampleCache19 sampleCache20 sampleCache26 sampleCache42 sampleCache33
 sampleCache51 sampleCache40 sampleCache32 sampleCache18 sampleCache25
 sampleCache9 sampleCache15 sampleCache56 sampleCache31 sampleCache7
 sampleCache12 sampleCache17 sampleCache45 sampleCache41 sampleCache30
 sampleCache13 sampleCache46 sampleCache4 sampleCache36 sampleCache29
 sampleCache50 sampleCache37 sampleCache49 sampleCache48 sampleCache38
 sampleCache6 sampleCache2 sampleCache55 sampleCache16 sampleCache27
 sampleCache11 sampleCache3 sampleCache54 sampleCache28 sampleCache10
 sampleCache8 sampleCache47 sampleCache5 sampleCache53 sampleCache39
 sampleCache23 sampleCache34 sampleCache22 sampleCache44 sampleCache52
 sampleCache24 sampleCache35 sampleCache21 sampleCache43 sampleCache1
 Monitoring cache: sampleCache1
 Cache: sampleCache1 Notifications received: 0 Elements in cache: 0
 Received put notification for element [key = this is an id, value=this is
 a value, version=1, hitCount=0, CreationTime = 1210656023456,
 LastAccessTime = 0]
 Received update notification for element [key = this is an id, value=this
 is a value, version=1210656025351, hitCount=0, CreationTime =
 1210656024458, LastAccessTime = 0]
 Cache: sampleCache1 Notifications received: 2 Elements in cache: 1
 Received remove notification for element this is an id
 Received removeAll notification.

Providing more Detailed Logging

If you see nothing happening, but cache operations should be going through, enable
trace (LOG4J) or finest (JDK) level logging on net.sf.ehcache.distribution in the logging
configuration being used by the debugger. A large volume of log messages will appear.
The normal problem is that the CacheManager has not joined the cluster. Look for the
list of cache peers.

Yes, but I still have a cluster problem

Check the FAQ, where a lot of commonly reported errors and their solutions are
provided. Beyond that, post to the forums or mailing list or contact Ehcache for support.

	Table of Contents
	Tuning Garbage Collection
	About Garbage Collection and Ehcache
	Tuning the Garbage Collector

	Monitoring and Management Using JMX
	About Using JMX
	MBeans
	JMX Remoting
	ObjectName Naming Scheme
	The Management Service
	JConsole Example
	JMX Tutorial
	Performance Considerations

	Logging
	SLFJ Logging
	Recommended Logging Levels

	Shutting Down Ehcache
	About Shutdown
	ServletContextListener
	The Shutdown Hook
	Dirty Shutdown

	Debugging and Monitoring Replicated Caches
	About the Remote Debugger
	Using the Debugger

