
Integrations

Version 2.10

April 2015

This document applies to Ehcache Version 2.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2015 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EHC-INT-210-20150415

http://documentation.softwareag.com/legal/
http://documentation.softwareag.com/legal/

M
Table of Contents

Integrations Version 2.10 3

Table of Contents

Using Ehcache with Hibernate...5
About Using Ehcache with Hibernate...6
Downloading and Installing Ehcache for Hibernate... 7
Building with Maven... 7
Configuring Ehcache as the Second-Level Cache Provider.. 7
Enabling Second-Level Cache and Query Cache Settings..8
Configuring Hibernate Entities to use Second-Level Caching..9
Configuring ehcache.xml Settings.. 10

Ehcache Settings for Domain Objects.. 10
Ehcache Settings for Collections.. 11
Ehcache Settings for Queries... 11

The Demo Application and Tutorial..13
Performance Tips..13
Viewing Hibernate Statistics... 13
Upgrading from Ehcache Versions Prior to 2.0..14
FAQ... 15

Using Ehcache with ColdFusion..17
About ColdFusion and Ehcache...18
Example Integration..18

Using Ehcache with Spring.. 19
Using Spring 3.1...20
Spring 2.5 to 3.1...20
Annotations for Spring Project..21

Using Ehcache with JRuby and Rails... 23
About Using Ehcache with JRuby..24
Installation... 24
Configuring Ehcache for JRuby..24
Using the jruby-ehcache API directly... 25
Using Ehcache from within Rails... 26
Adding Off-Heap Storage under Rails..28

Using Ehcache with the Google App Engine... 31
About Google App Engine (GAE) and Ehcache.. 32
Configuring ehcache.xml for Google App Engine.. 32
Use Cases.. 33
Troubleshooting...34
Sample Application... 34

Using Ehcache with Tomcat... 35

M
Table of Contents

Integrations Version 2.10 4

About Using Ehcache with Tomcat.. 36
Tomcat Issues and Best Practices... 36

Using Ehcache with JDBC..37
About JDBC Caching..38
Adding JDBC caching to DAO/DAL... 38
Sample Code.. 39

Using Ehcache with OpenJPA..43
Installation and Configuration... 44
The Default Cache... 45
Troubleshooting...45
For Further Information...45

Using Ehcache with Grails... 47
About Using Ehcache with Grails...48
Using the Springcache Plugin.. 49
Using Web Sessions with Grails.. 49

Using Ehcache with GlassFish.. 51
Tested Versions of GlassFish...52
Deploying the Sample Application..52
Troubleshooting...52

Using Ehcache with JSR107.. 55
About Ehcache Support for JSR107.. 56

M
Odd Header

Using Ehcache with Hibernate

Integrations Version 2.10 5

1 Using Ehcache with Hibernate

■ About Using Ehcache with Hibernate .. 6

■ Downloading and Installing Ehcache for Hibernate ... 7

■ Building with Maven ... 7

■ Configuring Ehcache as the Second-Level Cache Provider .. 7

■ Enabling Second-Level Cache and Query Cache Settings ... 8

■ Configuring Hibernate Entities to use Second-Level Caching ... 9

■ Configuring ehcache.xml Settings .. 10

■ The Demo Application and Tutorial ... 13

■ Performance Tips ... 13

■ Viewing Hibernate Statistics ... 13

■ Upgrading from Ehcache Versions Prior to 2.0 ... 14

■ FAQ .. 15

M
Even Header

Using Ehcache with Hibernate

Integrations Version 2.10 6

About Using Ehcache with Hibernate
Accelerating Hibernate applications typically involves reducing their reliance on the
database when fetching data. Terracoa offers powerful in-memory solutions for
maximizing the performance of Hibernate applications:

Ehcache as a plug-in second-level cache for Hibernate – Automatically cache
common queries in memory to substantially lower latency.

BigMemory for an in-memory store – Leverage off-heap physical memory to keep
more of the data set close to your application and out of reach of Java garbage
collection.

Automatic Resource Control for intelligent caching – Pin the hot set in memory for
high-speed access and employ fine-grained sizing controls to avoid OutOfMemory
errors.

Ehcache easily integrates with the Hibernate Object/Relational persistence and query
service. Gavin King, the maintainer of Hibernate, is also a commier to the BigMemory
Go's Ehcache project. This ensures Ehcache will remain a first-class data store for
Hibernate.

Configuring Ehcache for Hibernate is simple. The basic steps are as follows:

Download and install Ehcache in your project as described in "Downloading and
Installing Ehcache for Hibernate" on page 7.

Configure Ehcache as a cache provider in your project's Hibernate configuration as
described in "Configuring Ehcache as the Second-Level Cache Provider" on page
7.

Enable second-level caching in your project's Hibernate configuration as described in
"Enabling Second-Level Cache and Query Cache Seings" on page 8.

Configure Hibernate caching for each entity, collection, or query that you want to
cache as described in "Configuring Hibernate Entities to use Second-Level Caching"
on page 9.

Configure the ehcache.xml file for each entity, collection, or query configured for
caching as described in "Configuring ehcache.xml Seings" on page 10.

For additional information about cache configuration in Hibernate, see the Hibernate
product documentation at hp://www.hibernate.org/".

Important Notices - PLEASE READ

Users of Ehcache for Hibernate prior to Ehcache 2.0 should read "Upgrading from
Ehcache Versions Prior to 2.0" on page 14. These instructions are for Hibernate 3.

http://www.hibernate.org/

M
Odd Header

Using Ehcache with Hibernate

Integrations Version 2.10 7

Downloading and Installing Ehcache for Hibernate
The Hibernate provider is in the ehcache-core module. You can download the latest
version of this module from here: hp://sourceforge.net/projects/ehcache/files/ehcache-
core/.

Building with Maven
Dependency versions vary with the specific kit you intend to use. Since kits are
guaranteed to contain compatible artifacts, find the artifact versions you need by
downloading a kit. Configure or add the following repository to your build (pom.xml):
<repository>
 <id>terracotta-releases</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>false</enabled></snapshots>
</repository>

Configure or add the Ehcache core module defined by the following dependency to your
build (pom.xml):
<dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-core</artifactId>
 <version>${ehcacheVersion}</version>
</dependency>

For the Hibernate-Ehcache integration, add the following dependency:
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-ehcache</artifactId>
 <version>${hibernateVersion}</version>
</dependency>

For example, the Hibernate-Ehcache integration dependency for Hibernate 4.0.0 is:
<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-ehcache</artifactId>
 <version>4.0.0</version>
</dependency>

Note: Some versions of Hibernate-Ehcache may have a dependency on a specific
version of Ehcache. Check the Hibernate-Ehcache POM for more information.

Configuring Ehcache as the Second-Level Cache Provider
To configure Ehcache as a Hibernate second-level cache, set the region factory property
to one of the following in the Hibernate configuration. The Hibernate configuration is

http://sourceforge.net/projects/ehcache/files/ehcache-core/
http://sourceforge.net/projects/ehcache/files/ehcache-core/

M
Even Header

Using Ehcache with Hibernate

Integrations Version 2.10 8

specified either via hibernate.cfg.xml, hibernate.properties or Spring. The format shown
below is for hibernate.cfg.xml.

Hibernate 3.3 and higher

For instance creation, use:
<property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

To force Hibernate to use a singleton of Ehcache CacheManager, use:
<property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.SingletonEhCacheRegionFactory</property>

Hibernate 4.x

For instance creation, use:
<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.ehcache.EhCacheRegionFactory</property>

To force Hibernate to use a singleton of Ehcache CacheManager, use:
<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.ehcache.SingletonEhCacheRegionFactory</property>

Enabling Second-Level Cache and Query Cache Settings
In addition to configuring the second-level cache provider seing, you will need to turn
on the second-level cache (by default it is configured to off - 'false' - by Hibernate). To do
this, set the following property in your Hibernate config:
<property name="hibernate.cache.use_second_level_cache">true</property>

You might also want to turn on the Hibernate query cache. To do this, set the following
property in your Hibernate config:
<property name="hibernate.cache.use_query_cache">true</property>

Setting the ConfigurationResourceName Property

You can optionally set the ConfigurationResourceName property to specify the
location of the Ehcache configuration file to use with the given Hibernate instance and
cache provider/region-factory. The resource is searched for in the root of the classpath.
It is used to support multiple CacheManagers in the same VM. It tells Hibernate which
configuration to use. An example might be “ehcache-2.xml.”

When using multiple Hibernate instances, it is recommended to use multiple non-
singleton providers or region factories, each with a dedicated Ehcache configuration
resource.
net.sf.ehcache.configurationResourceName=/name_of_ehcache .xml

M
Odd Header

Using Ehcache with Hibernate

Integrations Version 2.10 9

Setting the Hibernate Cache Provider Programmatically

You can optionally specify the provider programmatically in Hibernate by adding
necessary Hibernate property seings to the configuration before creating the
SessionFactory:
Configuration.setProperty("hibernate.cache.region.factory_class",
 "net.sf.ehcache.hibernate.EhCacheRegionFactory")

For Hibernate 4, use org.hibernate.cache.ehcache.EhCacheRegionFactory instead
of net.sf.ehcache.hibernate.EhCacheRegionFactory.

Putting it all Together

If you are enabling both second-level caching and query caching, then your Hibernate
config file should contain the following:
<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

An equivalent Spring configuration file would contain:
<prop key="hibernate.cache.use_second_level_cache">true</prop>
<prop key="hibernate.cache.use_query_cache">true</prop>
<prop key="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</prop>

For Hibernate 4, use org.hibernate.cache.ehcache.EhCacheRegionFactory instead
of net.sf.ehcache.hibernate.EhCacheRegionFactory in both samples given above.

Configuring Hibernate Entities to use Second-Level Caching
In addition to configuring the Hibernate second-level cache provider,
Hibernate must also be told to enable caching for entities, collections,
and queries. For example, the mapping entry for a domain object called,
com.somecompany.someproject.domain.Country, looks something like this:
<hibernate-mapping>
<class
name="com.somecompany.someproject.domain.Country"
table="ut_Countries"
dynamic-update="false"
dynamic-insert="false"
>
...
</class>
</hibernate-mapping>

To enable caching for this domain object, you add the following element to its mapping
entry:
<cache usage="read-write|nonstrict-read-write|read-only" />

For example:
<hibernate-mapping>

M
Even Header

Using Ehcache with Hibernate

Integrations Version 2.10 10

<class
name="com.somecompany.someproject.domain.Country"
table="ut_Countries"
dynamic-update="false"
dynamic-insert="false"
>
 <cache usage="read-write" />
...
</class>
</hibernate-mapping>

You can also enable caching using the @Cache annotation as shown below.
@Entity
@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class Country {
...
}

Definition of the Different Cache Strategies

read-only - Caches data that is never updated.

nonstrict-read-write - Caches data that is sometimes updated without ever
locking the cache. If concurrent access to an item is possible, this concurrency
strategy makes no guarantee that the item returned from the cache is the latest
version available in the database. Configure your cache timeout accordingly.

read-write - Caches data that is sometimes updated while maintaining the
semantics of “read commied” isolation level. If the database is set to “repeatable
read,” this concurrency strategy almost maintains the semantics. Repeatable read
isolation is compromised in the case of concurrent writes.

Configuring ehcache.xml Settings
Because the ehcache.xml file has a defaultCache, caches will always be created when
required by Hibernate. However you can gain more control over Hibernate caches
by configuring each cache based on its name. Doing this is particularly important,
because Hibernate caches are populated from databases, and there is potential for
them to become very large. You can control the size of a Hibernate cache by capping its
maxEntriesLocalHeap property and specifying whether to swap to disk beyond that.

Ehcache Settings for Domain Objects
Hibernate bases the names of Domain Object caches on the fully
qualified name of Domain Objects. So, for example, a cache for
com.somecompany.someproject.domain.Country would be represented by a cache
configuration entry in ehcache.xml similar to the following:
<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxEntriesLocalHeap="10000"
 eternal="false"

M
Odd Header

Using Ehcache with Hibernate

Integrations Version 2.10 11

 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 <persistence strategy="localTempSwap"/>
 />
</ehcache>

Hibernate CacheConcurrencyStrategy for Domain Objects

The read-write, nonstrict-read-write and read-only policies apply to Domain Objects.

Ehcache Settings for Collections
Hibernate creates collection cache names based on the fully qualified name of the
Domain Object followed by "." and the collection field name. For example, a Country
domain object has a set of advancedSearchFacilities. The Hibernate doclet for the
accessor looks like this:
/**
* Returns the advanced search facilities that should appear for this country.
* @hibernate.set cascade="all" inverse="true"
* @hibernate.collection-key column="COUNTRY_ID"
* @hibernate.collection-one-to-many class="com.wotif.jaguar.domain.AdvancedSearchFacility"
* @hibernate.cache usage="read-write"
*/
public Set getAdvancedSearchFacilities() {
return advancedSearchFacilities;
}

You need an additional cache configured for the set. The ehcache.xml configuration
looks like this:
<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <cache name="com.somecompany.someproject.domain.Country"
 maxEntriesLocalHeap="50"
 eternal="false"
 timeToLiveSeconds="600"
 <persistence strategy="localTempSwap"/>
/>
 <cache
name="com.somecompany.someproject.domain.Country.advancedSearchFacilities"
 maxEntriesLocalHeap="450"
 eternal="false"
 timeToLiveSeconds="600"
 <persistence strategy="localTempSwap"/>
/>
</ehcache>

Hibernate CacheConcurrencyStrategy for Collections

The read-write, nonstrict-read-write and read-only policies apply to Domain Object
collections.

Ehcache Settings for Queries
Hibernate allows the caching of query results.

M
Even Header

Using Ehcache with Hibernate

Integrations Version 2.10 12

StandardQueryCache

This cache is used if you use a query cache without seing a name. A typical
ehcache.xml configuration is:
<cache
name="org.hibernate.cache.StandardQueryCache"
maxEntriesLocalHeap="5"
eternal="false"
timeToLiveSeconds="120"
<persistence strategy="localTempSwap"/>
/>

UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It is important
that the cache timeout of the underlying cache implementation be set to a higher value
than the timeouts of any of the query caches. In fact, it is recommend that the underlying
cache not be configured for expiry at all. A typical ehcache.xml configuration is:
<cache
name="org.hibernate.cache.UpdateTimestampsCache"
maxEntriesLocalHeap="5000"
eternal="true"
<persistence strategy="localTempSwap"/>
/>

Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using
Query.setCacheRegion(String name). The name of the cache in ehcache.xml is then the
name given in that method. The name can be whatever you want, but by convention you
should use “query.” followed by a descriptive name. For example:
<cache name="query.AdministrativeAreasPerCountry"
maxEntriesLocalHeap="5"
eternal="false"
timeToLiveSeconds="86400"
<persistence strategy="localTempSwap"/>
/>

Using Query Caches

Let's say you have a common query running against the Country Domain. Here is the
code to use a query cache with it:
public List getStreetTypes(final Country country) throws HibernateException {
final Session session = createSession();
try {
 final Query query = session.createQuery(
 "select st.id, st.name"
 + " from StreetType st "
 + " where st.country.id = :countryId "
 + " order by st.sortOrder desc, st.name");
 query.setLong("countryId", country.getId().longValue());
 query.setCacheable(true);
 query.setCacheRegion("query.StreetTypes");
 return query.list();
} finally {
 session.close();

M
Odd Header

Using Ehcache with Hibernate

Integrations Version 2.10 13

}
}

The query.setCacheable(true) line caches the query. The
query.setCacheRegion("query.StreetTypes") line sets the name of the Query
Cache. Alex Miller has a good article on the query cache here.

Hibernate CacheConcurrencyStrategy for Queries

None of the read-write, nonstrict-read-write and read-only policies apply to Domain
Objects. Cache policies are not configurable for query cache. They act like a non-locking
read only cache.

The Demo Application and Tutorial
A demo application is available that shows you how to use the Hibernate
CacheRegionFactory. You can download the application from here: hp://
svn.terracoa.org/svn/forge/projects/hibernate-tutorial-web/trunk.

Performance Tips
Session.load

Session.load will always try to use the cache.

Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use
the cache for any associated objects. Session.find does, however, cause the cache to be
populated. Query.find works in exactly the same way. Use these where the chance of
geing a cache hit is low.

Session.iterate and Query.iterate

Session.iterate always uses the cache for the primary object and any associated
objects. Query.iterate works in exactly the same way. Use these where the chance of
geing a cache hit is high.

Viewing Hibernate Statistics
It is possible to access the Hibernate statistics and Ehcache statistics using the Java
Management Extensions (JMX).

The EhcacheHibernateMBean is the main interface that exposes all the APIs via JMX.
It basically extends two interfaces: EhcacheStats and HibernateStats. As the names
imply, EhcacheStats contains methods related with Ehcache and HibernateStats contains
methods related with Hibernate.

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
http://svn.terracotta.org/svn/forge/projects/hibernate-tutorial-web/trunk
http://svn.terracotta.org/svn/forge/projects/hibernate-tutorial-web/trunk

M
Even Header

Using Ehcache with Hibernate

Integrations Version 2.10 14

Using these APIs, you can see cache hit/miss/put rates, change config element values
(e.g., maxElementInMemory, TTL TTI), enable/disable statistics collection, and various
other things. For details, see the specific interface.

For additional information about using JMX to monitor and manage your caches, see the
Ehcache Operations Guide.

Upgrading from Ehcache Versions Prior to 2.0
This topic contains notes about upgrading from versions of Ehcache prior to 2.0.

Support for Hibernate 3.3 SPI

Beginning with Ehcache 2.0, there is support for the Hibernate 3.3 SPI implementation.
This is important because Hibernate 3.3 has an updated caching SPI. Although still
present in 3.3, the Hibernate 3.2 caching SPI has been deprecated.

Support for Hibernate 3.5 SPI

The SPI further changes in Hibernate 3.5. The Ehcache 2.0 implementation is forward-
compatible with Hibernate 3.5.

Backward Compatibility

The EhCacheProvider class, which implements the 3.2 API, is provided for
backward compatibility. Anyone already using Ehcache with Hibernate
will be using this version. We encourage you to upgrade to the new class,
net.sf.ehcache.hibernate.EhCacheRegionFactory, in preparation for when
Hibernate drops support for the old SPI. In recognition of this, we have marked
net.sf.ehcache.hibernate.EhCacheProvider as deprecated. The new cache region factory
takes advantage of the new SPI to provide higher performance. The old SPI had heavy
synchronization to ensure all of the different caching providers were thread-safe. The
new SPI leaves that to the implementer. Ehcache does not require extra synchronization,
so this overhead is avoided.

Unification with Terracotta's Hibernate 3.2 Provider

In September 2009, Terracoa released its Hibernate Caching Provider which was set as
follows:
<property name="hibernate.cache.provider_class">
 org.terracotta.hibernate.TerracottaHibernateCacheProvider</property>

It featured high performance clustered Hibernate caching using the Terracoa Server
Array. The new 3.3 EhCacheRegionFactory replaces the Terracoa Hibernate Cache
Provider as well as the old Ehcache provider. It is superset of the two earlier factories
and also implements the new SPI. The earlier Hibernate provider also required a Java
agent, which is no longer required in the new provider. We recommend that existing
Terracoa Hibernate users upgrade to the Ehcache 2.0 provider.

M
Odd Header

Using Ehcache with Hibernate

Integrations Version 2.10 15

FAQ
If I use BigMemory Go with my application and with Hibernate for second-level caching, should I try
to use the CacheManager created by Hibernate for my app's caches?

While you could share the resource file between the two CacheManagers, a clear
separation between the two is recommended. Your application may have a different
lifecycle than Hibernate, and in each case your CacheManager “Automatic Resource
Control” seings might need to be different.

Should I use the provider in the Hibernate distribution or in BigMemory Go's Ehcache?

Since Hibernate 2.1, Hibernate has included an Ehcache CacheProvider. That provider is
periodically synced up with the provider in the Ehcache Core distribution. New features
are generally added in to the Ehcache Core provider and then the Hibernate one.

What is the relationship between the Hibernate and Ehcache projects?

Gavin King and Greg Luck cooperated to create Ehcache and include it in Hibernate.
Since 2009, Greg Luck has been a commier on the Hibernate project to ensure Ehcache
remains a first-class second-level cache for Hibernate.

Does BigMemory Go support the transactional strategy?

Yes. It was introduced in Ehcache 2.1.

Are Hibernate transactions supported?

Ehcache is a “transactional” cache for Hibernate purposes. The
net.sf.ehcache.hibernate.EhCacheRegionFactory has support for Hibernate entities
configured with <cache usage="transactional"/>.

Why do certain caches sometimes get automatically cleared by Hibernate?

Whenever a Query.executeUpdate() is run, Hibernate invalidates affected cache regions
(those corresponding to affected database tables) to ensure that no stale data is cached.
This should also happen whenever stored procedures are executed.

For more information, see this Hibernate bug report: hps://hibernate.onjira.com/
browse/HHH-2224.

How are Hibernate entities keyed?

Hibernate identifies cached entities using an object id. This is normally the primary key
of a database row.

Are compound keys supported?

Yes.

https://hibernate.onjira.com/browse/HHH-2224
https://hibernate.onjira.com/browse/HHH-2224

M
Even Header

Using Ehcache with Hibernate

Integrations Version 2.10 16

I am getting this error message: “An item was expired by the cache while it was locked.” What is it?

Soft locks are implemented by replacing a value with a special type that marks the
element as locked, thus indicating to other threads to treat it differently than a normal
element. This is used in the Hibernate Read/Write strategy to force fall-through to the
database during the two-phase commit. Although we don't know exactly what should
be returned by the cache while the commit is in process, the database does. If a soft-
locked element is evicted by the cache during the two-phase commit, then once the two-
phase commit completes, the cache will fail to update (since the soft-locked element was
evicted) and the cache entry will be reloaded from the database on the next read of that
object. This is obviously non-fatal, but could cause a small rise in database load.

So, in summary the Hibernate messages are not problematic. The underlying
cause is that the probabilistic evictor can theoretically evict recently loaded items.
You can also use the deterministic evictor to avoid this problem. Specify the -
Dnet.sf.ehcache.use.classic.lru=true system property to turn on classic LRU,
which contains a deterministic evictor.

M
Odd Header

Using Ehcache with ColdFusion

Integrations Version 2.10 17

2 Using Ehcache with ColdFusion

■ About ColdFusion and Ehcache .. 18

■ Example Integration ... 18

M
Even Header

Using Ehcache with ColdFusion

Integrations Version 2.10 18

About ColdFusion and Ehcache
ColdFusion ships with Ehcache. The ColdFusion community has actively engaged with
Ehcache and have put out lots of great blogs. Here are two to get you started. For a short
introduction, see Raymond Camden's blog. For more in-depth analysis, see 14 days of
ColdFusion caching, by Aaron West, covering a different topic each day.

Example Integration
To integrate Ehcache with ColdFusion, first add the Ehcache jars to your web application
lib directory.

The following code demonstrates how to call Ehcache from ColdFusion. It will cache a
ColdFusion object in Ehcache and set the expiration time to 30 seconds. If you refresh
the page many times within 30 seconds, you will see the data from cache. After 30
seconds, you will see a cache miss, then the code will generate a new object and put it in
cache again.
<CFOBJECT type="JAVA" class="net.sf.ehcache.CacheManager" name="cacheManager">
<cfset cache=cacheManager.getInstance().getCache("MyBookCache")>
<cfset myBookElement=#cache.get("myBook")#>
<cfif IsDefined("myBookElement")>
 <cfoutput>
 myBookElement: #myBookElement#

 </cfoutput>
 <cfif IsStruct(myBookElement.getObjectValue())>
 Cache Hit<p/>
 <!-- Found the object from cache -->
 <cfset myBook = #myBookElement.getObjectValue()#>
 </cfif>
</cfif>
<cfif IsDefined("myBook")>
<cfelse>
Cache Miss
 <!-- object not found in cache, go ahead create it -->
 <cfset myBook = StructNew()>
 <cfset a = StructInsert(myBook, "cacheTime", LSTimeFormat(Now(), 'hh:mm:sstt'), 1)>
 <cfset a = StructInsert(myBook, "title", "EhCache Book", 1)>
 <cfset a = StructInsert(myBook, "author", "Greg Luck", 1)>
 <cfset a = StructInsert(myBook, "ISBN", "ABCD123456", 1)>
 <CFOBJECT type="JAVA" class="net.sf.ehcache.Element" name="myBookElement">
 <cfset myBookElement.init("myBook", myBook)>
 <cfset cache.put(myBookElement)>
</cfif>
<cfoutput>
Cache time: #myBook["cacheTime"]#

Title: #myBook["title"]#

Author: #myBook["author"]#

ISBN: #myBook["ISBN"]#
</cfoutput>

http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page

M
Odd Header

Using Ehcache with Spring

Integrations Version 2.10 19

3 Using Ehcache with Spring

■ Using Spring 3.1 .. 20

■ Spring 2.5 to 3.1 .. 20

■ Annotations for Spring Project ... 21

M
Even Header

Using Ehcache with Spring

Integrations Version 2.10 20

Using Spring 3.1
Ehcache has had excellent Spring integration for years. Spring 3.1 includes an Ehcache
implementation. See the Spring 3.1 JavaDoc.

Spring Framework 3.1 has a generic cache abstraction for transparently applying
caching to Spring applications. It has caching support for classes and methods using two
annotations:

@Cacheable

Cache a method call. In the following example, the value is the return type, a Manual.
The key is extracted from the ISBN argument using the id.
@Cacheable(value="manual", key="#isbn.id")
public Manual findManual(ISBN isbn, boolean checkWarehouse)

@CacheEvict

Clears the cache when called.
@CacheEvict(value = "manuals", allEntries=true)
public void loadManuals(InputStream batch)

Spring 2.5 to 3.1
This open source, led by Eric Dalquist, predates the Spring 3.1 project. You can use it
with earlier versions of Spring, or you can use it with 3.1.

@Cacheable

As with Spring 3.1 it uses an @Cacheable annotation to cache a method. In this example
calls to findMessage are stored in a cache named “messageCache”. The values are of
type Message. The id for each entry is the id argument given.
@Cacheable(cacheName = "messageCache")
public Message findMessage(long id)

@TriggersRemove

And for cache invalidation, there is the @TriggersRemove annotation. In this example,
cache.removeAll() is called after the method is invoked.
@TriggersRemove(cacheName = "messagesCache",
when = When.AFTER_METHOD_INVOCATION, removeAll = true)
public void addMessage(Message message)

See hp://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-spring/
for a blog post explaining its use and providing further links.

http://static.springsource.org/spring/docs/3.1.0.M1/javadoc-api/org/springframework/cache/ehcache/package-summary.html
http://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-spring/

M
Odd Header

Using Ehcache with Spring

Integrations Version 2.10 21

Annotations for Spring Project
To dynamically configure caching of method return values, use the Ehcache Annotations
for Spring project at code.google.com at Ehcache Annotations for Spring project at
code.google.com. This project will allow you to configure caching of method calls
dynamically using just configuration. The way it works is that the parameter values of
the method will be used as a composite key into the cache, caching the return value of
the method.

For example, suppose you have a method Dog getDog(String name).

Once caching is added to this method, all calls to the method will be cached using the
name parameter as a key.

So, assume at time t0 the application calls this method with the name equal to “fido”.
Since “fido” doesn't exist, the method is allowed to run, generating the “fido” Dog
object, and returning it. This object is then put into the cache using the key “fido”.

Then assume at time t1 the application calls this method with the name equal to “spot”.
The same process is repeated, and the cache is now populated with the Dog object
named “spot.”

Finally, at time t2 the application again calls the method with the name “fido”. Since
“fido” exists in the cache, the “fido” Dog object is returned from the cache instead of
calling the method.

To implement this in your application, follow these steps:

Step 1:

Add the jars to your application as listed on the Ehcache Annotations for Spring project
at code.google.com at Ehcache Annotations for Spring project at code.google.com.

Step 2:

Add the Annotation to methods you would like to cache. Let's assume you are using the
Dog getDog(String name) method from above:
@Cacheable(name="getDog")
Dog getDog(String name)
{

}

Step 3:

Configure Spring. You must add the following to your Spring configuration file in the
beans declaration section:
<ehcache:annotation-driven cache-manager="ehCacheManager" />

More details can be found at:

http://code.google.com/p/ehcache-spring-annotations
http://code.google.com/p/ehcache-spring-annotations
http://code.google.com/p/ehcache-spring-annotations

M
Even Header

Using Ehcache with Spring

Integrations Version 2.10 22

Ehcache Annotations for Spring project at code.google.com at hp://
code.google.com/p/ehcache-spring-annotations.

The project geing started page at hp://code.google.com/p/ehcache-spring-
annotations/wiki/UsingCacheable.

The article “Caching Java methods with Spring 3” at hp://
www.jeviathon.com/2010/04/caching-java-methods-with-spring-3.html

http://code.google.com/p/ehcache-spring-annotations
http://code.google.com/p/ehcache-spring-annotations
http://code.google.com/p/ehcache-spring-annotations/wiki/UsingCacheable
http://code.google.com/p/ehcache-spring-annotations/wiki/UsingCacheable
http://www.jeviathon.com/2010/04/caching-java-methods-with-spring-3.html
http://www.jeviathon.com/2010/04/caching-java-methods-with-spring-3.html

M
Odd Header

Using Ehcache with JRuby and Rails

Integrations Version 2.10 23

4 Using Ehcache with JRuby and Rails

■ About Using Ehcache with JRuby ... 24

■ Installation .. 24

■ Configuring Ehcache for JRuby ... 24

■ Using the jruby-ehcache API directly ... 25

■ Using Ehcache from within Rails ... 26

■ Adding Off-Heap Storage under Rails ... 28

M
Even Header

Using Ehcache with JRuby and Rails

Integrations Version 2.10 24

About Using Ehcache with JRuby
ruby-ehcache is a JRuby Ehcache library which makes a commonly used subset of
Ehcache's API available to JRuby. All of the strength of Ehcache is there, including
BigMemory and the ability to cluster with Terracoa. It can be used directly via its own
API, or as a Rails caching provider.

Installation
Ehcache JRuby integration is provided by the jruby-ehcache gem. To install it, simply
execute:
jgem install jruby-ehcache

Note that you may need to use "sudo" to install gems on your system.

Installation for Rails

If you want Rails caching support, you should also install the correct gem for your Rails
version:
jgem install jruby-ehcache-rails2 # for Rails 2
jgem install jruby-ehcache-rails3 # for Rails 3

An alternative installation is to simply add the appropriate jruby-ehcache-rails
dependency to your Gemfile, and then run a Bundle Install. This will pull in the latest
jruby-ehcache gem.

Dependencies

JRuby 1.5 and higher

Rails 2 for the jruby-ehcache-rails2

Rails 3 for the jruby-ehcache-rails3

Ehcache 2.4.6 is the declared dependency, although any version of Ehcache will
work.

The jruby-ehcache gem comes bundled with the ehcache-core.jar. To use a different
version of Ehcache, place the Ehcache jar in the same Classpath as JRuby (for standalone
JRuby) or in the Rails lib directory (for Rails).

Configuring Ehcache for JRuby
Configuring Ehcache for JRuby is done using the same ehcache.xml file as used for
native Java Ehcache. The ehcache.xml file can be placed either in your Classpath or,
alternatively, can be placed in the same directory as the Ruby file in which you create the

M
Odd Header

Using Ehcache with JRuby and Rails

Integrations Version 2.10 25

CacheManager object from your Ruby code. For a Rails application, the ehcache.xml file
should reside in the config directory of the Rails application.

Using the jruby-ehcache API directly
To make Ehcache available to JRuby:
require 'ehcache'

Note that, because jruby-ehcache is provided as a Ruby Gem, you must make your Ruby
interpreter aware of Ruby Gems in order to load it. You can do this by either including -
rubygems on your jruby command line, or you can make Ruby Gems available to JRuby
globally by seing the RUBYOPT environment variable as follows:
export RUBYOPT=rubygems

To create a CacheManager, which you do once when the application starts:
manager = Ehcache::CacheManager.new

To access an existing cache (call it "sampleCache1"):
cache = manager.cache("sampleCache1")

To create a new cache from the defaultCache:
cache = manager.cache

To put into a cache:
cache.put("key", "value", {:ttl => 120})

To get from a cache:
cache.get("key") # Returns the Ehcache Element object
cache["key"] # Returns the value of the element directly

To shut down the CacheManager: This is only when you shut your application down. It
is not necessary to call this if the cache is configured for persistence or is clustered with
Terracoa, but it is always a good idea to do it.
manager.shutdown

Supported Properties

The following caching options are supported in JRuby:

Property Argument Type Description

unlessExist,
ifAbsent

boolean If true, use the putIfAbsent
method.

elementEvictionData ElementEvictionData Sets this element’s eviction data
instance.

eternal boolean Sets whether the element is eternal.

M
Even Header

Using Ehcache with JRuby and Rails

Integrations Version 2.10 26

Property Argument Type Description

timeToIdle, i int Sets time to idle.

timeToLive, l,
expiresIn

int Sets time to live.

version long Sets the version aribute of the
ElementAributes object.

Example Configuration
class SimpleEhcache
 #Code here
 require 'ehcache'
 manager = Ehcache::CacheManager.new
 cache = manager.cache
 cache.put("answer", "42", {:ttl => 120})
 answer = cache.get("answer")
 puts "Answer: #{answer.value}"
 question = cache["question"] || 'unknown'
 puts "Question: #{question}"
 manager.shutdown
end

As you can see from the example, you create a cache using CacheManager.new, and you
can control the “time to live” value of a cache entry using the :l option in cache.put.

Using Ehcache from within Rails
Configuration of Ehcache is still done with the ehcache.xml file, but for Rails
applications you must place this file in the config directory of your Rails app. Also note
that you must use JRuby to execute your Rails application, as these gems utilize Ruby's
Java integration to call the Ehcache API. With this configuration out of the way, you
can now use the Ehcache API directly from your Rails controllers and/or models. You
could of course create a new Cache object everywhere you want to use it, but it is beer
to create a single instance and make it globally accessible by creating the Cache object in
your Rails environment.rb file. For example, you could add the following lines to config/
environment.rb:
require 'ehcache'
EHCACHE = Ehcache::CacheManager.new.cache

By doing so, you make the EHCACHE constant available to all Rails-managed objects
in your application. Using the Ehcache API is now just like the above JRuby example.
If you are using Rails 3 then you have a beer option at your disposal: the built-in Rails
3 caching API. This API provides an abstraction layer for caching underneath which
you can plug in any one of a number of caching providers. The most common provider
to date has been the memcached provider, but now you can also use the Ehcache

M
Odd Header

Using Ehcache with JRuby and Rails

Integrations Version 2.10 27

provider. Switching to the Ehcache provider requires only one line of code in your Rails
environment file (e.g. development.rb or production.rb):
config.cache_store = :ehcache_store, {
 :cache_name => 'rails_cache',
 :ehcache_config => 'ehcache.xml'
 }

This configuration will cause the Rails.cache API to use Ehcache as its cache store.
The :cache_name and :ehcache_config are both optional parameters, the default values
for which are shown in the above example. The value of the :ehcache_config parameter
can be either an absolute path or a relative path, in which case it is interpreted relative
to the Rails app’s config directory. A very simple example of the Rails caching API is as
follows:
Rails.cache.write("answer", "42")
Rails.cache.read("answer") # => '42'

Using this API, your code can be agnostic about the underlying provider, or even switch
providers based on the current environment (e.g., memcached in development mode,
Ehcache in production). The write method also supports options in the form of a Hash
passed as the final parameter.

See the “Supported Properties” table in "Using the jruby-ehcache API directly" on page
25 for the options that are supported. These options are passed to the write method
as Hash options using either camelCase or underscore notation, as in the following
example:
Rails.cache.write('key', 'value', :time_to_idle => 60.seconds,
:timeToLive => 600.seconds) caches_action :index,
:expires_in => 60.seconds, :unless_exist => true

Turn on caching in your controllers

You can also configure Rails to use Ehcache for its automatic action caching and
fragment caching, which is the most common method for caching at the controller level.
To enable this, you must configure Rails to perform controller caching, and then set
Ehcache as the provider in the same way as for the Rails cache API:
config.action_controller.perform_caching = true
config.action_controller.cache_store = :ehcache_store

Setting up a Rails Application with Ehcache

Here are the basic steps for configuring a Rails application to use Ehcache:

1. For this example, we will create a new Rails application with the custom template
from JRuby.org. The following command creates a “rails-bigmemory” application:
jruby -S rails new rails-bigmemory -m http://jruby.org/rails3.rb

2. The example application will be a simple address book. Generate a scaffold for the
address book application, which will create contacts including a first name, last
name, and email address.
jruby -S rails generate scaffold Contact first_name: string last_name:
string email_address: string

M
Even Header

Using Ehcache with JRuby and Rails

Integrations Version 2.10 28

3. Add support for caching with Ehcache. There are several ways to do this, but for
this example, we will use the Action Controller caching mechanism. Open the
ContactsController.rb. Add a call to the Action method to tell it to cache the results
of our index and show pages.
caches_action :index, :show

To expire items from the cache as appropriate, add calls to expire the results of the
caching calls.

Under create, add the following:
expire_action :action => 'index'

Under update, add the following:
 expire_action :action => 'show', :id => params[:id]
 expire_action :action => 'index'

Under destroy, add the following:
 expire_action :action => 'index'

4. Now that the application is configured to support caching, specify Ehcache as its
caching provider. Open the Gemfile and declare a dependency on the ehcache-jruby
gem. Add the following line:
 gem 'ehcache-jruby-rails3'

5. In the development.rb file, enable caching for the Rails Action Controller
mechanism, which is disabled by default in development mode. (Note that caching
must be configured for each environment in which you want to use it.) This file
also needs a specification for using Ehcache as the cache store provider. Add the
following two lines to the .rb file:
 config.action_controller.perform_caching = true
 config.cache_store = :ehcache_store

6. Run the Bundle Install command.
 jruby -S bundle install

7. Run the Rake command to create the database and populate the initial schema.
 jruby -S rake db:create db:migrate

Now you are ready to start the application with the following command:
jruby -S rails server

Once the application is started, populate the cache by adding, editing, and deleting
contacts. To see the Contacts address book, enter the following in your browser:
http://localhost:3000/contacts

Adding Off-Heap Storage under Rails
Terracoa BigMemory products provide in-memory data management with a large
additional cache located right at the node where your application runs. To use the

M
Odd Header

Using Ehcache with JRuby and Rails

Integrations Version 2.10 29

off-heap storage provided by the Terracoa BigMemory products with your Rails
application, follow these steps.

1. Add the ehcache-core-ee.jar to your Rails application lib directory.

2. Modify the ehcache.xml file (in the config directory of your Rails application) by
adding the following to each cache where you want to enable off-heap storage:
overflowToOffHeap="true"
maxBytesLocalOffHeap="1G"

When overflowToOffHeap is set to true, it enables the cache to utilize off-
heap memory storage to improve performance. Off-heap memory is not subject
to Java garbage collection cycles and has a size limit set by the Java property
MaxDirectMemorySize.

maxBytesLocalOffHeap sets the amount of off-heap memory available to the cache,
and is in effect only if overflowToOffHeap is true. For more information about sizing
caches, refer to “Sizing Storage Tiers” in the Configuration Guide for your BigMemory
product.

3. Also in the ehcache.xml file, set maxEntriesLocalHeap to at least 100 elements
when using an off-heap store to avoid performance degradation. Lower values for
maxEntriesLocalHeap trigger a warning to be logged.

4. Now that your application is configured to use off-heap storage, start it with the
following commands:
jruby -J-Dcom.tc.productkey.path=/path/to/key -J-XX:MaxDirectMemorySize=2G
-S rails server

This will configure a system property that points to the location of the license key,
and it will set the direct memory size. The maxDirectMemorySize must be at least
256M larger than total off-heap memory (the unused portion will still be available for
other uses).

For additional configuration options, refer to the Configuration Guide for your
BigMemory product.

Note that only serializable cache keys and values can be placed in the off-heap store,
similar to DiskStore. Serialization and deserialization take place on puing and geing
from the store. This is handled automatically by the jruby-ehcache gem.

M
Even Header

Integrations Version 2.10 30

M
Odd Header

Using Ehcache with the Google App Engine

Integrations Version 2.10 31

5 Using Ehcache with the Google App Engine

■ About Google App Engine (GAE) and Ehcache .. 32

■ Configuring ehcache.xml for Google App Engine .. 32

■ Use Cases .. 33

■ Troubleshooting .. 34

■ Sample Application ... 34

M
Even Header

Using Ehcache with the Google App Engine

Integrations Version 2.10 32

About Google App Engine (GAE) and Ehcache
The ehcache-googleappengine module combines the speed of Ehcache with the scale of
Google's memcache and provides the best of both worlds:

Speed - Ehcache cache operations take a few microseconds, versus around 60ms for
Google's provided client-server cache, memcacheg.

Cost - Because it uses way less resources, it is also cheaper.

Object Storage - Ehcache in-process cache works with objects that are not
serializable.

Compatibility

Ehcache is compatible and works with Google App Engine. Google App Engine
provides a constrained runtime which restricts networking, threading and file system
access.

Limitations

All features of Ehcache can be used except for the DiskStore and replication. Having
said that, there are workarounds for these limitations. See "Use Cases" on page 33.
As of June 2009, Google App Engine appears to be limited to a heap size of 100MB.
(See the article “The Limitations of Google App Engine” at hp://gregluck.com/blog/?
s=limitations for the evidence of this).

Dependencies

Version 2.3 and higher of Ehcache are compatible with Google App Engine. Older
versions will not work.

Configuring ehcache.xml for Google App Engine
Make sure the following elements are commented out:

<diskStore path="/path/to/store/data"/>

<cacheManagerPeerProviderFactory class= ../>

<cacheManagerPeerListenerFactory class= ../>

Within each cache element, ensure that:

overFlowToDisk and diskPersistent are omied

persistence strategy=none

no replicators are added

there is no bootstrapCacheLoaderFactory

http://gregluck.com/blog/?s=limitations
http://gregluck.com/blog/?s=limitations

M
Odd Header

Using Ehcache with the Google App Engine

Integrations Version 2.10 33

there is no Terracoa configuration

Use the following Ehcache configuration to get started.
<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd" >
 <cacheManagerEventListenerFactory class="" properties=""/>
 <defaultCache
 maxEntriesOnHeap="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 memoryStoreEvictionPolicy="LRU">
 <persistence strategy="none"/>
 </defaultCache>
<!--Example sample cache-->
 <cache name="sampleCache1"
 maxEntriesOnHeap="10000"
 maxEntriesLocalDisk="1000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 memoryStoreEvictionPolicy="LFU"
 />
</ehcache>

Use Cases
Setting up Ehcache as a local cache in front of memcacheg

The idea here is that your caches are set up in a cache hierarchy. Ehcache sits in front
and memcacheg behind. Combining the two lets you elegantly work around limitations
imposed by Google App Engine. You get the benefits of the speed of Ehcache together
with the unlimited size of memcachedg. Ehcache contains the hooks to easily do this.
To update memcached, use a CacheEventListener. To search against memcacheg
on a local cache miss, use cache.getWithLoader() together with a CacheLoader for
memcacheg.

Using memcacheg in Place of a DiskStore

In the CacheEventListener, ensure that when notifyElementEvicted() is called, which it
will be when a put exceeds the MemoryStore's capacity, that the key and value are put
into memcacheg.

Using Distributed Caching

Configure all notifications in CacheEventListener to proxy through to memcacheg. Any
work done by one node can then be shared by all others, with the benefit of local caching
of frequently used data.

Using Dynamic Web Content Caching

Google App Engine provides acceleration for files declared static in appengine-web.xml.

M
Even Header

Using Ehcache with the Google App Engine

Integrations Version 2.10 34

For example:
<static-files>
 <include path="/**.png" />
 <exclude path="/data/**.png" />
</static-files>

You can get acceleration for dynamic files using Ehcache's caching filters as you usually
would. See the Ehcache Web Cache User Guide for more information.

Troubleshooting
NoClassDefFoundError

If you get the error java.lang.NoClassDefFoundError: java.rmi.server.UID is a
restricted class then you are using a version of Ehcache prior to 1.6.

Sample Application
The easiest way to get started is to play with a simple sample app. We provide a simple
Rails application which stores an integer value in a cache along with increment and
decrement operations. The sample app shows you how to use ehcache as a caching
plugin and how to use it directly from the Rails caching API.

http://svn.terracotta.org/svn/forge/projects/ehcache-rails-demo/
http://svn.terracotta.org/svn/forge/projects/ehcache-rails-demo/

M
Odd Header

Using Ehcache with Tomcat

Integrations Version 2.10 35

6 Using Ehcache with Tomcat

■ About Using Ehcache with Tomcat .. 36

■ Tomcat Issues and Best Practices ... 36

M
Even Header

Using Ehcache with Tomcat

Integrations Version 2.10 36

About Using Ehcache with Tomcat
Ehcache is probably used most commonly with Tomcat. This page documents some
known issues with Tomcat and recommended practices. Ehcache's own caching and
gzip filter integration tests run against Tomcat 5.5 and Tomcat 6. Tomcat will continue to
be tested against Ehcache. Accordingly, Tomcat is tier one for Ehcache.

Tomcat Issues and Best Practices
Problem rejoining a cluster after a reload

If I restart/reload a web application in Tomcat that has a CacheManager that is part
of a cluster, the CacheManager is unable to rejoin the cluster. If I set logging for
net.sf.ehcache.distribution to FINE I see the following exception:
FINE: Unable to lookup remote cache peer for
Removing from peer list.
Cause was: error unmarshalling return;
nested exception is: java.io.EOFException.

The Tomcat and RMI class loaders do not get along that well. Move ehcache.jar to
$TOMCAT_HOME/common/lib. This fixes the problem. This issue happens with anything
that uses RMI, not just Ehcache.

Class-loader memory leak

In development, there appears to be class loader memory leak as I continually redeploy
my web application. There are lots of causes of memory leaks on redeploy. Moving
Ehcache out of the WAR and into $TOMCAT/common/lib fixes this leak.

RMI CacheException - problem starting listener for RMICachePeer

I get the following error:
net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer ...
java.rmi.UnmarshalException: error unmarshalling arguments;
nested exception is: java.net.MalformedURLException: no protocol: Files/Apache.

What is going on? This issue occurs to any RMI listener started on Tomcat whenever
Tomcat has spaces in its installation path. It can be worked around in Tomcat. The
workaround is to remove the spaces in your Tomcat installation path.

Multiple host entries in Tomcat's server.xml stops replication from occurring

The presence of multiple <Host> entries in Tomcat's server.xml prevents replication from
occurring. The issue is with adding multiple hosts on a single Tomcat connector. If one
of the hosts is localhost and another starts with v, then the caching between machines
when hiing localhost stops working correctly. The workaround is to use a single
<Host> entry or to make sure they don't start with "v". Why this issue occurs is presently
unknown, but it is Tomcat-specific.

M
Odd Header

Using Ehcache with JDBC

Integrations Version 2.10 37

7 Using Ehcache with JDBC

■ About JDBC Caching ... 38

■ Adding JDBC caching to DAO/DAL ... 38

■ Sample Code ... 39

M
Even Header

Using Ehcache with JDBC

Integrations Version 2.10 38

About JDBC Caching
Ehcache can easily be combined with your existing JDBC code. Whether you access
JDBC directly, or use a Data Access Object/Data Access Layer (DAO/DAL), Ehcache can
be combined with your existing data access paern to speed up frequently accessed data
to reduce page load times, improve performance, and reduce load from your database.

Adding JDBC caching to DAO/DAL
If your application already has a Data Access Object/Data Access Layer (DAO/DAL), this
is a natural place to add caching. To add caching, follow these steps:

Identify methods which can be cached.

Instantiate a cache and add a member variable to your DAO to hold a reference to it.

Put and get values from the cache.

Identifying methods which can be cached

Normally, you will want to cache the following kinds of method calls:

Any method which retrieves entities by an Id.

Any queries which can be tolerate some inconsistent or out of date data.

Example methods that are commonly cacheable:
public V getById(final K id);
public Collection findXXX(...);

Instantiate a cache and add a member variable

Your DAO is probably already being managed by Spring or Guice, so simply add a
seer method to your DAO such as setCache(Cache cache). Configure the cache
as a bean in your Spring or Guice config, and then use the frameworks injection
methodology to inject an instance of the cache.

If you are not using a DI framework such as Spring or Guice, then you will need to
instantiate the cache during the bootstrap of your application. As your DAO layer is
being instantiated, pass the cache instance to it.

Put and get values from the cache

Now that your DAO/DAL has a cache reference, you can start to use it. You will want to
consider using the cache using one of two standard cache access paerns:

cache-aside

cache-as-sor

You can read more about these in “Cache Usage Paerns” in the Ehcache Developer Guide.

M
Odd Header

Using Ehcache with JDBC

Integrations Version 2.10 39

Sample Code
Here is some example code that demonstrates a DAO-based cache using a cache-aside
methodology wiring it together with Spring.

This code implements a PetDao modeled after the Spring Framework PetClinic sample
application.

It implements a standard paern of creating an abstract GenericDao implementation
which all Dao implementations will extend.

It also uses Spring's SimpleJdbcTemplate to make the job of accessing the database
easier.

Finally, to make Ehcache easier to work with in Spring, it implements a wrapper that
holds the cache name.

The following are relevant snippets from the example files. A full project will be
available shortly.

CacheWrapper.java

Simple get/put wrapper interface.
public interface CacheWrapper<K, V>
{
 void put(K key, V value);
 V get(K key);
}

EhcacheWrapper.java

The wrapper implementation. Holds the name so caches can be named.
public class EhCacheWrapper<K, V> implements CacheWrapper<K, V>
{
 private final String cacheName;
 private final CacheManager cacheManager;
 public EhCacheWrapper(final String cacheName, final CacheManager cacheManager)
 {
 this.cacheName = cacheName;
 this.cacheManager = cacheManager;
 }
 public void put(final K key, final V value)
 {
 getCache().put(new Element(key, value));
 }
 public V get(final K key, CacheEntryAdapter<V> adapter)
 {
 Element element = getCache().get(key);
 if (element != null) {
 return (V) element.getValue();
 }
 return null;
 }
 public Ehcache getCache()
 {

M
Even Header

Using Ehcache with JDBC

Integrations Version 2.10 40

 return cacheManager.getEhcache(cacheName);
 }
}

GenericDao.java

The Generic Dao. It implements most of the work.
public abstract class GenericDao<K, V extends BaseEntity> implements Dao<K, V>
{
 protected DataSource datasource;
 protected SimpleJdbcTemplate jdbcTemplate;
 /* Here is the cache reference */
 protected CacheWrapper<K, V> cache;
 public void setJdbcTemplate(final SimpleJdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }
 public void setDatasource(final DataSource datasource) {
 this.datasource = datasource;
 }
 public void setCache(final CacheWrapper<K, V> cache) {
 this.cache = cache;
 }
 /* the cacheable method */
 public V getById(final K id) {
 V value;
 if ((value = cache.get(id)) == null) {
 value = this.jdbcTemplate.queryForObject(findById, mapper, id);
 if (value != null) {
 cache.put(id, value);
 }
 }
 return value;
 }
 /** rest of GenericDao implementation here **/
 /** ... **/
 /** ... **/
 /** ... **/
}

PetDaoImpl.java

The Pet Dao implementation. It doesn't really need to do anything unless specific
methods not available via GenericDao are cacheable.
public class PetDaoImpl extends GenericDao<Integer, Pet>
implements PetDao
{
/** ... **/
}

We need to configure the JdbcTemplate, Datasource, CacheManager, PetDao, and the Pet
cache using the spring configuration file.

application.xml

The Spring configuration file.
<!-- datasource and friends -->
<bean id="dataSource" class="org.springframework.jdbc.datasource
 .FasterLazyConnectionDataSourceProxy">
 <property name="targetDataSource" ref="dataSourceTarget"/>

M
Odd Header

Using Ehcache with JDBC

Integrations Version 2.10 41

</bean>
<bean id="dataSourceTarget" class="com.mchange.v2.c3p0.ComboPooledDataSource"
 destroy-method="close">
 <property name="user" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 <property name="driverClass" value="${jdbc.driverClassName}"/>
 <property name="jdbcUrl" value="${jdbc.url}"/>
 <property name="initialPoolSize" value="50"/>
 <property name="maxPoolSize" value="300"/>
 <property name="minPoolSize" value="30"/>
 <property name="acquireIncrement" value="2"/>
 <property name="acquireRetryAttempts" value="0"/>
</bean>
<!-- jdbctemplate -->
<bean id="jdbcTemplate" class="org.springframework.jdbc.core.simple.SimpleJdbcTemplate">
 <constructor-arg ref="dataSource"/>
</bean>
<!-- the cache manager -->
<bean id="cacheManager" class="EhCacheManagerFactoryBean">
 <property name="configLocation" value="classpath:${ehcache.config}"/>
</bean>
<!-- the pet cache to be injected into the pet dao -->
<bean name="petCache" class="EhCacheWrapper">
 <constructor-arg value="pets"/>
 <constructor-arg ref="cacheManager"/>
</bean>
<!-- the pet dao -->
<bean id="petDao" class="PetDaoImpl">
 <property name="cache" ref="petCache"/>
 <property name="jdbcTemplate" ref="jdbcTemplate"/>
 <property name="datasource" ref="dataSource"/>
</bean>

M
Even Header

Integrations Version 2.10 42

M
Odd Header

Using Ehcache with OpenJPA

Integrations Version 2.10 43

8 Using Ehcache with OpenJPA

■ Installation and Configuration .. 44

■ The Default Cache ... 45

■ Troubleshooting .. 45

■ For Further Information .. 45

M
Even Header

Using Ehcache with OpenJPA

Integrations Version 2.10 44

Installation and Configuration
Installation

Ehcache easily integrates with the OpenJPCA persistence framework from Apache.

To use OpenJPA, add a Maven dependency for ehcache-openjpa.
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-openjpa</artifactId>
<version>0.1</version>

Or, download from hp://ehcache.org/downloads/catalog.

Configuration

For enabling Ehcache as second-level cache, the persistence.xml file should include the
following configurations:
<property name="openjpa.Log" value="SQL=TRACE" />
<property name="openjpa.QueryCache" value="ehcache" />
<property name="openjpa.DataCache" value="true"/>
<property name="openjpa.RemoteCommitProvider" value="sjvm"/>
<property name="openjpa.DataCacheManager" value="ehcache" />

The ehcache.xml file can be configured as shown in this example:
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ehcache.xsd" updateCheck="false"
monitoring="autodetect"
dynamicConfig="true" name="TestCache">
<diskStore path="/path/to/store/data"/>
<defaultCache
 maxEntriesLocalHeap="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 memoryStoreEvictionPolicy="LRU">
 <persistence strategy="localTempSwap"/>
</defaultCache>
<cache name="com.terracotta.domain.DataTest"
 maxEntriesLocalHeap="200"
 eternal="false"
 timeToIdleSeconds="2400"
 timeToLiveSeconds="2400"
 memoryStoreEvictionPolicy="LRU">
</cache>
<cache name="openjpa"
 maxEntriesLocalHeap="20000"
 eternal="true"
 memoryStoreEvictionPolicy="LRU">
</cache>
<cache name="openjpa-querycache"
 maxEntriesLocalHeap="20000"
 eternal="true"
 memoryStoreEvictionPolicy="LRU">
</cache>
<cacheManagerPeerListenerFactory
 class="org.terracotta.ehcachedx.monitor.probe.ProbePeerListenerFactory"
 properties="monitorAddress=localhost, monitorPort=9889,

http://ehcache.org/downloads/catalog

M
Odd Header

Using Ehcache with OpenJPA

Integrations Version 2.10 45

 memoryMeasurement=true" />
</ehcache>

The Default Cache
As with Hibernate, Ehcache’s OpenJPA module (from 0.2) uses the defaultCache
configured in ehcache.xml to create caches. For production, we recommend configuring
a cache configuration in ehcache.xml for each cache, so that it may be correctly tuned.

Troubleshooting
To verify that OpenJPA is using Ehcache, view the SQL Trace to find out whether it
queries the database.

If there are still problems, verify in the logs and that your ehcache.xml file is being used.
(It could be that if the ehcache.xml file is not found, ehcache-failsafe.xml is used by
default.)

For Further Information
For more on caching in OpenJPA, see the Apache OpenJPA project at
hp://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/
ref_guide_caching.html.

http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html

M
Even Header

Integrations Version 2.10 46

M
Odd Header

Using Ehcache with Grails

Integrations Version 2.10 47

9 Using Ehcache with Grails

■ About Using Ehcache with Grails .. 48

■ Using the Springcache Plugin .. 49

■ Using Web Sessions with Grails .. 49

M
Even Header

Using Ehcache with Grails

Integrations Version 2.10 48

About Using Ehcache with Grails
Grails 1.2RC1 and higher use Ehcache as the default Hibernate second-level cache.
However earlier versions of Grails ship with the Ehcache library and are very simple to
enable. The following steps show how to configure Grails to use Ehcache. For 1.2RC1
and higher some of these steps are already done for you.

Configuring Ehcache as the Second-Level Hibernate Cache

Edit DataSource.groovy as follows:
hibernate {
cache.use_second_level_cache=true
cache.use_query_cache=true
cache.provider_class='org.hibernate.cache.EhCacheProvider'
}

Overriding Defaults

As is usual with Hibernate, it will use the defaultCache configuration as a template
to create new caches as required. For production use you often want to customize the
cache configuration. To do so, add an ehcache.xml configuration file to the conf directory
(the same directory that contains DataSource.groovy). A sample ehcache.xml which
works with the Book demo app and is good as a starter configuration for Grails is shown
below:
<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd" >
 <diskStore path="/path/to/store/data"/>
 <cacheManagerEventListenerFactory class="" properties=""/>
 <defaultCache
 maxEntriesLocalHeap="10000"
 eternal="false"
 timeToLiveSeconds="120">
 <persistence strategy="none"/>
 </defaultCache>
 <cache name="Book"
 maxEntriesLocalHeap="10000"
 timeToIdleSeconds="300"
 />
 <cache name="org.hibernate.cache.UpdateTimestampsCache"
 maxEntriesLocalHeap="10000"
 timeToIdleSeconds="300"
 />
 <cache name="org.hibernate.cache.StandardQueryCache"
 maxEntriesLocalHeap="10000"
 timeToIdleSeconds="300"
 />
</ehcache>

M
Odd Header

Using Ehcache with Grails

Integrations Version 2.10 49

Using the Springcache Plugin
The Springcache plugin allows you to easily add the following functionality to your
Grails project:

Caching of Spring bean methods (typically Grails service methods).

Caching of page fragments generated by Grails controllers.

Cache flushing when Spring bean methods or controller actions are invoked.

The plugin depends on the Ehcache and Ehcache-Web libraries. For more information,
see the Springcache Plugin (part of the Grails project) at hp://grails.org/plugin/
springcache.

Using Web Sessions with Grails
Clustering is handled by the Terracoa Web Sessions product. See the article,
“Clustering A Grails App with Terracoa” at hp://gquick.blogspot.com/2010/03/
clustering-grails-app-with-terracoa.html, for information about how to use Web
Sessions with Grails and Tomcat.

http://grails.org/plugin/springcache
http://grails.org/plugin/springcache
http://gquick.blogspot.com/2010/03/clustering-grails-app-with-terracotta.html
http://gquick.blogspot.com/2010/03/clustering-grails-app-with-terracotta.html

M
Even Header

Integrations Version 2.10 50

M
Odd Header

Using Ehcache with GlassFish

Integrations Version 2.10 51

10 Using Ehcache with GlassFish

■ Tested Versions of GlassFish .. 52

■ Deploying the Sample Application ... 52

■ Troubleshooting .. 52

M
Even Header

Using Ehcache with GlassFish

Integrations Version 2.10 52

Tested Versions of GlassFish
Ehcache has been tested with and is used in production with GlassFish V1, V2 and V3.
In particular:

Ehcache 1.4 - 1.7 has been tested with GlassFish 1 and 2.

Ehcache 2.0 has been tested with GlassFish 3.

Deploying the Sample Application
Ehcache comes with a sample web application which is used to test the page caching.
The page caching is the only area that is sensitive to the Application Server. For
Hibernate and general caching, it is only dependent on your Java version.

You need:

An Ehcache core installation

A Glassfish installation

A GLASSFISH_HOME environment variable defined.

$GLASSFISH_HOME/bin added to your PATH.

Run the following from the Ehcache core directory:
To package and deploy to domain1:
ant deploy-default-web-app-glassfish
Start domain1:
asadmin start-domain domain1
Stop domain1:
asadmin stop-domain domain1
Overwrite the config with our own which changes the port to 9080:
ant glassfish-configuration
Start domain1:
asadmin start-domain domain1

You can then run the web tests in the web package or point your browser at hp://
localhost:9080. For more information, see the Glassfish quick-start guides at hps://
glassfish.java.net/downloads/quickstart/index.html.

Troubleshooting
How to get around the EJB Container restrictions on thread creation

When Ehcache is running in the EJB Container, for example for Hibernate caching, it is
in technical breach of the EJB rules. Some app servers let you override this restriction.
I am not exactly sure how this in done in Glassfish. For a number of reasons we run
Glassfish without the Security Manager, and we do not have any issues. In domain.xml
ensure that the following is not included.

https://glassfish.java.net/downloads/quickstart/index.html
https://glassfish.java.net/downloads/quickstart/index.html

M
Odd Header

Using Ehcache with GlassFish

Integrations Version 2.10 53

<jvm-options>-Djava.security.manager</jvm-options>

Ehcache throws an IllegalStateException in Glassfish

Ehcache page caching versions below Ehcache 1.3 get an IllegalStateException in
Glassfish. This issue was fixed in Ehcache 1.3.

PayloadUtil reports Could not ungzip. Heartbeat will not be working. Not in
GZIP format

This exception is thrown when using Ehcache with my Glassfish cluster, but Ehcache
and Glassfish clustering have nothing to do with each other. The error is caused because
Ehcache has received a multicast message from the Glassfish cluster. Ensure that
Ehcache clustering has its own unique multicast address (different from Glassfish).

M
Even Header

Integrations Version 2.10 54

M
Odd Header

Using Ehcache with JSR107

Integrations Version 2.10 55

11 Using Ehcache with JSR107

■ About Ehcache Support for JSR107 .. 56

M
Even Header

Using Ehcache with JSR107

Integrations Version 2.10 56

About Ehcache Support for JSR107
Information on Ehcache support of JSR107 is available on github at hps://github.com/
jsr107/ehcache-jcache.

https://github.com/jsr107/ehcache-jcache
https://github.com/jsr107/ehcache-jcache

	Table of Contents
	Using Ehcache with Hibernate
	About Using Ehcache with Hibernate
	Downloading and Installing Ehcache for Hibernate
	Building with Maven
	Configuring Ehcache as the Second-Level Cache Provider
	Enabling Second-Level Cache and Query Cache Settings
	Configuring Hibernate Entities to use Second-Level Caching
	Configuring ehcache.xml Settings
	Ehcache Settings for Domain Objects
	Ehcache Settings for Collections
	Ehcache Settings for Queries

	The Demo Application and Tutorial
	Performance Tips
	Viewing Hibernate Statistics
	Upgrading from Ehcache Versions Prior to 2.0
	FAQ

	Using Ehcache with ColdFusion
	About ColdFusion and Ehcache
	Example Integration

	Using Ehcache with Spring
	Using Spring 3.1
	Spring 2.5 to 3.1
	Annotations for Spring Project

	Using Ehcache with JRuby and Rails
	About Using Ehcache with JRuby
	Installation
	Configuring Ehcache for JRuby
	Using the jruby-ehcache API directly
	Using Ehcache from within Rails
	Adding Off-Heap Storage under Rails

	Using Ehcache with the Google App Engine
	About Google App Engine (GAE) and Ehcache
	Configuring ehcache.xml for Google App Engine
	Use Cases
	Troubleshooting
	Sample Application

	Using Ehcache with Tomcat
	About Using Ehcache with Tomcat
	Tomcat Issues and Best Practices

	Using Ehcache with JDBC
	About JDBC Caching
	Adding JDBC caching to DAO/DAL
	Sample Code

	Using Ehcache with OpenJPA
	Installation and Configuration
	The Default Cache
	Troubleshooting
	For Further Information

	Using Ehcache with Grails
	About Using Ehcache with Grails
	Using the Springcache Plugin
	Using Web Sessions with Grails

	Using Ehcache with GlassFish
	Tested Versions of GlassFish
	Deploying the Sample Application
	Troubleshooting

	Using Ehcache with JSR107
	About Ehcache Support for JSR107

