
Ehcache v1.2.4 User Guide

Greg Luck

26 November 2006

2 Ehcache v1.2.4 User Guide

Contents

1 Preface 11

1.1 Audience 11

1.2 Book Format 11

1.3 Acknowledgements 11

1.4 About the ehcache name and logo 12

2 Introduction 13

2.1 About Caches 13

2.2 Why caching works 13

2.2.1 Locality of Reference 13

2.2.2 The Long Tail .. . 13

2.3 Will an Application Benefit from Caching? 14

2.3.1 Speeding up CPU bound Applications 14

2.3.2 Speeding up I/O bound Applications 14

2.3.3 Increased Application Scalability 15

2.4 How much will an application speed up with Caching? 15

2.4.1 The short answer 15

2.4.2 Applying Amdahl’s Law 15

2.4.3 Cache Efficiency 16

2.4.4 Cluster Efficiency 17

2.4.5 A cache version of Amdahl’s law 17

2.4.6 Web Page example .. . 18

3 Getting Started 19

3.1 General Purpose Caching 19

3.2 Hibernate 19

3.3 J2EE Servlet Caching 19

3.4 Spring, Cocoon, Acegi and other frameworks 20

4 Features 21

4.1 Fast and Light Weight 22

3

4 Ehcache v1.2.4 User Guide

4.1.1 Fast .22

4.1.2 Simple .23

4.1.3 Small foot print 23

4.1.4 Minimal dependencies 24

4.2 Scalable 24

4.2.1 Provides Memory and Disk stores for scalabilty into gigabytes 24

4.2.2 Scalable to hundreds of caches 24

4.2.3 Tuned for high concurrent load on large multi-cpu servers 24

4.2.4 Multiple CacheManagers per virtual machine 24

4.3 Complete 24

4.3.1 Supports Object or Serializable caching 24

4.3.2 Support cache-wide or Element-based expiry policies. 24

4.3.3 Provides LRU, LFU and FIFO cache eviction policies 24

4.3.4 Provides Memory and Disk stores 25

4.3.5 Distributed 25

4.4 Extensible 25

4.4.1 Listeners may be plugged in 25

4.4.2 Peer Discovery, Replicators and Listeners may be plugged in 25

4.5 Application Persistence 25

4.5.1 Persistent disk store which stores data between VM restarts 25

4.5.2 Flush to disk on demand 25

4.6 Listeners 25

4.6.1 CacheManager listeners 25

4.6.2 Cache event listeners 26

4.7 Distributed Caching 26

4.7.1 Peer Discovery 26

4.7.2 Reliable Delivery 26

4.7.3 Synchronous Or Asynchronous Replication 26

4.7.4 Copy Or Invalidate Replication 26

4.7.5 Transparent Replication 26

4.7.6 Extensible 26

4.7.7 Bootstrapping from Peers 27

4.8 J2EE and Applied Caching 27

4.8.1 Blocking Cache to avoid duplicate processing for concurrent operations 27

4.8.2 SelfPopulating Cache for pull through caching of expensive operations 27

4.8.3 J2EE Gzipping Servlet Filter 27

4.8.4 Cacheable Commands 27

4.8.5 Works with Hibernate 28

4.9 High Quality 28

4.9.1 High Test Coverage 28

Ehcache v1.2.4 User Guide 5

4.9.2 Automated Load, Limit and Performance System Tests 28

4.9.3 Specific Concurrency Testing 28

4.9.4 Production tested 28

4.9.5 Fully documented 29

4.9.6 Trusted by Popular Frameworks 29

4.9.7 Conservative Commit policy 29

4.9.8 Full public information on the history of every bug 29

4.9.9 Responsiveness to serious bugs 29

4.10 Open Source Licensing 29

4.10.1 Apache 2.0 license 29

5 Key Ehcache Concepts 31

5.1 Key Ehcache Classes 31

5.1.1 CacheManager .. . 32

5.1.2 Ehcache .. 34

5.1.3 Element .. 35

5.2 Cache Size and Eviction 36

5.2.1 Supported Eviction Algorithms 36

5.2.2 MemoryStore Eviction Algorithms . 36

5.2.3 DiskStore Eviction Algorithms . 37

5.3 Cache Usage Patterns 37

5.3.1 Direct Manipulation 37

5.3.2 Self Populating 37

6 Code Samples 39

6.1 Using the CacheManager 39

6.1.1 Singleton versus Instance 39

6.1.2 Ways of loading Cache Configuration 40

6.1.3 Adding and Removing Caches Programmatically 40

6.1.4 Shutdown the CacheManager 41

6.2 Using Caches 41

6.2.1 Obtaining a reference to a Cache 41

6.2.2 Performing CRUD operations 41

6.2.3 Disk Persistence on demand 42

6.2.4 Obtaining Cache Sizes 42

6.2.5 Obtaining Statistics of Cache Hits and Misses 42

6.3 Creating a new cache from defaults 43

6.4 Creating a new cache with custom parameters 43

6.5 Browse the JUnit Tests 44

7 Java Requirements, Dependencies and Maven POM snippet 45

6 Ehcache v1.2.4 User Guide

7.1 Java Requirements 45

7.2 Dependencies 45

7.3 Maven pom.xml snippet 45

8 Logging And Debugging 47

8.1 Commons Logging 47

8.2 Logging Philosophy 47

8.3 Remote Network debugging and monitoring for Distributed Caches 48

9 Class loading and Class Loaders 49

9.1 Plugin class loading 49

9.2 Loading of ehcache.xml resources 50

10 Performance Considerations 51

10.1 DiskStore 51

10.2 Replication 51

11 Cache Decorators 53

11.1 Creating a Decorator 53

11.2 Accessing the decorated cache 53

11.2.1 Using CacheManager to access decorated caches 53

11.3 Built-in Decorators 54

11.3.1 BlockingCache 54

11.3.2 SelfPopulatingCache 56

12 Cache Configuration 57

12.1 ehcache.xsd 57

12.2 ehcache-failsafe.xml 59

12.3 ehcache.xml and other configuration files 59

13 Storage Options 67

13.1 Memory Store 67

13.1.1 Memory Use, Spooling and Expiry Strategy 67

13.2 DiskStore 68

14 Virtual Machine Shutdown Considerations 71

14.1 .. 71

15 Hibernate Caching 73

15.1 Setting ehcache as the cache provider 73

15.1.1 Using the ehcache provider from the ehcache project 73

15.1.2 Using the ehcache provider from the Hibernate project 74

15.1.3 Programmatic setting of the Hibernate Cache Provider 74

Ehcache v1.2.4 User Guide 7

15.2 Hibernate Mapping Files 74

15.2.1 read-write 75

15.2.2 nonstrict-read-write 75

15.2.3 read-only 75

15.3 Hibernate Doclet 75

15.4 Configuration with ehcache.xml 76

15.4.1 Domain Objects 76

15.4.2 Hibernate 76

15.4.3 Collections 76

15.4.4 Hibernate CacheConcurrencyStrategy 77

15.4.5 Queries .. . 77

15.4.6 StandardQueryCache 77

15.4.7 UpdateTimestampsCache 77

15.4.8 Named Query Caches 77

15.4.9 Using Query Caches 78

15.4.10 Hibernate CacheConcurrencyStrategy 78

15.5 Hibernate Caching Performance Tips 78

15.5.1 In-Process Cache 78

15.5.2 Object Id .. . 79

15.5.3 Session.load 79

15.5.4 Session.find and Query.find 79

15.5.5 Session.iterate and Query.iterate 79

16 The Design of distributed ehcache 81

16.1 Acknowledgements 81

16.2 Problems with Instance Caches in a Clustered Environment 81

16.3 Replicated Cache 81

16.4 Distributed Cache Terms 82

16.5 Notification Strategies 82

16.6 Topology Choices 82

16.6.1 Peer Cache Replicator 82

16.6.2 Centralised Cache Replicator 82

16.7 Discovery Choices 82

16.7.1 Multicast Discovery 82

16.7.2 Static List 83

16.8 Delivery Mechanism Choices 83

16.8.1 Custom Socket Protocol 83

16.8.2 Multicast Delivery 83

16.8.3 JMS Topics .. . 83

16.8.4 RMI RMI is the default RPC mechanism in Java. 83

8 Ehcache v1.2.4 User Guide

16.8.5 JXTA .83

16.8.6 JGroups .. . 83

16.8.7 The Default Implementation 83

16.9 Replication Drawbacks and Solutions in ehcache’s implementation 84

16.9.1 Chatty Protocol 84

16.9.2 Redundant Notifications 84

16.9.3 Potential for Inconsisent Data 84

16.9.4 Synchronous Delivery 85

16.9.5 Update via Invalidation 85

17 Distributed Caching 87

17.1 Suitable Element Types 87

17.2 Peer Discovery 87

17.2.1 Automatic Peer Discovery 88

17.2.2 Manual Peer Discovery 88

17.3 Configuring a CacheManagerPeerListener 89

17.4 Configuring CacheReplicators 90

17.5 Common Problems 90

17.5.1 Tomcat on Windows 90

17.5.2 Multicast Blocking 91

17.5.3 Multicast Not Progagating Far Enough or PropagatingToo Far 91

18 The Design of the ehcache constructs package 93

18.1 Acknowledgements 93

18.2 The purpose of the Constructs package 93

18.3 Caching meets Concurrent Programming 93

18.4 What can possibly go wrong? 94

18.4.1 Safety Failures 94

18.4.2 Liveness Failures 94

18.5 The constructs 94

18.5.1 Blocking Cache 94

18.5.2 SelfPopulatingCache 97

18.5.3 CachingFilter 97

18.5.4 SimplePageCachingFilter 97

18.5.5 PageFragmentCachingFilter 97

18.5.6 SimplePageFragmentCachingFilter 98

18.5.7 AsynchronousCommandExecutor 98

18.6 Real-life problems in the constructs package and theirsolutions 98

18.6.1 The Blocking Cache Stampede 98

18.6.2 The Blank Page problem 98

Ehcache v1.2.4 User Guide 9

18.6.3 Blocking Cascade 99

19 CacheManager Event Listeners 101

19.1 Configuration 101

19.2 Implementing a CacheManagerEventListenerFactory and CacheManagerEventListener . . 102

20 Cache Event Listeners 105

20.1 Configuration 105

20.2 Implementing a CacheEventListenerFactory and CacheEventListener 106

21 Frequently Asked Questions 109

21.1 Does ehcache run on JDK1.3? 109

21.2 Can you use more than one instance of ehcache in a single VM? 109

21.3 Can you use ehcache with Hibernate and outside of Hibernate at the same time? 109

21.4 What happens when maxElementsInMemory is reached? Arethe oldest items are expired
when new ones come in? .. . 109

21.5 Is it thread safe to modify Element values after retrieval from a Cache? 110

21.6 Can non-Serializable objects be stored in a cache? 110

21.7 Why is there an expiry thread for the DiskStore but not for the MemoryStore? 110

21.8 What elements are mandatory in ehcache.xml? 110

21.9 Can I use ehcache as a memory cache only? 110

21.10Can I use ehcache as a disk cache only? 111

21.11Where is the source code? The source code is distributed in the root directory of the download.111

21.12How do you get statistics on an Element without affecting them? 111

21.13How do you get WebSphere to work with ehcache? 111

21.14Do you need to call CacheManager.getInstance().shutdown() when you finish with ehcache? 111

21.15Can you use ehcache after a CacheManager.shutdown()?. 111

21.16I have created a new cache and its status is STATUS_UNINITIALISED. How do I initialise
it? . 112

21.17Is there a simple way to disable ehcache when testing? 112

21.18Is there a Maven bundle for ehcache? 112

21.19How do I dynamically change Cache attributes at runtime? 112

21.20I get net.sf.ehcache.distribution.RemoteCacheException: Error doing put to remote peerre-
mote peer. Message was: Error unmarshaling return header; nested exception is: java.net.SocketTimeoutException:
Read timed out. What does this mean. 112

21.21Should I use this directive when doing distributed caching? cacheManagerEventListener-
Factory class="" properties=""/ . 113

21.22What is the minimum config to get distributed caching going? 113

21.23How can I see if distributed caching is working? 113

21.24I get net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer ... java.rmi.UnmarshalException:
error unmarshalling arguments; nested exception is: java.net.MalformedURLException:
no protocol: Files/Apache. What is going on? 114

21.25Why can’t I run multiple applications using ehcache onone machine? 114

10 Ehcache v1.2.4 User Guide

21.26How many threads does ehcache use, and how much memory does that consume? 114

22 About the ehcache name and logo 115

Chapter 1

Preface

This is a book about ehcache, a widely used open source Java cache. Ehcache has grown in size and scope
since it was introduced in October 2003. As people used it they often noticed it was missing a feature they
wanted. Over time, the features that were repeatedly asked for, and make sense for a Cache, have been
added.

Ehcache is now used for Hibernate caching, data access object caching, security credential caching, web
caching, application persistence and distributed caching. The biggest issue faced by Ehcache users at the
time of writing is understanding when and how to use these features.

1.1 Audience

The intended audience for this book is developers who use ehcache. It should be able to be used to start
from scratch, get up and running quickly, and also be useful for the more complex options.

Ehcache is about performance and load reduction of underlying resources. Another natural audience is
performance specialists.

It is also intended for application and enterprise architects. Some of the features of ehcache, such as
distributed caching and J2EE caching, are alternatives to be considered along with other ways of solving
those problems. This book discusses the trade-offs in ehcache’s approach to help make a decision about
appropriateness of use.

1.2 Book Format

This is the first time that the ehcache documentation has beenput in book form suitable for use as an online
PDF or printed. It is designed to be printed from PDF, so blankpages have been deliberately left to give a
good flow.

1.3 Acknowledgements

Ehcache has had many contributions in the form of forum discussions, feature requests, bug reports, patches
and code commits.

Rather than try and list the many hundreds of people who have contributed to ehcache in some way it is
better to link to the web site where contributions are acknowledged in the following ways:

• Bug reports and features requests appear in the changes report here:

11

12 Ehcache v1.2.4 User Guide

• Patch contributors generally end up with an author tag in thesource they contributed to

• Team members appear on the team list page here:

Thanks to Denis Orlov for suggesting the need for a book in thefirst place.

1.4 About the ehcache name and logo

Adam Murdoch (an all round top Java coder) came up with the name in a moment of inspiration while we
were stuck on the SourceForge project create page. Ehcache is a palindrome. He thought the name was
wicked cool and we agreed.

The logo is similarly symmetrical, and is evocative of the diagram symbol for a doubly-linked list. That
structure lies at the heart of ehcache.

Chapter 2

Introduction

Ehcache is a cache library. Before getting into ehcache, it is worth stepping back and thinking about
caching generally.

2.1 About Caches

Wiktionary defines a cache asA store of things that will be required in future, and can be retrieved rapidly.
That is the nub of it.

In computer science terms, a cache is a collection of temporary data which either duplicates data located
elsewhere or is the result of a computation. Once in the cache, the data can be repeatedly accessed inex-
pensively.

2.2 Why caching works

2.2.1 Locality of Reference

While ehcache concerns itself with Java objects, caching isused throughout computing, from CPU caches
to the DNS system. Why? Because many computer systems exhibit locality of reference. Data that is near
other data or has just been used is more likely to be used again.

2.2.2 The Long Tail

Chris Anderson, of Wired Magazine, coined the termThe Long Tailto refer to Ecommerce systems. The
idea that a small number of items may make up the bulk of sales,a small number of blogs might get the
most hits and so on. While there is a small list of popular items, there is a long tail of less popular ones.

The Long Tail

13

14 Ehcache v1.2.4 User Guide

The Long Tail is itself a vernacular term for a Power Law probability distribution. They don’t just appear
in ecommerce, but throughout nature. One form of a Power Law distribution is the Pareto distribution,
commonly know as the 80:20 rule.

This phenomenon is useful for caching. If 20% of objects are used 80% of the time, and the a way can be
found to reduce the cost of obtaining that 20% the system performance will improve.

2.3 Will an Application Benefit from Caching?

The short answer is that it often does, due to the effects noted above.

The medium answer is that it often depends on whether it is CPUbound or I/O bound. If an application
is I/O bound then then the time taken to complete a computation depends principally on the rate at which
data can be obtained. If it is CPU bound, then the time taken principally depends on the speed of the CPU
and main memory.

While the focus for caching is on improving performance, it it also worth realizing that it reduces load. The
time it takes something to complete is usually related to theexpense of it. So, caching often reduces load
on scarce resources.

2.3.1 Speeding up CPU bound Applications

CPU bound applications are often sped up by:

• improving algorithm performance

• parallelizing the computations across multiple CPUs (SMP)or multiple machines (Clusters).

• upgrading the CPU speed.

The role of caching, if there is one, is to temporarily store computations that may be reused again.

An example from ehcache would be large web pages that have a high rendering cost. Another caching
of authentication status, where authentication requires cryptographic transforms.

2.3.2 Speeding up I/O bound Applications

Many applications are I/O bound, either by disk or network operations. In the case of databases they can
be limited by both.

There is no Moore’s law for hard disks. A 10,000 RPM disk was fast 10 years ago and is still fast. Hard
disks are speeding up by using their own caching of blocks into memory.

Network operations can be bound by a number of factors:

• time to set up and tear down connections

• latency, or the minimum round trip time

• throughput limits

• marshalling and unmarhshalling overhead

The caching of data can often help a lot with I/O bound applications. Some examples of ehcache
uses are:

• Data Access Object caching for Hibernate

• Web page caching, for pages generated from databases.

Ehcache v1.2.4 User Guide 15

2.3.3 Increased Application Scalability

The flip side of increased performance is increased scalability. Say you have a database which can do 100
expensive queries per second. After that it backs up and if connections are added to it it slowly dies.

In this case, caching may be able to reduce the workload required. If caching can cause 90 of that 100 to
be cache hits and not even get to the database, then the database can scale 10 times higher than otherwise.

2.4 How much will an application speed up with Caching?

2.4.1 The short answer

The short answer is that it depends on a multitude of factors being:

• how many times a cached piece of data can and is reused by the application

• the proportion of the response time that is alleviated by caching

In applications that are I/O bound, which is most business applications, most of the response time is
getting data from a database. Therefore the speed up mostly depends on how much reuse a piece of
data gets.

In a system where each piece of data is used just once, it is zero. In a system where data is reused a
lot, the speed up is large.

The long answer, unfortunately, is complicated and mathematical. It is considered next.

2.4.2 Applying Amdahl’s Law

Amdahl’s law, after Gene Amdahl, is used to find the system speed up from a speed up in part of the system.

1 / ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl’s law to common situations. In the interests of sim-
plicity, we assume:

• a single server

• a system with a single thing in it, which when cached, gets 100% cache hits and lives forever.

Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1000times faster from cache than from a database.

A typical Hibernate query will return a list of IDs from the database, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the database to load each object.

Imagine a scenario where we execute a query against the database which returns a hundred IDs and then
load each one.

The query takes 20% of the time and the roundtrip loading takes the rest (80%). The database query itself
is 75% of the time that the operation takes. The proportion being sped up is thus 60% (75% * 80%).

The expected system speedup is thus:

16 Ehcache v1.2.4 User Guide

1 / ((1 - .6) + .6 / 1000)

= 1 / (.4 + .006)

= 2.5 times system speedup

Web Page Caching

An observed speed up from caching a web page is 1000 times. Ehcache can retrieve a page from its
SimplePageCachingFilter in a few ms.

Because the web page is the end result of a computation, it hasa proportion of 100%.

The expected system speedup is thus:

1 / ((1 - 1) + 1 / 1000)

= 1 / (0 + .001)

= 1000 times system speedup

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liveness requirements vary in different parts of the
page. Here the SimplePageFragmentCachingFilter can be used.

Let’s say we have a 1000 fold improvement on a page fragment that taking 40% of the page render time.

The expected system speedup is thus:

1 / ((1 - .4) + .4 / 1000)

= 1 / (6 + .004)

= 1.6 times system speedup

2.4.3 Cache Efficiency

In real life cache entrie do not live forever. Some examples that come close are "static" web pages or
fragments of same, like page footers, and in the database realm, reference data, such as the currencies in
the world.

Factors which affect the efficiency of a cache are:

liveness how live the data needs to be. The less live the more it can be cached

proportion of data cached what proportion of the data can fit into the resource limits ofthe machine. For
32 bit Java systems, there was a hard limit of 2GB of address space. While now relaxed, garbage
collection issues make it harder to go a lot large. Various eviction algorithms are used to evict excess
entries.

Shape of the usage distributionIf only 300 out of 3000 entries can be cached, but the Pareto distribution
applies, it may be that 80% of the time, those 300 will be the ones requested. This drives up the
average request lifespan.

Read/Write ratio The proportion of times data is read compared with how often it is written. Things such
as the number of rooms left in a hotel will be written to quite alot. However the details of a room

Ehcache v1.2.4 User Guide 17

sold are immutable once created so have a maximum write of 1 with a potentially large number of
reads.

Ehcache keeps these statistics for each Cache and each element, so they can be measured directly
rather than estimated.

2.4.4 Cluster Efficiency

Also in real life, we generally do not find a single server?

Assume a round robin load balancer where each hit goes to the next server.

The cache has one entry which has a variable lifespan of requests, say caused by a time to live. The
following table shows how that lifespan can affect hits and misses.

Server 1 Server 2 Server 3 Server 4

M M M M
H H H H
H H H H
H H H H
H H H H
...

The cache hit ratios for the system as a whole are as follows:

Entry
Lifespan Hit Ratio Hit Ratio Hit Ratio Hit Ratio
in Hits 1 Server 2 Servers 3 Servers 4 Servers

2 1/2 0/2 0/2 0/2
4 3/4 2/4 1/4 0/4
10 9/10 8/10 7/10 6/10
20 19/20 18/20 17/20 16/10
50 49/50 48/50 47/20 46/50

The efficiency of a cluster of standalone caches is generally:

(Lifespan in requests - Number of Standalone Caches) / Lifespan in requests

Where the lifespan is large relative to the number of standalone caches, cache efficiency is not much
affected.

However when the lifespan is short, cache efficiency is dramatically affected.

(To solve this problem, ehcache supports distributed caching, where an entry put in a local cache is also
propagated to other servers in the cluster.)

2.4.5 A cache version of Amdahl’s law

From the above we now have:

1 / ((1 - Proportion Sped Up * effective cache efficiency) + (Proportion Sped Up * effective cache

effective cache efficiency = cache efficiency * cluster efficiency

18 Ehcache v1.2.4 User Guide

2.4.6 Web Page example

Applying this to the earlier web page cache example where we have cache efficiency of 35% and average
request lifespan of 10 requests and two servers:

cache efficiency = .35

cluster efficiency = .(10 - 1) / 10
= .9

effective cache efficiency = .35 * .9
= .315

1 / ((1 - 1 * .315) + 1 * .315 / 1000)

= 1 / (.685 + .000315)

= 1.45 times system speedup

What if, instead the cache efficiency is 70%; a doubling of efficiency. We keep to two servers.

cache efficiency = .70

cluster efficiency = .(10 - 1) / 10
= .9

effective cache efficiency = .70 * .9
= .63

1 / ((1 - 1 * .63) + 1 * .63 / 1000)

= 1 / (.37 + .00063)

= 2.69 times system speedup

What if, instead the cache efficiency is 90%; a doubling of efficiency. We keep to two servers.

cache efficiency = .90

cluster efficiency = .(10 - 1) / 10
= .9

effective cache efficiency = .9 * .9
= .81

1 / ((1 - 1 * .81) + 1 * .81 / 1000)

= 1 / (.19 + .00081)

= 5.24 times system speedup

Why is the reduction so dramatic? Because Amdahl’s law is most sensitive to the proportion of the system
that is sped up.

Chapter 3

Getting Started

Ehcache can be used directly. It can also be used with the popular Hibernate Object/Relational tool. Finally,
it can be used for J2EE Servlet Caching.

This quick guide gets you started on each of these. The rest ofthe documentation can be explored for a
deeper understanding.

3.1 General Purpose Caching

• Make sure you are using a supported Java version.

• Place the ehcache jar into your classpath.

• Ensure that any libraries required to satisfy dependenciesare also in the classpath.

• Configure ehcache.xml and place it in your classpath.

• Optionally, configure an appropriate logging level.

See Code Samples for more information on direct interactionwith ehcache.

3.2 Hibernate

• Perform the same steps as General Purpose Caching.

• Create caches in ehcache.xml.

See Hibernate Caching for more information.

3.3 J2EE Servlet Caching

• Perform the same steps as General Purpose Caching.

• Configure a cache for your web page in ehcache.xml.

• To cache an entire web page, either use SimplePageCachingFilter or create your own subclass of
CachingFilter

• To cache a jsp:Include or anything callable from a RequestDispatcher, either use SimplePageFrag-
mentCachingFilter or create a subclass of PageFragmentCachingFilter.

19

20 Ehcache v1.2.4 User Guide

• Configure the web.xml. Declare the filters created above and create filter mapping associating the
filter with a URL.

See J2EE Servlet Caching for more information.

3.4 Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using ehcache without even realising it. The first steps in getting more control
over what is happening are:

• discover the cache names used by the framework

• create your own ehcache.xml with settings for the caches andplace it in the application classpath.

Chapter 4

Features

• Fast and Light Weight

– Fast

– Simple

– Small foot print

– Minimal dependencies

• Scalable

– Provides Memory and Disk stores for scalabilty into gigabytes

– Scalable to hundreds of caches

– Tuned for high concurrent load on large multi-cpu servers

– Multiple CacheManagers per virtual machine

• Complete

– Supports Object or Serializable caching

– Support cache-wide or Element-based expiry policies

– Provides LRU, LFU and FIFO cache eviction policies

– Provides Memory and Disk stores

– Distributed Caching

• Extensible

– Listeners may be plugged in

– Peer Discovery, Replicators and Listeners may be plugged in

• Application Persistence

– Persistent disk store which stores data between VM restarts

– Flush to disk on demand

• Supports Listeners

– CacheManager listeners

– Cache event listeners

21

22 Ehcache v1.2.4 User Guide

• Distributed

– Peer Discovery

– Reliable Delivery

– Synchronous Or Asynchronous Replication

– Copy Or Invalidate Replication

– Transparent Replication

– Extensible

– Bootstrapping from Peers

• J2EE and Applied Caching

– Blocking Cache to avoid duplicate processing for concurrent operations

– SelfPopulating Cache for pull through caching of expensiveoperations

– J2EE Gzipping Servlet Filter

– Cacheable Commands

– Works with Hibernate

• High Quality

– High Test Coverage

– Automated Load, Limit and Performance System Tests

– Production tested

– Fully documented

– Trusted by Popular Frameworks

– Conservative Commit policy

– Full public information on the history of every bug

– Responsiveness to serious bugs

• Open Source Licensing

– Apache 2.0 license

4.1 Fast and Light Weight

4.1.1 Fast

Over the years, various performance tests have shown ehcache to be one of the fastest Java caches.
Ehcache’s threading is designed for large, high concurrency systems.

Extensive performance tests in the test suite keep ehcache’s performance consistent between releases.

As an example, some guys have created a java cache test tool called cache4j_perfomance_tester.

The results for ehcache-1.1 and ehcache-1.2 follow.

Ehcache v1.2.4 User Guide 23

ehcache-1.1

[java] ---
[java] java.version=1.4.2_09
[java] java.vm.name=Java HotSpot(TM) Client VM
[java] java.vm.version=1.4.2-54
[java] java.vm.info=mixed mode
[java] java.vm.vendor="Apple Computer, Inc."
[java] os.name=Mac OS X
[java] os.version=10.4.5
[java] os.arch=ppc
[java] ---
[java] This test can take about 5-10 minutes. Please wait ...
[java] ---
[java] |GetPutRemoveT |GetPutRemove |Get |
[java] ---
[java] cache4j 0.4 |9240 |9116 |5556 |
[java] oscache 2.2 |33577 |30803 |8350 |
[java] ehcache 1.1 |7697 |6145 |3395 |
[java] jcs 1.2.7.0 |8966 |9455 |4072 |
[java] ---

ehcache-1.2
[java] ---
[java] java.version=1.4.2_09
[java] java.vm.name=Java HotSpot(TM) Client VM
[java] java.vm.version=1.4.2-54
[java] java.vm.info=mixed mode
[java] java.vm.vendor="Apple Computer, Inc."
[java] os.name=Mac OS X
[java] os.version=10.4.5
[java] os.arch=ppc
[java] ---
[java] This test can take about 5-10 minutes. Please wait ...
[java] ---
[java] |GetPutRemoveT |GetPutRemove |Get |
[java] ---
[java] cache4j 0.4 |9410 |9053 |5865 |
[java] oscache 2.2 |28076 |30833 |8031 |
[java] ehcache 1.2 |8753 |7072 |3479 |
[java] jcs 1.2.7.0 |8806 |9522 |4097 |
[java] ---

4.1.2 Simple

Many users of ehcache hardly know they are using it. Sensibledefaults require no initial configuration.

The API is very simple and easy to use, making it possible to get up and running in minutes. See the Code
Samples for details.

4.1.3 Small foot print

Ehcache 1.2 is 110KB making it convenient to package.

24 Ehcache v1.2.4 User Guide

4.1.4 Minimal dependencies

Commons logging and collections are the only dependencies for most JDKs.

4.2 Scalable

4.2.1 Provides Memory and Disk stores for scalabilty into gigabytes

The largest ehcache installations use memory and disk stores in the gigabyte range. Ehcache is tuned for
these large sizes.

4.2.2 Scalable to hundreds of caches

The largest ehcache installations use hundreds of caches.

4.2.3 Tuned for high concurrent load on large multi-cpu servers

There is a tension between thread safety and performance. Ehcache’s threading started off coarse-grained,
but has increasingly made use of ideas from Doug Lea to achieve greater performance. Over the years there
have been a number of scalability bottlenecks identified andfixed.

4.2.4 Multiple CacheManagers per virtual machine

Ehcache 1.2 introduced multiple CacheManagers per virtualmachine. This enables completely difference
ehcache.xml configurations to be applied.

4.3 Complete

4.3.1 Supports Object or Serializable caching

As of ehcache-1.2 there is an API for Objects in addition to the one for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStore andreplication. If an attempt is made to persist
or replicate them they are discarded without error and with aDEBUG level log message.

The APIs are identical except for the return methods from Element. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differences between the Serializable and Object APIs. This
makes it very easy to start with caching Objects and then change your Objects to Seralizable to participate
in the extra features when needed. Also a large number of Javaclasses are simply not Serializable.

4.3.2 Support cache-wide or Element-based expiry policies

Time to lives and time to idles are settable per cache. In addition, from ehcache-1.2.1, overrides to these
can be set per Element.

4.3.3 Provides LRU, LFU and FIFO cache eviction policies

Ehcache 1.2 introduced Less Frequently Used and First In First Out caching eviction policies. These round
out the eviction policies.

Ehcache v1.2.4 User Guide 25

4.3.4 Provides Memory and Disk stores

Ehcache, like most of the cache solutions, provides high performance memory and disk stores.

4.3.5 Distributed

Flexible, extensible, high performance distributed caching. The default implementation supports cache
discovery via multicast or manual configuration. Updates are delivered either asynchronously or syn-
chronously via custom RMI connections. Additional discovery or delivery schemes can be plugged in by
third parties.

See the Distributed Caching documentation for more featuredetails.

4.4 Extensible

4.4.1 Listeners may be plugged in

Ehcache 1.2 providesCacheManagerEventListener andCacheEventListener interfaces. Imple-
mentations can be plugged in and configured in ehcache.xml.

4.4.2 Peer Discovery, Replicators and Listeners may be plugged in

Distributed caching, introduced in ehcache 1.2 involves many choices and tradeoffs. The ehcache team
believe that one size will not fit all. Implementers can use built-in mechanisms or write their own. A plugin
development guide is included for this purpose.

4.5 Application Persistence

4.5.1 Persistent disk store which stores data between VM restarts

With ehcache 1.1 in 2004, ehcache was the first open source Java cache to introduce persistent storage of
cache data on disk on shutdown. The cached data is then accessible the next time the application runs.

4.5.2 Flush to disk on demand

With ehcache 1.2, the flushing of entries to disk can be executed with acache.flush()method whenever
required, making it easier to use ehcache

4.6 Listeners

4.6.1 CacheManager listeners

Ehcache 1.2 introduced theCacheManagerEventListener interface with the following event methods:

• notifyCacheAdded()

• notifyCacheRemoved()

26 Ehcache v1.2.4 User Guide

4.6.2 Cache event listeners

Ehcache 1.2 introduced theCacheEventListener interfaces, providing a lot of flexibility for post-
processing of cache events. The methods are:

• notifyElementRemoved

• notifyElementPut

• notifyElementUpdated

• notifyElementExpired

4.7 Distributed Caching

Ehcache 1.2 introduced a full-featured, fine-grained distributed caching mechanism for clusters.

4.7.1 Peer Discovery

Peer discovery may be either manually configured or automatic, using multicast. Multicast is simple, and
adds and removes peers automatically. Manual configurationgives fine control and is useful for situations
where multicast is blocked.

4.7.2 Reliable Delivery

The built-in delivery mechanism uses RMI with custom sockets over TCP, not UDP.

4.7.3 Synchronous Or Asynchronous Replication

Replication can be set to synchronous Or asynchronous, per cache.

4.7.4 Copy Or Invalidate Replication

Replication can be set to copy or invalidate, per cache, as isappropriate.

4.7.5 Transparent Replication

No programming changes are required to make use of replication. Only configuration in ehcache.xml.

4.7.6 Extensible

Distributed caching, introduced in ehcache 1.2 involves many choices and tradeoffs. The ehcache team
believe that one size will not fit all. Implementers can use built-in mechanisms or write their own. A plugin
development guide is included for this purpose.

Ehcache v1.2.4 User Guide 27

4.7.7 Bootstrapping from Peers

Distributed caches enter and leave the cluster at differenttimes. Caches can be configured to bootstrap
themselves from the cluster when they are first initialized.

An abstract factory, BootstrapCacheLoaderFactory has been defined along with an interface Bootstrap-
CacheLoader along with an RMI based default implementation.

4.8 J2EE and Applied Caching

High quality implementations for common caching scenariosand patterns.

4.8.1 Blocking Cache to avoid duplicate processing for concurrent operations

A cache which blocks subsequent threads until the first read thread populates a cache entry.

4.8.2 SelfPopulating Cache for pull through caching of expensive operations

SelfPopulatingCache - a read-through cache. A cache that populates elements as they are requested without
requiring the caller to know how the entries are populated. It also enables refreshes of cache entries without
blocking reads on the same entries.

4.8.3 J2EE Gzipping Servlet Filter

• CachingFilter - an abstract, extensible caching filter.

• SimplePageCachingFilter

A high performance J2EE servlet filter that caches pages based on the request URI and Query String.
It also gzips the pages and delivers them to browsers either gzipped or ungzipped depending on the
HTTP request headers. Use to cache entire Servlet pages, whether from JSP, velocity, or any other
rendering technology.

Tested with Orion and Tomcat.

• SimplePageFragmentCachingFilter

A high performance J2EE filter that caches page fragments based on the request URI and Query
String. Use with Servlet request dispatchers to cache partsof pages, whether from JSP, velocity, or
any other rendering technology. Can be used from JSPs using jsp:include.

Tested with Orion and Tomcat.

• Works with Servlet 2.3 and Servlet 2.4 specifications.

4.8.4 Cacheable Commands

This is the trusty old command pattern with a twist: asynchronous behaviour, fault tolerance and caching.
Creates a command, caches it and then attempts to execute it.

28 Ehcache v1.2.4 User Guide

4.8.5 Works with Hibernate

Tested with Hibernate2.1.8 and Hibernate3.1.3, which can utilise all of the new features except for Object
API and multiple session factories each using a different ehcache CacheManager. A newnet.sf.ehcache.hibernate.EhCacheProvider
makes those additional features available to Hibernate-3.1.3. A version of the new provider should make it
into the Hibernate3.2 release.

4.9 High Quality

4.9.1 High Test Coverage

The ehcache team believe that the first and most important quality measure is a well designed and compre-
hensive test suite.

Ehcache has a relatively high 86% test coverage of source code. This has edged higher over time. Clover
enforces the test coverage. Most of the missing 14% is logging and exception paths.

4.9.2 Automated Load, Limit and Performance System Tests

The ehcache JUnit test suite contains some long-running system tests which place high load on different
ehcache subsystems to the point of failure and then are back off to just below that point. The same is done
with limits such as the amount of Elements that can fit in a given heap size. The same is also done with
performance testing of each subsystem and the whole together. The same is also done with network tests
for cache replication.

The tests serve a number of purposes:

• establishing well understood metrics and limits

• preventing regressions

• reproducing any reported issues in production

• Allowing the design principle of graceful degradation to beachieved. For example, the asynchronous
cache replicator uses SoftReferences for queued messages,so that the messages will be reclaimed
before before an OutOfMemoryError occurs, thus favouring stability over replication.

4.9.3 Specific Concurrency Testing

Ehcache also has concurrency testing, which typically uses50 concurrent threads hammering a piece of
code. The test suites are also run on multi-core or multi-cpumachines so that concurrency is real rather
than simulated. Additionally, every concurrency related issue that has ever been anticipated or resulted in
a bug report has a unit test which prevents the condition fromrecurring. There are no reported issues that
have not been reproduced in a unit test.

Concurrency unit tests are somewhat difficult to write, and are often overlooked. The team considers these
tests a major factor in ehcache’s quality.

4.9.4 Production tested

Ehcache came about in the first place because of production issues with another open source cache.

Final release versions of ehcache have been production tested on a very busy e-commerce site, supporting
thousands of concurrent users, gigabyte size caches on large multi-cpu machines. It has been the experience

Ehcache v1.2.4 User Guide 29

of the team that most threading issues do not surface until this type of load has been applied. Once an issue
has been identified and investigated a concurrency unit testcan then be crafted.

4.9.5 Fully documented

A core belief held by the project team is that a project needs good documentation to be useful.

In ehcache, this is manifested by:

• comprehensive written documentation

• Complete, meaningful JavaDoc for every package, class and public and protected method. Check-
style rules enforce this level of documentation.

• an up-to-date FAQ

4.9.6 Trusted by Popular Frameworks

Ehcache is used extensively. See the Who is Using? page, or browse Google.

4.9.7 Conservative Commit policy

Projects like Linux maintain their quality through a restricted change process, whereby changes are sub-
mitted as patches, then reviewed by the maintainer and included, or modified. Ehcache follows the same
process.

4.9.8 Full public information on the history of every bug

Through the SourceForge project bug tracker, the full history of all bugs are shown, including current status.
We take this for granted in an open source project, as this is typically a feature that all open source projects
have, but this transparency makes it possible to gauge the quality and riskiness of a library, something not
usually possible in commercial products.

4.9.9 Responsiveness to serious bugs

The ehcache team is serious about quality. If one user is having a problem, it probably means others are
too, or will have. The ehcache team use ehcache themselves inproduction. Every effort will be made to
provide fixes for serious production problems as soon as possible. These will be committed to trunk. From
there an affected user can apply the fix to their own branch.

4.10 Open Source Licensing

4.10.1 Apache 2.0 license

Ehcache’s original Apache1.1 copyright and licensing was reviewed and approved by the Apache Software
Foundation, making ehcache suitable for use in Apache projects. ehcache-1.2 is released under the updated
Apache 2.0 license.

The Apache license is also friendly one, making it safe and easy to include ehcache in other open source
projects or commercial products.

30 Ehcache v1.2.4 User Guide

Chapter 5

Key Ehcache Concepts

5.1 Key Ehcache Classes

Top Level Package Diagram

Ehcache consists of aCacheManager, which manages caches. Caches contain elements, which are essen-
tially name value pairs. Caches are physically implementedeither in-memory, or on disk.

31

32 Ehcache v1.2.4 User Guide

5.1.1 CacheManager

CacheManager Class Diagram

TheCacheManager comprises Caches which in turn comprise Elements.

Creation of, access to and removal of caches is controlled bytheCacheManager.

CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

Singleton Mode Ehcache-1.1 supported only oneCacheManager instance which was a singleton. Cache-
Manager can still be used in this way using the static factorymethods.

Ehcache v1.2.4 User Guide 33

Instance Mode From ehcache-1.2, CacheManager has constructors which mirror the various static create
methods. This enables multiple CacheManagers to be createdand used concurrently. Each CacheManager
requires its own configuration.

If the Caches under management use only the MemoryStore, there are no special considerations. If Caches
use the DiskStore, the diskStore path specified in each CacheManager configuration should be unique.
When a new CacheManager is created, a check is made that thereare no other CacheManagers using the
same diskStore path. If there are, a CacheException is thrown. If a CacheManager is part of a cluster, there
will also be listener ports which must be unique.

Mixed Singleton and Instance Mode If an application creates instances of CacheManager using acon-
structor, and also calls a static create method, there will exist a singleton instance of CacheManager which
will be returned each time the create method is called together with any other instances created via con-
structor. The two types will coexist peacefully.

34 Ehcache v1.2.4 User Guide

5.1.2 Ehcache

Ehcache Interface Diagram

Ehcache v1.2.4 User Guide 35

All caches implement theEhcache interface. A cache has a name and attributes. Each cache contains
Elements.

A Cache in ehcache is analogous to a cache region in other caching systems.

Cache elements are stored in theMemoryStore. Optionally they also overflow to aDiskStore.

5.1.3 Element

Element Class Diagram

An element is an atomic entry in a cache. It has a key, a value and a record of accesses. Elements are
put into and removed from caches. They can also expire and be removed by the Cache, depending on the
Cache settings.

As of ehcache-1.2 there is an API for Objects in addition to the one for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStore andreplication. If an attempt is made to persist
or replicate them they are discarded without error and with aDEBUG level log message.

36 Ehcache v1.2.4 User Guide

The APIs are identical except for the return methods from Element. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differences between the Serializable and Object APIs. This
makes it very easy to start with caching Objects and then change your Objects to Seralizable to participate
in the extra features when needed. Also a large number of Javaclasses are simply not Serializable.

5.2 Cache Size and Eviction

A cache eviction algorithm is a way of deciding whichElement to evict when the cache is full.

In ehcache theMemoryStore has a fixed limited size set bymaxElementsInMemory. TheDiskStore
can be optionally limited withmaxElementOnDisk. If this is unset the theDiskStore is unlimited.

If a cache is set to only use aMemoryStore then the cache will also be full when theMemoryStore is
full, otherwise it will overflow to theDiskStore.

The eviction algorithms in ehcache thus determine when theMemoryStore evicts an element.

If there is noDiskStore this will also be a cache eviction, otherwise it will cause anoverflow to disk.

5.2.1 Supported Eviction Algorithms

The idea here is, given a limit on the number of items to cache,how to choose the thing to evict that gives
thebestresult.

In 1966 Laszlo Belady showed that the most efficient caching algorithm would be to always discard the
information that will not be needed for the longest time in the future. This it a theoretical result that is
unimplementable without domain knowledge. The Least Recently Used ("LRU") algorithm is often used
as a proxy. It works pretty well because of the locality of reference phenonemon. As a result, LRU is the
default eviction algorithm in ehcache, as it is in most caches.

Ehcache users may sometimes have a good domain knowledge. Accordingly, ehcache provides three evic-
tion algorithms to choose from for theMemoryStore.

5.2.2 MemoryStore Eviction Algorithms

TheMemoryStore supports three eviction algorithms: LRU, LFU and FIFO.

The default is LRU.

Least Recently Used (LRU)

The eldest element, is the Least Recently Used (LRU). The last used timestamp is updated when an element
is put into the cache or an element is retrieved from the cachewith a get call.

Less Frequently Used (LFU)

For each get call on the element the number of hits is updated.When a put call is made for a new element
(and assuming that the max limit is reached) the element withleast number of hits, the Less Frequently
Used element, is evicted.

If cache element use follows a pareto distribution, this algorithm may give better results than LRU.

LFU is an algorithm unique to ehcache. It takes a random sample of the Elements and evicts the smallest.
Using the sample size of 30 elements, empirical testing shows that an Element in the lowest quartile of use
is evicted 99.99% of the time.

Ehcache v1.2.4 User Guide 37

First In First Out (FIFO)

Elements are evicted in the same order as they come in. When a put call is made for a new element (and
assuming that the max limit is reached for the memory store) the element that was placed first (First-In) in
the store is the candidate for eviction (First-Out).

This algorithm is used if the use of an element makes it less likely to be used in the future. An example
here would be an authentication cache.

5.2.3 DiskStore Eviction Algorithms

TheDiskStore uses the Less Frequently Used eviction to evict when it is full.

5.3 Cache Usage Patterns

Caches can be used in different ways. Each of these ways follows a cache usage pattern. Ehcache supports
the following:

• direct manipulation

• pull-through

• self-populating

5.3.1 Direct Manipulation

Here, to put something in the cache you docache.put(Element element) and to get something from
the cache you docache.get(Object key).

You are aware you are using a cache and you are doing so consciously.

5.3.2 Self Populating

Here, you just do gets to the cache usingcache.get(Object key). The cache itself knows how to
populate an entry.

See the SelfPopulatingCache for more on this pattern.

38 Ehcache v1.2.4 User Guide

Chapter 6

Code Samples

• Using the CacheManager

– Singleton versus Instance

– Ways of loading Cache Configuration

– Adding and Removing Caches Programmatically

– Shutdown the CacheManager

• Using Caches

– Obtaining a reference to a Cache

– CRUD operations

– Disk Persistence on demand

– Cache Sizes

– Statistics of Cache Hits and Misses

• Programmatically Creating Caches

– Creating a new cache from defaults

– Creating a new cache with custom parameters

• Browse the JUnit Tests

6.1 Using the CacheManager

All usages of ehcache start with the creation of a CacheManager.

6.1.1 Singleton versus Instance

As of ehcache-1.2, ehcache CacheManagers can be created as either singletons (use the create factory
method) or instances (use new).

Create a singleton CacheManager using defaults, then list caches.

CacheManager.create();
String[] cacheNames = CacheManager.getInstance().getCacheNames();

39

40 Ehcache v1.2.4 User Guide

Create a CacheManager instance using defaults, then list caches.

CacheManager manager = new CacheManager();
String[] cacheNames = manager.getCacheNames();

Create two CacheManagers, each with a different configuration, and list the caches in each.

CacheManager manager1 = new CacheManager("src/config/ehcache1.xml");
CacheManager manager2 = new CacheManager("src/config/ehcache2.xml");
String[] cacheNamesForManager1 = manager1.getCacheNames();
String[] cacheNamesForManager2 = manager2.getCacheNames();

6.1.2 Ways of loading Cache Configuration

When the CacheManager is created it creates caches found in the configuration.

Create a CacheManager using defaults. Ehcache will look forehcache.xml in the classpath.

CacheManager manager = new CacheManager();

Create a CacheManager specifying the path of a configurationfile.

CacheManager manager = new CacheManager("src/config/ehcache.xml");

Create a CacheManager from a configuration resource in the classpath.

URL url = getClass().getResource("/anotherconfigurationname.xml");
CacheManager manager = new CacheManager(url);

Create a CacheManager from a configuration in an InputStream.

InputStream fis = new FileInputStream(new File("src/config/ehcache.xml").getAbsolutePath());
try {

CacheManager manager = new CacheManager(fis);
} finally {

fis.close();
}

6.1.3 Adding and Removing Caches Programmatically

You are not just stuck with the caches that were placed in the configuration. You can create and remove
them programmatically.

Add a cache using defaults, then use it. The following example creates a cache calledtestCache, which
will be configured using defaultCache from the configuration.

CacheManager singletonManager = CacheManager.create();
singletonManager.addCache("testCache");
Cache test = singletonManager.getCache("testCache");

Create a Cache and add it to the CacheManager, then use it. Note that Caches are not usable until they have
been added to a CacheManager.

Ehcache v1.2.4 User Guide 41

CacheManager singletonManager = CacheManager.create();
Cache memoryOnlyCache = new Cache("testCache", 5000, false, false, 5, 2);
manager.addCache(memoryOnlyCache);
Cache test = singletonManager.getCache("testCache");

See Cache#Cache(...) for the full parameters for a new Cache:

Remove cache called sampleCache1

CacheManager singletonManager = CacheManager.create();
singletonManager.removeCache("sampleCache1");

6.1.4 Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdownhook, but it is best practice to shut it down
in your code.

Shutdown the singleton CacheManager

CacheManager.getInstance().shutdown();

Shutdown a CacheManager instance, assuming you have a reference to the CacheManager calledmanager

manager.shutdown();

See the CacheManagerTest for more examples.

6.2 Using Caches

All of these examples refer tomanager, which is a reference to a CacheManager, which has a cache in it
calledsampleCache1.

6.2.1 Obtaining a reference to a Cache

Obtain a Cache called "sampleCache1", which has been preconfigured in the configuration file

Cache cache = manager.getCache("sampleCache1");

6.2.2 Performing CRUD operations

Put an element into a cache

Cache cache = manager.getCache("sampleCache1");
Element element = new Element("key1", "value1");
cache.put(element);

Update an element in a cache. Even thoughcache.put() is used, ehcache knows there is an existing
element, and considers the put an update for the purpose of notifying cache listeners.

Cache cache = manager.getCache("sampleCache1");
cache.put(new Element("key1", "value1");
//This updates the entry for "key1"
cache.put(new Element("key1", "value2");

42 Ehcache v1.2.4 User Guide

Get a Serializable value from an element in a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
Element element = cache.get("key1");
Serializable value = element.getValue();

Get a NonSerializable value from an element in a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
Element element = cache.get("key1");
Object value = element.getObjectValue();

Remove an element from a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
Element element = new Element("key1", "value1"
cache.remove("key1");

6.2.3 Disk Persistence on demand

sampleCache1has a persistent diskStore. We wish to ensure that the data and index are written immedi-
ately.

Cache cache = manager.getCache("sampleCache1");
cache.flush();

6.2.4 Obtaining Cache Sizes

Get the number of elements currently in theCache.

Cache cache = manager.getCache("sampleCache1");
int elementsInMemory = cache.getSize();

Get the number of elements currently in theMemoryStore.

Cache cache = manager.getCache("sampleCache1");
long elementsInMemory = cache.getMemoryStoreSize();

Get the number of elements currently in theDiskStore.

Cache cache = manager.getCache("sampleCache1");
long elementsInMemory = cache.getDiskStoreSize();

6.2.5 Obtaining Statistics of Cache Hits and Misses

These methods are useful for tuning cache configurations.

Get the number of times requested items were found in the cache. i.e. cache hits

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getHitCount();

Get the number of times requested items were found in theMemoryStore of the cache.

Ehcache v1.2.4 User Guide 43

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMemoryStoreHitCount();

Get the number of times requested items were found in theDiskStore of the cache.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getDiskStoreCount();

Get the number of times requested items were not found in the cache. i.e. cache misses.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMissCountNotFound();

Get the number of times requested items were not found in the cache due to expiry of the elements.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMissCountExpired();

These are just the most commonly used methods. See CacheTestfor more examples. See Cache for the
full API.

6.3 Creating a new cache from defaults

A new cache with a given name can be created from defaults verysimply:

manager.addCache("cache name");

6.4 Creating a new cache with custom parameters

The configuration for a Cache can be specified programmatically in the Cache constructor:

public Cache(
String name,
int maxElementsInMemory,
MemoryStoreEvictionPolicy memoryStoreEvictionPolicy,
boolean overflowToDisk,
boolean eternal,
long timeToLiveSeconds,
long timeToIdleSeconds,
boolean diskPersistent,
long diskExpiryThreadIntervalSeconds) {
...

}

Here is an example which creates a cache called test.

//Create a CacheManager using defaults
CacheManager manager = CacheManager.create();

//Create a Cache specifying its configuration.

Cache testCache = new Cache("test", maxElements,
MemoryStoreEvictionPolicy.LFU, true, false, 60, 30, false, 0);
manager.addCache(cache);

44 Ehcache v1.2.4 User Guide

Once the cache is created, add it to the list of caches managedby the CacheManager:

manager.addCache(testCache);

The cache is not usable until it has been added.

6.5 Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, which not only tests the code, but shows you how to
use ehcache.

A link to browsable unit test source code for the major ehcache classes is given per section. The unit tests
are also in the src.zip in the ehcache tarball.

Chapter 7

Java Requirements, Dependencies and
Maven POM snippet

7.1 Java Requirements

Ehcache supports 1.4, 1.5 and 1.6 at runtime. Ehcache final releases are compiled with -target 1.4. This
produces Java class data, version 48.0.

Because of an RMI bug, in JDKs before JDK1.5 ehcache is limited to one CacheManager operating in
distributed mode per virtual machine. (The bug limits the number of RMI registries to one per virtual
machine). Because this is the expected deployment configuration, however, ther should be no practical
effect.

On JDK1.5 and higher it is possible to have multiple CacheManagers per VM each participating in the
same or different clusters. Indeed the replication tests dothis with 5 CacheManagers on the same VM all
run from JUnit.

7.2 Dependencies

Ehcache requires commons-logging

commons-logging is a very common dependency, and is therefore not included in the distribution.

7.3 Maven pom.xml snippet

Ehcache releases are placed in the central Maven repository.

The Maven snippet for ehcache 1.2.4, for example, is:

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache</artifactId>
<version>1.2.4</version>

</dependency>

45

46 Ehcache v1.2.4 User Guide

Chapter 8

Logging And Debugging

8.1 Commons Logging

Ehcache uses the Apache Commons Logging library for logging.

It acts as a thin bridge between logging statements in the code and logging infrastructure detected in the
classpath. It will use in order of preference:

• log4j

• JDK1.4 logging

• and then its ownSimpleLog

This enables ehcache to use logging infrastructures compatible with Java versions from JDK1.2 to
JDK5. It does create a dependency on Apache Commons Logging,however many projects, including
Hibernate, share the same dependency.

For normal production use, use theWARN level in log4J and theWARNING level for JDK1.4 logging.

8.2 Logging Philosophy

Ehcache seeks to trade off informing production support developers or important messages and cluttering
the log.

ERROR (JDK logging SEVERE_ messages should not occur in normal production and indicate that action
should be taken.

WARNING (JDK logging WARN) messages generally indicate a configuration change should be made or
an unusual event has occurred.

DEBUG (JDK logging FINE) messages are for development use. All DEBUG level statements are sur-
rounded with a guard so that they are not executed unless the level is DEBUG.

Setting the logging level to DEBUG (JDK level FINE) should provide more information on the source
of any problems. Many logging systems enable a logging levelchange to be made without restarting the
application.

47

48 Ehcache v1.2.4 User Guide

8.3 Remote Network debugging and monitoring for Distributed Caches

A simple new tool in ehcache-1.2, ehcache-1.x-remote-debugger.jar can be used to debug replicated cache
operations. It is included in the distribution tarball for ehcache-1.2.3 and higher.

It is invoked using:

java -jar ehcache-1.x-remote-debugger.jar path_to_ehcache.xml cacheToMonitor

It will print a configuration of the cache, including replication settings and monitor the number of elements
in the cache. If you are not seeing replication in your application, run up this tool to see what is going on.

It is a command line application, so it can easily be run from aterminal session.

Chapter 9

Class loading and Class Loaders

Class loading within the plethora of environments ehcache can be running is a somewhat vexed issue.

Since ehcache-1.2 all classloading is done in a standard wayin one utility class:ClassLoaderUtil.

9.1 Plugin class loading

Ehcache allows plugins for events and distribution. These are loaded and created as follows:

/**
* Creates a new class instance. Logs errors along the way. Classes are loaded using the

* ehcache standard classloader.

*
* @param className a fully qualified class name

* @return null if the instance cannot be loaded

*/
public static Object createNewInstance(String className) throws CacheException {

Class clazz;
Object newInstance;
try {

clazz = Class.forName(className, true, getStandardClassLoader());
} catch (ClassNotFoundException e) {

//try fallback
try {

clazz = Class.forName(className, true, getFallbackClassLoader());
} catch (ClassNotFoundException ex) {

throw new CacheException("Unable to load class " + className +
". Initial cause was " + e.getMessage(), e);

}
}

try {
newInstance = clazz.newInstance();

} catch (IllegalAccessException e) {
throw new CacheException("Unable to load class " + className +

". Initial cause was " + e.getMessage(), e);
} catch (InstantiationException e) {

throw new CacheException("Unable to load class " + className +
". Initial cause was " + e.getMessage(), e);

}
return newInstance;

49

50 Ehcache v1.2.4 User Guide

}

/**
* Gets the <code>ClassLoader</code> that all classes in ehcache, and extensions, should

* use for classloading. All ClassLoading in ehcache should use this one. This is the only

* thing that seems to work for all of the class loading situations found in the wild.

* @return the thread context class loader.

*/
public static ClassLoader getStandardClassLoader() {

return Thread.currentThread().getContextClassLoader();
}

/**
* Gets a fallback <code>ClassLoader</code> that all classes in ehcache, and extensions,

* should use for classloading. This is used if the context class loader does not work.

* @return the <code>ClassLoaderUtil.class.getClassLoader();</code>

*/
public static ClassLoader getFallbackClassLoader() {

return ClassLoaderUtil.class.getClassLoader();
}

If this does not work for some reason a CacheException is thrown with a detailed error message.

9.2 Loading of ehcache.xml resources

If the configuration is otherwise unspecified, ehcache looksfor a configuration in the following order:

• Thread.currentThread().getContextClassLoader().getResource("/ehcache.xml")

• ConfigurationFactory.class.getResource("/ehcache.xml")

• ConfigurationFactory.class.getResource("/ehcache-failsafe.xml")

Ehcache uses the first configuration found.

Note the use of "/ehcache.xml" which requires that ehcache.xml be placed at the root of the classpath, i.e.
not in any package.

Chapter 10

Performance Considerations

10.1 DiskStore

Ehcache comes with aMemoryStore and aDiskStore. TheMemoryStore is approximately an order
of magnitude faster than theDiskStore. The reason is that theDiskStore incurs the following extra
overhead:

• Serialization of the key and value

• Eviction from theMemoryStore using an eviction algorithm

• Reading from disk

Note that writing to disk is not a synchronous performance overhead because it is handled by a separate
thread.

A Cache should alway have itsmaximumSize attribute set to 1 or higher. A Cache with a maximum size
of 1 has twice the performance of a disk only cache, i.e. one where themaximumSize is set to 0. For this
reason a warning will be issued if a Cache is created with a 0maximumSize.

10.2 Replication

The asynchronous replicator is the highest performance. There are two different effects:

• Because it is asynchronous the caller returns immediately

• The messages are placed in a queue. As the queue is processed,multiple messages are sent in one
RMI call, dramatically accelerating replication performance.

51

52 Ehcache v1.2.4 User Guide

Chapter 11

Cache Decorators

Ehcache 1.2 introduced the Ehcache interface, of which Cache is an implementation. It is possible and
encouraged to create Ehcache decorators that are backed by aCache instance, implement Ehcache and
provide extra functionality.

The Decorator pattern is one of the the well known Gang of Fourpatterns.

11.1 Creating a Decorator

Cache decorators are created as follows:

BlockingCache newBlockingCache = new BlockingCache(cache);

The class must implement Ehcache.

11.2 Accessing the decorated cache

Having created a decorator it is generally useful to put it ina place where multiple threads may access it.
This can be achieved in multiple ways.

11.2.1 Using CacheManager to access decorated caches

A built-in way is to replace the Cache in CacheManager with the decorated one. This is achieved as in the
following example:

cacheManager.replaceCacheWithDecoratedCache(cache, newBlockingCache);

TheCacheManager replaceCacheWithDecoratedCachemethod requires that the decorated cache be
built from the underlying cache from the same name.

Note that any overwritten Ehcache methods will take on new behaviours without casting, as per the normal
rules of Java. Casting is only required for new methods that the decorator introduces.

Any calls to get the cache out of the CacheManager now return the decorated one.

A word of caution. This method should be called in an appropriately synchronized init style method before
multiple threads attempt to use it. All threads must be referencing the same decorated cache. An example
of a suitable init method is found inCachingFilter:

53

54 Ehcache v1.2.4 User Guide

/**
* The cache holding the web pages. Ensure that all threads for a given cache name are using the

*/
private BlockingCache blockingCache;

/**
* Initialises blockingCache to use

*
* @throws CacheException The most likely cause is that a cache has not been

* configured in ehcache’s configuration file ehcache.xml for the filter

*/
public void doInit() throws CacheException {

synchronized (this.getClass()) {
if (blockingCache == null) {

final String cacheName = getCacheName();
Ehcache cache = getCacheManager().getEhcache(cacheName);
if (!(cache instanceof BlockingCache)) {

//decorate and substitute
BlockingCache newBlockingCache = new BlockingCache(cache);
getCacheManager().replaceCacheWithDecoratedCache(cache, newBlockingCache);

}
blockingCache = (BlockingCache) getCacheManager().getEhcache(getCacheName());

}
}

}

Ehcache blockingCache = singletonManager.getEhcache("sampleCache1");

The returned cache will exhibit the decorations.

11.3 Built-in Decorators

11.3.1 BlockingCache

A blocking decorator for an Ehcache, backed by a @link Ehcache.

It allows concurrent read access to elements already in the cache. If the element is null, other reads will
block until an element with the same key is put into the cache.

This is useful for constructing read-through or self-populating caches.

BlockingCache is used byCachingFilter.

Ehcache v1.2.4 User Guide 55

56 Ehcache v1.2.4 User Guide

11.3.2 SelfPopulatingCache

A selfpopulating decorator for @link Ehcache that creates entries on demand.

Clients of the cache simply call it without needing knowledge of whether the entry exists in the cache. If
null the entry is created.

The cache is designed to be refreshed. Refreshes operate on the backing cache, and do not degrade perfor-
mance of get calls.

SelfPopulatingCache extends BlockingCache. Multiple threads attempting to access a null element will
block until the first thread completes. If refresh is being called the threads do not block - they return the
stale data.

This is very useful for engineering highly scalable systems.

SelfPopulatingCache

Chapter 12

Cache Configuration

Caches can be configured in ehcache either declaratively, inxml, or by creating them programmatically
and specifying their parameters in the constructor.

While both approaches are fully supported it is generally a good idea to separate the cache configuration
from runtime use. There are also these benefits:

• It is easy if you have all of your configuration in one place. Caches consume memory, and disk
space. They need to be carefully tuned. You can see the total effect in a configuration file. You could
do this code, but it would not as visible.

• Cache configuration can be changed at deployment time.

• Configuration errors can be checked for at start-up, rather than causing a runtime error.

This chapter covers XML declarative configuration. See the Code samples for programmatic configuration.

Ehcache is redistributed by lots of projects. They may or maynot provide a sample ehcache XML config-
uration file. If one is not provided, download ehcache from http://ehcache.sf.net. It, and the ehcache.xsd is
provided in the distribution.

12.1 ehcache.xsd

Ehcache configuration files must be comply with the ehcache XML schema, ehcache.xsd, reproduced be-
low.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="ehcache" >
<xs:complexType>

<xs:sequence>
<xs:element ref="diskStore"/>
<xs:element minOccurs="0" maxOccurs="1"

ref="cacheManagerEventListenerFactory"/>
<xs:element minOccurs="0" maxOccurs="1"

ref="cacheManagerPeerProviderFactory"/>
<xs:element minOccurs="0" maxOccurs="1"

ref="cacheManagerPeerListenerFactory"/>
<xs:element ref="defaultCache"/>
<xs:element maxOccurs="unbounded" ref="cache"/>

57

58 Ehcache v1.2.4 User Guide

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="diskStore">

<xs:complexType>
<xs:attribute name="path" use="optional" />

</xs:complexType>
</xs:element>
<xs:element name="cacheManagerEventListenerFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="cacheManagerPeerProviderFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="cacheManagerPeerListenerFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="defaultCache">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="cacheEventListenerFactory"/>
<xs:element minOccurs="0" maxOccurs="1" ref="bootstrapCacheLoaderFactory"/>

</xs:sequence>
<xs:attribute name="diskExpiryThreadIntervalSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="diskPersistent" use="optional" type="xs:boolean"/>
<xs:attribute name="eternal" use="required" type="xs:boolean"/>
<xs:attribute name="maxElementsInMemory" use="required" type="xs:integer"/>
<xs:attribute name="memoryStoreEvictionPolicy" use="optional" type="xs:string"/>
<xs:attribute name="overflowToDisk" use="required" type="xs:boolean"/>
<xs:attribute name="timeToIdleSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="timeToLiveSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="maxElementsOnDisk" use="optional" type="xs:integer"/>

</xs:complexType>
</xs:element>
<xs:element name="cache">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="cacheEventListenerFactory"/>
<xs:element minOccurs="0" maxOccurs="1" ref="bootstrapCacheLoaderFactory"/>

</xs:sequence>
<xs:attribute name="diskExpiryThreadIntervalSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="diskPersistent" use="optional" type="xs:boolean"/>
<xs:attribute name="eternal" use="required" type="xs:boolean"/>
<xs:attribute name="maxElementsInMemory" use="required" type="xs:integer"/>
<xs:attribute name="memoryStoreEvictionPolicy" use="optional" type="xs:string"/>
<xs:attribute name="name" use="required" type="xs:string"/>
<xs:attribute name="overflowToDisk" use="required" type="xs:boolean"/>
<xs:attribute name="timeToIdleSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="timeToLiveSeconds" use="optional" type="xs:integer"/>

Ehcache v1.2.4 User Guide 59

<xs:attribute name="maxElementsOnDisk" use="optional" type="xs:integer"/>
</xs:complexType>

</xs:element>
<xs:element name="cacheEventListenerFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="bootstrapCacheLoaderFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>

</xs:complexType>
</xs:element>

</xs:schema>

12.2 ehcache-failsafe.xml

If the CacheManager default constructor or factory method is called, ehcache looks for a file called
ehcache.xml in the top level of the classpath. Failing that it looks for ehcache-failsafe.xml in the class-
path. ehcache-failsafe.xml is packaged in the ehcache jar and should always be found.

ehcache-failsafe.xml provides an extremely simple default configuration to enable users to get started be-
fore they create their own ehcache.xml.

If it used ehcache will emit a warning, reminding the user to set up a proper configuration.

The meaning of the elments and attributes are explained in the section on ehcache.xml. ---ehcache
diskStore path="java.io.tmpdir"/ defaultCache maxElementsInMemory="10000"eternal="false" timeToI-
dleSeconds="120" timeToLiveSeconds="120" overflowToDisk="true" maxElementsOnDisk="10000000"
diskPersistent="false" diskExpiryThreadIntervalSeconds="120"memoryStoreEvictionPolicy="LRU" / /ehcache

12.3 ehcache.xml and other configuration files

If the CacheManager default constructor or factory method is called, ehcache looks for a file called
ehcache.xml in the top level of the classpath.

The non-default creation methods allow a configuration file to be specified which can be called anything.

One XML configuration is required for each CacheManager thatis created. It is an error to use the same
configuration, because things like directory paths and listener ports will conflict. Ehcache will attempt
to resolve conflicts and will emit a warning reminding the user to configure a separate configuration for
multiple CacheManagers with conflicting settings.

The sample ehcache.xml, which is included in the ehcache distribution is shown below:

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ehcache.xsd

<!--
DiskStore configuration

Sets the path to the directory where cache files are created.

If the path is a Java System Property it is replaced by its value in the

60 Ehcache v1.2.4 User Guide

running VM.

The following properties are translated:

* user.home - User’s home directory

* user.dir - User’s current working directory

* java.io.tmpdir - Default temp file path

Subdirectories can be specified below the property e.g. java.io.tmpdir/one
-->
<diskStore path="java.io.tmpdir"/>

<!--
Specifies a CacheManagerEventListenerFactory, be used to create a CacheManagerPeerProvider,
which is notified when Caches are added or removed from the CacheManager.

The attributes of CacheManagerEventListenerFactory are:

* class - a fully qualified factory class name

* properties - comma separated properties having meaning only to the factory.

Sets the fully qualified class name to be registered as the CacheManager event listener.

The events include:

* adding a Cache

* removing a Cache

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility
of the implementer to safely handle the potential performance and thread safety issues
depending on what their listener is doing.

If no class is specified, no listener is created. There is no default.
-->
<cacheManagerEventListenerFactory class="" properties=""/>

<!--
(Enable for distributed operation)

Specifies a CacheManagerPeerProviderFactory which will be used to create a
CacheManagerPeerProvider, which discovers other CacheManagers in the cluster.

The attributes of cacheManagerPeerProviderFactory are:

* class - a fully qualified factory class name

* properties - comma separated properties having meaning only to the factory.

Ehcache comes with a built-in RMI-based distribution system with two means of discovery of
CacheManager peers participating in the cluster:

* automatic, using a multicast group. This one automatically discovers peers and detects
changes such as peers entering and leaving the group

* manual, using manual rmiURL configuration. A hardcoded list of peers is provided at
configuration time.

Configuring Automatic Discovery:
Automatic discovery is configured as per the following example:
<cacheManagerPeerProviderFactory

class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,

multicastGroupPort=4446, timeToLive=32"/>

Ehcache v1.2.4 User Guide 61

Valid properties are:

* peerDiscovery (mandatory) - specify "automatic"

* multicastGroupAddress (mandatory) - specify a valid multicast group address

* multicastGroupPort (mandatory) - specify a dedicated port for the multicast heartbeat
traffic

* timeToLive - specify a value between 0 and 255 which determines how far the packets will propagate.
By convention, the restrictions are:
0 - the same host
1 - the same subnet
32 - the same site
64 - the same region
128 - the same continent
255 - unrestricted

Configuring Manual Discovery:
Manual discovery is configured as per the following example:
<cacheManagerPeerProviderFactory class=

"net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=manual,
rmiUrls=//server1:40000/sampleCache1|//server2:40000/sampleCache1
| //server1:40000/sampleCache2|//server2:40000/sampleCache2"/>

Valid properties are:

* peerDiscovery (mandatory) - specify "manual"

* rmiUrls (mandatory) - specify a pipe separated list of rmiUrls, in the form
//hostname:port

The hostname is the hostname of the remote CacheManager peer. The port is the listening
port of the RMICacheManagerPeerListener of the remote CacheManager peer.

An alternate CacheManagerPeerProviderFactory can be used for JNDI discovery of other
CacheManagers in the cluster. Only manual discovery is supported.

For cacheManagerPeerProviderFactory specify class
net.sf.ehcache.distribution.JNDIManualRMICacheManagerPeerProviderFactoryerFactory.

Correspondingly for cacheManagerPeerListenerFactory specify class
net.sf.ehcache.distribution.JNDIRMICacheManagerPeerListenerFactoryory.

Configuring JNDI Manual Discovery:
Manual JNDI discovery is configured as per the following example:
<cacheManagerPeerProviderFactory class=

"net.sf.ehcache.distribution.JNDIManualRMICacheManagerPeerProviderFactoryerFactory"
properties="peerDiscovery=manual, stashContexts=true, stashRemoteCachePeers=true,

jndiUrls=t3//server1:40000/sampleCache1|t3//server2:40000/sampleCache1
|t3//server1:40000/sampleCache2|t3//server2:40000/sampleCache2"/>

Valid properties are:

* peerDiscovery (mandatory) - specify "manual"

* stashContexts (optional) - specify "true" or "false". Defaults to true.
java.naming.Context objects are stashed for performance.

* stashRemoteCachePeers (optional) - specify "true" or "false". Defaults to true.
CachePeer objects are stashed for performance.

* jndiUrls (mandatory) - specify a pipe separated list of jndiUrls,
in the form protocol//hostname:port

-->
<cacheManagerPeerProviderFactory

class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

62 Ehcache v1.2.4 User Guide

properties="peerDiscovery=automatic,
multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446, timeToLive=1"/>

<!--
(Enable for distributed operation)

Specifies a CacheManagerPeerListenerFactory which will be used to create a
CacheManagerPeerListener, which
listens for messages from cache replicators participating in the cluster.

The attributes of cacheManagerPeerListenerFactory are:
class - a fully qualified factory class name
properties - comma separated properties having meaning only to the factory.

Ehcache comes with a built-in RMI-based distribution system. The listener component is
RMICacheManagerPeerListener which is configured using
RMICacheManagerPeerListenerFactory. It is configured as per the following example:

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"
properties="hostName=fully_qualified_hostname_or_ip,

port=40001,
socketTimeoutMillis=120000"/>

All properties are optional. They are:

* hostName - the hostName of the host the listener is running on. Specify
where the host is multihomed and you want to control the interface over which cluster
messages are received. Defaults to the host name of the default interface if not
specified.

* port - the port the listener listens on. This defaults to a free port if not specified.

* socketTimeoutMillis - the number of ms client sockets will stay open when sending
messages to the listener. This should be long enough for the slowest message.
If not specified it defaults 120000ms.

An alternate CacheManagerPeerListenerFactory can be also be used for JNDI binding of
listeners for messages from cache replicators participating in the cluster. For
cacheManagerPeerListenerFactory specify
class net.sf.ehcache.distribution.JNDIRMICacheManagerPeerListenerFactory.
Correspondingly for cacheManagerPeerProviderFactory specify class
net.sf.ehcache.distribution.JNDIManualRMICacheManagerPeerProviderFactoryerFactory.
Properties for JNDIRMICacheManagerPeerListenerFactory are the same as
RMICacheManagerPeerListenerFactory.

-->
<cacheManagerPeerListenerFactory

class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>

<!-- Cache configuration.

The following attributes are required.

name:
Sets the name of the cache. This is used to identify the cache. It must be unique.

Ehcache v1.2.4 User Guide 63

maxElementsInMemory:
Sets the maximum number of objects that will be created in memory

maxElementsOnDisk:
Sets the maximum number of objects that will be maintained in the DiskStore

The default value is zero, meaning unlimited.

eternal:
Sets whether elements are eternal. If eternal, timeouts are ignored and the
element is never expired.

overflowToDisk:
Sets whether elements can overflow to disk when the memory store
has reached the maxInMemory limit.

The following attributes are optional.

timeToIdleSeconds:
Sets the time to idle for an element before it expires.
i.e. The maximum amount of time between accesses before an element expires
Is only used if the element is not eternal.
Optional attribute. A value of 0 means that an Element can idle for infinity.
The default value is 0.

timeToLiveSeconds:
Sets the time to live for an element before it expires.
i.e. The maximum time between creation time and when an element expires.
Is only used if the element is not eternal.
Optional attribute. A value of 0 means that and Element can live for infinity.
The default value is 0.

diskPersistent:
Whether the disk store persists between restarts of the Virtual Machine.
The default value is false.

diskExpiryThreadIntervalSeconds:
The number of seconds between runs of the disk expiry thread. The default value
is 120 seconds.

memoryStoreEvictionPolicy:
Policy would be enforced upon reaching the maxElementsInMemory limit. Default
policy is Least Recently Used (specified as LRU). Other policies available -
First In First Out (specified as FIFO) and Less Frequently Used
(specified as LFU)

Cache elements can also contain sub elements which take the same format of a factory class
and properties. Defined sub-elements are:

* cacheEventListenerFactory - Enables registration of listeners for cache events, such as
put, remove, update, and expire.

* bootstrapCacheLoaderFactory - Specifies a BootstrapCacheLoader, which is called by a
cache on initialisation to prepopulate itself.

Each cache that will be distributed needs to set a cache event listener which replicates
messages to the other CacheManager peers. For the built-in RMI implementation this is done
by adding a cacheEventListenerFactory element of type RMICacheReplicatorFactory to each
distributed cache’s configuration as per the following example:

64 Ehcache v1.2.4 User Guide

<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=true,
replicatePuts=true,
replicateUpdates=true,
replicateUpdatesViaCopy=true,
replicateRemovals=true "/>

The RMICacheReplicatorFactory recognises the following properties:

* replicatePuts=true|false - whether new elements placed in a cache are
replicated to others. Defaults to true.

* replicateUpdates=true|false - whether new elements which override an
element already existing with the same key are replicated. Defaults to true.

* replicateRemovals=true - whether element removals are replicated. Defaults to true.

* replicateAsynchronously=true | false - whether replications are
asynchronous (true) or synchronous (false). Defaults to true.

* replicateUpdatesViaCopy=true | false - whether the new elements are
copied to other caches (true), or whether a remove message is sent. Defaults to true.

* asynchronousReplicationIntervalMillis=<number of milliseconds> - The asynchronous
replicator runs at a set interval of milliseconds. The default is 1000. The minimum
is 10. This property is only applicable if replicateAsynchronously=true

The RMIBootstrapCacheLoader bootstraps caches in clusters where RMICacheReplicators are
used. It is configured as per the following example:

<bootstrapCacheLoaderFactory
class="net.sf.ehcache.distribution.RMIBootstrapCacheLoaderFactory"
properties="bootstrapAsynchronously=true, maximumChunkSizeBytes=5000000"/>

The RMIBootstrapCacheLoaderFactory recognises the following optional properties:

* bootstrapAsynchronously=true|false - whether the bootstrap happens in the background
after the cache has started. If false, bootstrapping must complete before the cache is
made available. The default value is true.

* maximumChunkSizeBytes=<integer> - Caches can potentially be very large, larger than the
memory limits of the VM. This property allows the bootstraper to fetched elements in
chunks. The default chunk size is 5000000 (5MB).

-->

<!--
Mandatory Default Cache configuration. These settings will be applied to caches
created programmtically using CacheManager.add(String cacheName)
-->
<defaultCache

maxElementsInMemory="10000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="true"
maxElementsOnDisk="10000000"

Ehcache v1.2.4 User Guide 65

diskPersistent="false"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU"
/>

<!--
Sample caches. Following are some example caches. Remove these before use.
-->

<!--
Sample cache named sampleCache1
This cache contains a maximum in memory of 10000 elements, and will expire
an element if it is idle for more than 5 minutes and lives for more than
10 minutes.

If there are more than 10000 elements it will overflow to the
disk cache, which in this configuration will go to wherever java.io.tmp is
defined on your system. On a standard Linux system this will be /tmp"
-->
<cache name="sampleCache1"

maxElementsInMemory="10000"
maxElementsOnDisk="1000"
eternal="false"
overflowToDisk="true"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU"
/>

<!--
Sample cache named sampleCache2
This cache has a maximum of 1000 elements in memory. There is no overflow to disk, so 1000
is also the maximum cache size. Note that when a cache is eternal, timeToLive and
timeToIdle are not used and do not need to be specified.
-->
<cache name="sampleCache2"

maxElementsInMemory="1000"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="FIFO"
/>

<!--
Sample cache named sampleCache3. This cache overflows to disk. The disk store is
persistent between cache and VM restarts. The disk expiry thread interval is set to 10
minutes, overriding the default of 2 minutes.
-->
<cache name="sampleCache3"

maxElementsInMemory="500"
eternal="false"
overflowToDisk="true"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
diskPersistent="true"
diskExpiryThreadIntervalSeconds="1"
memoryStoreEvictionPolicy="LFU"

66 Ehcache v1.2.4 User Guide

/>

<!--
Sample distributed cache named sampleDistributedCache1.
This cache replicates using defaults.
It also bootstraps from the cluster, using default properties.
-->
<cache name="sampleDistributedCache1"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>

<bootstrapCacheLoaderFactory
class="net.sf.ehcache.distribution.RMIBootstrapCacheLoaderFactory"/>

</cache>

<!--
Sample distributed cache named sampleDistributedCache2.
This cache replicates using specific properties.
It only replicates updates and does so synchronously via copy
-->
<cache name="sampleDistributedCache2"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=false, replicatePuts=false,

replicateUpdates=true, replicateUpdatesViaCopy=true,
replicateRemovals=false"/>

</cache>

<!--
Sample distributed cache named sampleDistributedCache3.
This cache replicates using defaults except that the asynchronous replication
interval is set to 200ms.
-->
<cache name="sampleDistributedCache3"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="asynchronousReplicationIntervalMillis=200"/>

</cache>

</ehcache>

Chapter 13

Storage Options

Ehcache has two stores:

• a MemoryStore and

• a DiskStore

13.1 Memory Store

TheMemoryStore is always enabled. It is not directly manipulated, but is a component of every cache.

• Suitable Element Types

All Elements are suitable for placement in the MemoryStore.

It has the following characteristics:

– Safety
Thread safe for use by multiple concurrent threads.
Tested for memory leaks. See MemoryCacheTest#testMemoryLeak. This test passes for ehcache
but exploits a number of memory leaks in JCS. JCS will give an OutOfMemory error with a
default 64M in 10 seconds.

– Backed By JDK
LinkedHashMap TheMemoryStore for JDK1.4 and JDK 5 it is backed by an extended Linked-
HashMap. This provides a combined linked list and a hash map,and is ideally suited for
caching. Using this standard Java class simplifies the implementation of the memory cache. It
directly supports obtaining the least recently used element.
For JDK1.2 and JDK1.3, the LRUMap from Apache Commons is used. It provides similar
features to LinkedHashMap.
The implementation is determined dynamically at runtime. LinkedHashMap is preferred if
found in the classpath.

– Fast
The memory store, being all in memory, is the fastest cachingoption.

13.1.1 Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in terms ofthe number of elements, at configuration
time.

67

68 Ehcache v1.2.4 User Guide

When an element is added to a cache and it goes beyond its maximum memory size, an existing element
is either deleted, if overflowToDisk is false, or evaluated for spooling to disk, if overflowToDisk is true.
In the latter case, a check for expiry is carried out. If it is expired it is deleted; if not it is spooled. The
eviction of an item from the memory store is based on the MemoryStoreEvictionPolicy setting specified in
the configuration file.

memoryStoreEvictionPolicy is an optional attribute in ehcache.xml introduced since 1.2. Legal values are
LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU is thedefault, consistent with all earlier releases
of ehcache.

• Least Recently Used (LRU) - Default

The eldest element, is the Least Recently Used (LRU). The last used timestamp is updated when an
element is put into the cache or an element is retrieved from the cache with a get call.

• Less Frequently Used (LFU)

For each get call on the element the number of hits is updated.When a put call is made for a new
element (and assuming that the max limit is reached for the memory store) the element with least
number of hits, the Less Frequently Used element, is evicted.

• First In First Out (FIFO)

Elements are evicted in the same order as they come in. When a put call is made for a new element
(and assuming that the max limit is reached for the memory store) the element that was placed first
(First-In) in the store is the candidate for eviction (First-Out).

For all the eviction policies there are alsoputQuiet andgetQuiet methods which do not update
the last used timestamp.

When there is aget or agetQuiet on an element, it is checked for expiry. If expired, it is removed
and null is returned.

Note that at any point in time there will usually be some expired elements in the cache. Memory
sizing of an application must always take into account the maximum size of each cache. There is a
convenience method which can provide an estimate of the sizein bytes of theMemoryStore. See
calculateInMemorySize(). It returns the serialized size of the cache. Do not use this method in
production. It is very slow. It is only meant to provide a rough estimate.

The alternative would have been to have an expiry thread. This is a trade-off between lower memory
use and short locking periods and cpu utilisation. The design is in favour of the latter. For those
concerned with memory use, simply reduce themaxElementsInMemory.

13.2 DiskStore

TheDiskStore provides a disk spooling facility.

• Suitable Element Types

Only Elements which areSerializable can be placed in the DiskStore. Any non serializable
Elements which attempt to overflow to theDiskStore will be removed instead, and a WARNING
level log message emitted.

It has the following characteristics:

• Storage Files

The disk store creates one file per cache called "cache name.data".

If the DiskStore is configured to be persistent, a "cache name.index" file is also created.

Ehcache v1.2.4 User Guide 69

Files are created in the directory specified by the diskStoreconfiguration element. The default con-
figuration is "java.io.tmpdir", which causes files to be created in the system’s temporary directory.

Following is a list of Java system properties which are supported as values for diskStore:

– user.home - User’s home directory

– user.dir - User’s current working directory

– java.io.tmpdir - Default temp file path

Apart from these, any directory can be specified using syntaxappropriate to the operating system.
e.g. for Unix "/home/application/cache".

• Expiry Strategy

One thread per cache is used to remove expired elements. The optional attributediskExpiryThreadIntervalSeconds
sets the interval between runs of the expiry thread. Warning: setting this to a low value is not rec-
ommended. It can cause excessiveDiskStore locking and high cpu utilisation. The default value
is 120 seconds.

• Eviction Strategy

If the maxElementsOnDisk attribute is set, elements will be evicted from theDiskStore when it
exceeds that amount. The LFU algorithm is used for these evictions. It is not configurable to use
another algorithm.

• Serializable Objects

Only Serializable objects can be stored in aDiskStore. A NotSerializableException will be thrown
if the object is not serializable.

• Safety

DiskStores are thread safe.

• Persistence

DiskStore persistence is controlled by the diskPersistent configuration element. If false or omitted,
DiskStores will not persist betweenCacheManager restarts. The data file for each cache will be
deleted, if it exists, both on shutdown and startup. No data from a previous instanceCacheManager
is available.

If diskPersistent is true, the data file, and an index file, aresaved. Cache Elements are available to a
newCacheManager. ThisCacheManager may be in the same VM instance, or a new one.

The data file is updated continuously during operation of theDisk Store. New elements are spooled
to disk, and deleted when expired. The index file is only written when dispose is called on the
DiskStore. This happens when the CacheManager is shut down, a Cache is disposed, or the VM
is being shut down. It is recommended that the CacheManager shutdown() method be used. See
Virtual Machine Shutdown Considerations for guidance on how to safely shut the Virtual Machine
down.

When aDiskStore is persisted, the following steps take place:

– Any non-expired Elements of theMemoryStore are flushed to the DiskStore

– Elements awaiting spooling are spooled to the data file

– The free list and element list are serialized to the index file

On startup the following steps take place:

– An attempt is made to read the index file. If it does not exist orcannot be read successfully, due
to disk corruption, upgrade of ehcache, change in JDK version etc, then the data file is deleted
and theDiskStore starts with no Elements in it.

70 Ehcache v1.2.4 User Guide

– If the index file is read successfully, the free list and element list are loaded into memory. Once
this is done, the index file contents are removed. This way, ifthere is a dirty shutdown, when
restarted, ehcache will delete the dirt index and data files.

– TheDiskStore starts. All data is available.

– The expiry thread starts. It will delete Elements which haveexpired.

These actions favour safety over persistence. Ehcache is a cache, not a database. If a file gets dirty,
all data is deleted. Once started there is further checking for corruption. When a get is done, if
the Element cannot be successfully derserialized, it is deleted, and null is returned. These measures
prevent corrupt and inconsistent data being returned.

– Fragmentation

Expiring an element frees its space on the file. This space is available for reuse by new elements.
The element is also removed from the in-memory index of elements.

– Speed

Spool requests are placed in-memory and then asynchronously written to disk. There is one
thread per cache. An in-memory index of elements on disk is maintained to quickly resolve
whether a key exists on disk, and if so to seek it and read it.

– Serialization

Writes to and from the disk use ObjectInputStream and the Java serialization mechanism. This
is not required for the MemoryStore. As a result the DiskStore can never be as fast as the
MemoryStore.

Serialization speed is affected by the size of the objects being serialized and their type. It has
been found in the ElementTest test that:

∗ The serialization time for a Java object being a large Map of String arrays was 126ms,
where the a serialized size was 349,225 bytes.

∗ The serialization time for a byte[] was 7ms, where the serialized size was 310,232 bytes

Byte arrays are 20 times faster to serialize. Make use of bytearrays to increase DiskStore
performance.

– RAMFS

One option to speed up disk stores is to use a RAM file system. Onsome operating systems
there are a plethora of file systems to choose from. For example, the Disk Cache has been
successfully used with Linux’ RAMFS file system. This file system simply consists of memory.
Linux presents it as a file system. The Disk Cache treats it like a normal disk - it is just
way faster. With this type of file system, object serialization becomes the limiting factor to
performance.

Chapter 14

Virtual Machine Shutdown
Considerations

14.1

The DiskStore can optionally be configured to persist between CacheManager and Virtual Machine in-
stances. See documentation on the diskPersistent cache attribute for information on how to do this.

When diskPersistent is turned on for a cache, a Virtual Machine shutdown hook is added to enable the
DiskStore to persist itself. When the Virtual Machine shutsdown, the the hook runs and, if the cache is
not already disposed, it calls dispose. Any elements in the MemoryStore are spooled to the DiskStore. The
DiskStore then flushes the spool, and writes the index to disk.

The cache shutdown hooks will run when:

• a program exists normally. e.g. System.exit() is called, orthe last non-daemon thread exits

• the Virtual Machine is terminated. e.g. CTRL-C. This corresponds tokill -SIGTERM pid or
kill -15 pid on Unix systems.

The cache shutdown hooks will not run when:

• the Virtual Machine aborts

• A SIGKILL signal is sent to the Virtual Machine process on Unix systems. e.g.kill -SIGKILL

pid or kill -9 pid

• A TerminateProcess call is sent to the process on Windows systems.

If dispose was not called on the cache either by CacheManager.shutdown() or the shutdown hook, then the
DiskStore will be corrupt when the application is next started. If this happens, it will be detected and the
DiskStore file will be automatically truncated and a log warning level message is emitted. The cache will
work normally, except that it will have lost all data.

71

72 Ehcache v1.2.4 User Guide

Chapter 15

Hibernate Caching

Note these instructions are for Hibernate 3.1. Go to Guide for Version 1.1 for older instructions on how to
use Hibernate 2.1.

Ehcache easily integrates with the Hibernate Object/Relational persistence and query service. Gavin King,
the maintainer of Hibernate, is also a committer to the ehcache project. This ensures ehcache will remain
a first class cache for Hibernate.

Since Hibernate 2.1, ehcache has been the default cache, forHibernate.

The net.sf.ehcache.hibernate package provides classes integrating ehcache with Hibernate. Hibernate is an
application of ehcache. Ehcache is also widely used a general-purpose Java cache.

To use ehcache with Hibernate do the following:

• Ensure ehcache is enabled in the Hibernate configuration.

• Add the cache element to the Hibernate mapping file, either manually, or via hibernatedoclet for each
Domain Object you wish to cache.

• Add the cache element to the Hibernate mapping file, either manually, or via hibernatedoclet for each
Domain Object collection you wish to cache.

• Add the cache element to the Hibernate mapping file, either manually, or via hibernatedoclet for each
Hibernate query you wish to cache.

• Create a cache element in ehcache.xml

Each of these steps is illustrated using a fictional Country Domain Object.

For more about cache configuration in Hibernate see the Hibernate documentation. Parts of this chapter
are drawn from Hibernate documentation and source code comments.

They are reproduced here for convenience in using ehcache.

15.1 Setting ehcache as the cache provider

15.1.1 Using the ehcache provider from the ehcache project

To ensure ehcache is enabled, verify that the hibernate.cache.provider_classproperty is set to net.sf.ehcache.hibernate.EhCacheProvid
in the Hibernate configuration file; either hibernate.cfg.xml or hibernate.properties. The format given is for
hibernate.cfg.xml.

73

74 Ehcache v1.2.4 User Guide

If you are using hibernate-3 or hibernate-3.1 you will need to use the ehcache provider to use multiple
SessionFactories/CacheManagers in a single VM. That provider should be integrated into the Hibernate-
3.2 version.1

hibernate.cache.provider_class=net.sf.ehcache.hibernate.EhCacheProvider
net.sf.ehcache.configurationResourceName=/name_of_configuration_resource

The meaning of the properties is as follows:

hibernate.cache.provider_class - The fully qualified class name of the cache provider

net.sf.ehcache.configurationResourceName - The name of a configuration resource to use.

The resource is searched for in the root of the classpath. It is needed to support multiple CacheManagers
in the same VM. It tells Hibernate which configuration to use.An example might be "ehcache-2.xml".

15.1.2 Using the ehcache provider from the Hibernate project

To use the one from the Hibernate project:

hibernate.cache.provider_class=org.hibernate.cache.EhCacheProvider
hibernate.cache.provider_configuration_file_resource_path=/name_of_configuration_resource

15.1.3 Programmatic setting of the Hibernate Cache Provider

The provider can also be set programmatically in Hibernate using Configuration.setProperty("hibernate.cache.provider_class",
"net.sf.ehcache.hibernate.EhCacheProvider").

15.2 Hibernate Mapping Files

In Hibernate, each domain object requires a mapping file.

For example to enable cache entries for the domain object com.somecompany.someproject.domain.Country
there would be a mapping file something like the following:

<hibernate-mapping>

<class
name="com.somecompany.someproject.domain.Country"
table="ut_Countries"
dynamic-update="false"
dynamic-insert="false"

>
...
</hibernate-mapping>

To enable caching, add the following element.

Ehcache v1.2.4 User Guide 75

<cache usage="read-write|nonstrict-read-write|read-only" />

e.g.

<cache usage="read-write" />

15.2.1 read-write

Caches data that is sometimes updated while maintaining thesemantics of "read committed" isolation
level. If the database is set to "repeatable read", this concurrency strategy almost maintains the semantics.
Repeatable read isolation is compromised in the case of concurrent writes.

This is an "asynchronous" concurrency strategy.

15.2.2 nonstrict-read-write

Caches data that is sometimes updated without ever locking the cache. If concurrent access to an item is
possible, this concurrency strategy makes no guarantee that the item returned from the cache is the latest
version available in the database. Configure your cache timeout accordingly! This is an "asynchronous"
concurrency strategy.

This policy is the fastest. It does not use synchronized methods whereas read-write and read-only both do.

15.2.3 read-only

Caches data that is never updated.

15.3 Hibernate Doclet

Hibernate Doclet, part of the XDoclet project, can be used togenerate Hibernate mapping files from markup
in JavaDoc comments.

Following is an example of a Class level JavaDoc which configures a read-write cache for the Country
Domain Object:

/**
* A Country Domain Object

*
* @hibernate.class table="COUNTRY"

* @hibernate.cache usage="read-write"

*/
public class Country implements Serializable
{

...
}

The @hibernate.cache usage tag should be set to one of read-write, nonstrict-read-write and read-only.

76 Ehcache v1.2.4 User Guide

15.4 Configuration with ehcache.xml

Because ehcache.xml has a defaultCache, caches will alwaysbe created when required by Hibernate. How-
ever more control can be exerted by specifying a configuration per cache, based on its name.

In particular, because Hibernate caches are populated fromdatabases, there is potential for them to get
very large. This can be controlled by capping their maxElementsInMemory and specifying whether to
overflowToDisk beyond that.

Hibernate uses a specific convention for the naming of cachesof Domain Objects, Collections, and Queries.

15.4.1 Domain Objects

Hibernate creates caches named after the fully qualified name of Domain Objects.

So, for example to create a cache for com.somecompany.someproject.domain.Country create a cache con-
figuration entry similar to the following in ehcache.xml.

<cache
name="com.somecompany.someproject.domain.Country"
maxElementsInMemory="10000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

15.4.2 Hibernate

CacheConcurrencyStrategy read-write, nonstrict-read-write and read-only policies apply to Domain Ob-
jects.

15.4.3 Collections

Hibernate creates collection caches named after the fully qualified name of the Domain Object followed by
"." followed by the collection field name.

For example, a Country domain object has a set of advancedSearchFacilities. The Hibernate doclet for the
accessor looks like:

/**
* Returns the advanced search facilities that should appear for this country.

* @hibernate.set cascade="all" inverse="true"

* @hibernate.collection-key column="COUNTRY_ID"

* @hibernate.collection-one-to-many class="com.wotif.jaguar.domain.AdvancedSearchFacility"

* @hibernate.cache usage="read-write"

*/
public Set getAdvancedSearchFacilities() {

return advancedSearchFacilities;
}

You need an additional cache configured for the set. The ehcache.xml configuration looks like:

<cache name="com.somecompany.someproject.domain.Country"
maxElementsInMemory="50"

Ehcache v1.2.4 User Guide 77

eternal="false"
timeToLiveSeconds="600"
overflowToDisk="true"

/>
<cache

name="com.somecompany.someproject.Country.advancedSearchFacilities"
maxElementsInMemory="450"
eternal="false"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

15.4.4 Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only policiesapply to Domain Object collections.

15.4.5 Queries

Hibernate allows the caching of query results using two caches.

"net.sf.hibernate.cache.StandardQueryCache"and "net.sf.hibernate.cache.UpdateTimestampsCache" in ver-
sions 2.1 to 3.1 and "org.hibernate.cache.StandardQueryCache"and "org.hibernate.cache.UpdateTimestampsCache"
in version 3.2. are always used.

15.4.6 StandardQueryCache

This cache is used if you use a query cache without setting a name. A typical ehcache.xml configuration
is:

<cache
name="org.hibernate.cache.StandardQueryCache"
maxElementsInMemory="5"
eternal="false"
timeToLiveSeconds="120"
overflowToDisk="true"/>

15.4.7 UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It is important that the cache timeout
of the underlying cache implementation be set to a higher value than the timeouts of any of the query
caches. In fact, it is recommend that the the underlying cache not be configured for expiry at all.

A typical ehcache.xml configuration is:

<cache
name="org.hibernate.cache.UpdateTimestampsCache"
maxElementsInMemory="5000"
eternal="true"
overflowToDisk="true"/>

15.4.8 Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using Query.setCacheRegion(String
name). The name of the cache in ehcache.xml is then the name given in that method. The name can be

78 Ehcache v1.2.4 User Guide

whatever you want, but by convention you should use "query."followed by a descriptive name.

E.g.

<cache name="query.AdministrativeAreasPerCountry"
maxElementsInMemory="5"
eternal="false"
timeToLiveSeconds="86400"
overflowToDisk="true"/>

15.4.9 Using Query Caches

For example, let’s say we have a common query running againstthe Country Domain.

Code to use a query cache follows:

public List getStreetTypes(final Country country) throws HibernateException {
final Session session = createSession();
try {

final Query query = session.createQuery(

"select st.id, st.name"
+ " from StreetType st "
+ " where st.country.id = :countryId "
+ " order by st.sortOrder desc, st.name");
query.setLong("countryId", country.getId().longValue());
query.setCacheable(true);
query.setCacheRegion("query.StreetTypes");
return query.list();

} finally {
session.close();

}
}

Thequery.setCacheable(true) line caches the query.

Thequery.setCacheRegion("query.StreetTypes") line sets the name of the Query Cache.

15.4.10 Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-only policies apply to Domain Objects. Cache policies
are not configurable for query cache. They act like a non-locking read only cache.

15.5 Hibernate Caching Performance Tips

To get the most out of ehcache with Hibernate, Hibernate’s use of it’s in-process cache is important to
understand.

15.5.1 In-Process Cache

From Hibernate’s point of view, Ehcache is an in-process cache. Cached objects are accessible across
different sessions. They are common to the Java process.

Ehcache v1.2.4 User Guide 79

15.5.2 Object Id

Hibernate identifies cached objects via an object id. This isnormally the primary key of a database row.

15.5.3 Session.load

Session.load will always try to use the cache.

15.5.4 Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use the cache for any
associated objects. Session.find does however cause the cache to be populated.

Query.find works in exactly the same way.

Use these where the chance of getting a cache hit is low.

15.5.5 Session.iterate and Query.iterate

Session.iterate always uses the cache for the primary object and any associated objects.

Query.iterate works in exactly the same way.

Use these where the chance of getting a cache hit is high.

80 Ehcache v1.2.4 User Guide

Chapter 16

The Design of distributed ehcache

This is a discussion and explanation of the distributed design choices made in ehcache. One or more
default implementations are provided in each area. A plug inmechanism has been provided which will
allow interested parties to implement alternative approaches discussed here and hopefully contribute them
back to ehcache.

16.1 Acknowledgements

Much of the material here was drawn from Data Access Patterns, by Clifton Nock.

Thanks to Will Pugh and ehcache contributor Surya Suravarapu for suggesting we take ehcache distributed.

Finally, thanks to James Strachan for making helpful suggestions.

16.2 Problems with Instance Caches in a Clustered Environment

Many production applications are deployed in clusters. If each application maintains its own cache, then
updates made to one cache will not appear in the others. A workaround for web based applications is to use
sticky sessions, so that a user, having established a session on one server, stays on that server for the rest
of the session. A workaround for transaction processing systems using Hibernate is to do a session.refresh
on each persistent object as part of the save. session.refresh explicitly reloads the object from the database,
ignoring any cache values.

16.3 Replicated Cache

Another solution is to replicate data between the caches to keep them consistent. This is sometimes called
cache coherency. Applicable operations include:

• put

• update (put which overwrites an existing entry)

• remove

81

82 Ehcache v1.2.4 User Guide

16.4 Distributed Cache Terms

Distributed Cache - a cache instance that notifies others when its contents change

Notification - a mechanism to replicate changes

Topology - a layout for how replicated caches connect with and notify each other

16.5 Notification Strategies

The best way of notifying of put and update depends on the nature of the cache.

If the Element is not available anywhere else then the Element itself should form the payload of the notifi-
cation. An example is a cached web page. This notification strategy is called copy. Where the cached data
is available in a database, there are two choices. Copy as before, or invalidate the data. By invalidating the
data, the application tied to the other cache instance will be forced to refresh its cache from the database,
preserving cache coherency. Only the Element key needs to bepassed over the network.

Ehcache supports notification through copy and invalidate,selectable per cache.

16.6 Topology Choices

16.6.1 Peer Cache Replicator

Each replicated cache instance notifies every other cache instance when its contents change. This requires
n-1 notifications per change, where n is the number of cache instances in the cluster. If multicast is used,
these notifications can be emitted as one notification from the originating cache.

16.6.2 Centralised Cache Replicator

Each replicated cache instance notifies a master cache instance when its contents change. The master
cache then notifies the other instances. This requires one notification from the originating cache and n-2
notifications from the master cache to other slaves.

Ehcache uses a peer topology. The main advantages are simplicity and greater redundancy as there is no
single point of failure.

16.7 Discovery Choices

In a peer based system, there needs to be a way for peers to discover each other so as to perform delivery
of changes.

16.7.1 Multicast Discovery

In multicast discovery, peers join a multicast group on a specific IP address in the multicast range of
224.0.0.1 to 239.255.255.255 (specified in RFC1112) and a specific port. Each peer notifies the other
group members of its membership.

The configurable multicast time to live can be used to restrict discovery to the host, subnet, site or larger
scope.

This approach is simple and allows for dynamic entry and exitfrom the cluster.

Ehcache v1.2.4 User Guide 83

16.7.2 Static List

Here a list of listeners in the cluster is configured. There isno dynamic entry or exit. Peer listener addresses
must be known in advance.

Ehcache provides both techniques.

16.8 Delivery Mechanism Choices

16.8.1 Custom Socket Protocol

This approach uses a protocol built directly on TCP or UDP. Its primary advantage is high performance.

16.8.2 Multicast Delivery

The advantage with multicast is that the sender only transmits once. It is however based on UDP datagrams
and is nonreliable. Practical experience on modern networks, network cards and operating systems has
shown this approach to be quite lossy. Whether it would be fora specific combination is hard to predict.
This approach is thought unlikely to produce sufficient reliability.

16.8.3 JMS Topics

JMS Topics are standard, well understood way to propagate messages to multiple subscribers. JMS is not
used in the default ehcache implementation because many ehcache users are outside the scope of J2EE.
However JMS based delivery, with its richer services, couldbe a could choice for J2EE bases systems.

16.8.4 RMI RMI is the default RPC mechanism in Java.

16.8.5 JXTA

JXTA is a peer to peer technology that provides discovery anddelivery, together with much else.

16.8.6 JGroups

JGroups provides many of the desired features for a peer to peer distributed system. The default mode
for JGroups on a LAN is UDP, which is not desired. However JGroups does provide reliably transmission
using TCP, similar to the approach taken in ehcache.

16.8.7 The Default Implementation

Ehcache uses RMI, based on custom socket options for delivery in its default implementation.

Ehcache does not use JXTA or JGroups for the following reasons:

• enables fine control over distribution behaviour

• allows tuning specific to a distributed cache, rather than distribution generally

• reduces the number of dependent libraries to run ehcache

RMI is used by default because:

84 Ehcache v1.2.4 User Guide

• it itself is the default remoting mechanism in Java

• it is mature

• it allows tuning of TCP socket options

• Element keys and values for disk storage must already be Serializable, therefore directly transmit-
table over RMI without the need for conversion to a third format such as XML.

• it can be configured to pass through firewalls

• RMI had improvements added to it with each release of Java, which can then be taken advantage of.

However the pluggable nature of ehcache’s distribution mechanism allows for both of these approaches to
be plugged in. These approaches may become a standard part ofehcache in a future release.

A JGroups implementation is planned for ehcache-1.2.1.

16.9 Replication Drawbacks and Solutions in ehcache’s implemen-
tation

Some potentially significant obstacles have to be overcome if replication is to provide a net benefit.

16.9.1 Chatty Protocol

n-1 notifications need to happen each time a a cache instance change occurs. A very large amount of
network traffic can be generated. This issue affect the synchronous replication mode of ehcache.

Ehcache provides an asynchronous replication mode which mitigates this effect. All changes are buffered
for delivery. The queue is then checked each second and all messages delivered in one RMI call, as a list
of messages, to each peer.

The characteristics of each RMI call will be those of RMI. Ehcache does however use a custom socket
factory so that socked read timeout can be set.

16.9.2 Redundant Notifications

The cache instance that initiated the change should not receive its own notifications. To do so would add
additional overhead. Also, notifications should not endlessly go back and forth as each cache listener gets
changes caused by a remote replication.

Ehcache’s CachePeerProvider indentifies the local cache instance and excludes it from the notification list.
Each Cache has a GUID. That GUID can be compared with list of cache peers and the local peer excluded.

Infinite notifications are prevented by passing a flag when thecache operation occurs. Events with that flag
are ignored by instanced of CacheReplicator.

16.9.3 Potential for Inconsisent Data

Timing scenarios, race conditions, delivery, reliabilityconstraints and concurrent updates to the same
cached data can cause inconsistency (and thus a lack of coherency) across the cache instances.

This potential exists within the ehcache implementation. These issues are the same as what is seen when
two completely separate systems are sharing a database; a common scenario.

Ehcache v1.2.4 User Guide 85

Whether data inconsistency is a problem depends on the data and how it is used. For those times when it
is important, ehcache provides for synchronous delivery ofupdates via invalidation. These are discussed
below:

16.9.4 Synchronous Delivery

Delivery can be specified to be synchronous or asynchronous.Asynchronous delivery gives faster returns
to operations on the local cache and is usually preferred. Synchronous delivery adds time to the local
operation, however requires successful delivery of an update to all peers in the cluster before the cache
operation returns.

16.9.5 Update via Invalidation

The default is to update other caches by copying the new valueto them. If the replicateUpdatesViaCopy
property is set to false in the replication configuration, updates are made by removing the element in any
other cache peers. This forces the applications using the cache peers to return to a canonical source for the
data.

A similar effect can be obtained by setting the element TTL toa low value such as a second.

Note that these features impact cache performance and should not be used where the main purpose of a
cache is performance boosting over coherency.

86 Ehcache v1.2.4 User Guide

Chapter 17

Distributed Caching

As of version 1.2, Ehcache can be used as a distributed cache.

The distribution feature is built using plugins. Ehcache comes with some default distribution plugins which
should be suitable for most applications. Other plugins canbe developed. Developers should see the source
code in the distribution package for the fullly documented API to see how to do that.

Though not necessary to use distributed caching an insight into the design decisions used in ehcache may
be helpful. See the Design of distributed ehcache page.

The rest of this section documents the distribution pluginswhich are bundled with ehcache.

The following concepts are central to cache distribution:

• How do you know about the other caches that are in your cluster?

• What form of communication will be used to distribute messages?

• What is replicated? Puts, Updates, Expiries?

• When is it replicated? Synchronous or asynchronous?

To set up distributed caching you need to configure a PeerProvider, a CacheManagerPeerListener, which
is done globally for a CacheManager. For each cache that willoperate distributed, you then need to add a
cacheEventListener to propagate messages.

17.1 Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element itself. In this case
the operation will be replicated provided the key is Serializable, even if the Element is not.

17.2 Peer Discovery

Ehcache has the notion of a group of caches acting as a distributed cache. Each of the caches is a peer to
the others. There is no master cache. How do you know about theother caches that are in your cluster?
This problem can be given the name Peer Discovery.

Ehcache provides two mechanisms for peer discovery, just like a car: manual and automatic.

87

88 Ehcache v1.2.4 User Guide

To use one of the built-in peer discovery mechanisms specifythe class attribute ofcacheManagerPeerProviderFactory
asnet.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory in the ehcache.xml
configuration file.

17.2.1 Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish and maintain a multicast group. It features minimal
configuration and automatic addition to and deletion of members from the group. No a priori knowledge
of the servers in the cluster is required. This is recommended as the default option.

Peers send heartbeats to the group once per second. If a peer has not been heard of for 5 seconds it is
dropped from the group. If a new peer starts sending heartbeats it is admitted to the group.

Any cache within the configuration set up as replicated will be made available for discovery by other peers.

To set automatic peer discovery, specify the properties attribute ofcacheManagerPeerProviderFactory
as follows:

peerDiscovery=automaticmulticastGroupAddress=multicast address |multicast host name multicastGroup-
Port=port timeToLive=0-255 (See below in common problems before setting this)

Example

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and sampleCache12.
The configuration required for each server is identical:

Configuration for server1 and server2

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446, timeToLive=32"/>

17.2.2 Manual Peer Discovery

Manual peer configuration requires the IP address and port ofeach listener to be known. Peers cannot be
added or removed at runtime. Manual peer discovery is recommended where there are technical difficulties
using multicast, such as a router between servers in a cluster that does not propagate multicast datagrams.
You can also use it to set up one way replications of data, by having server2 know about server1 but not
vice versa.

To set manual peer discovery, specify the properties attribute ofcacheManagerPeerProviderFactory
as follows: peerDiscovery=manual rmiUrls=//server:port/cacheName, ...

The rmiUrls is a list of the cache peers of the server being configured. Do not include the server being
configured in the list.

Example

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and sampleCache12.
Following is the configuration required for each server:

Configuration for server1

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

Ehcache v1.2.4 User Guide 89

properties="peerDiscovery=manual,
rmiUrls=//server2:40001/sampleCache11|//server2:40001/sampleCache12"/>

Configuration for server2

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

properties="peerDiscovery=manual,
rmiUrls=//server1:40001/sampleCache11|//server1:40001/sampleCache12"/>

17.3 Configuring a CacheManagerPeerListener

A CacheManagerPeerListener listens for messages from peers to the current CacheManager.

You configure the CacheManagerPeerListener by specifiying aCacheManagerPeerListenerFactory which
is used to create the CacheManagerPeerListener using the plugin mechanism.

The attributes of cacheManagerPeerListenerFactory are:

• class - a fully qualified factory class name * properties - comma separated properties having meaning
only to the factory.

Ehcache comes with a built-in RMI-based distribution system. The listener component is RMI-
CacheManagerPeerListener which is configured using RMICacheManagerPeerListenerFactory. It is
configured as per the following example:

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"

properties="hostName=localhost, port=40001,
socketTimeoutMillis=2000"/>

Valid properties are:

• hostName (optional) - the hostName of the host the listener is running on. Specify where the host is
multihomed and you want to control the interface over which cluster messages are received.

The hostname is checked for reachability during CacheManager initialisation.

If the hostName is unreachable, the CacheManager will refuse to start and an CacheException will
be thrown indicating connection was refused.

If unspecified, the hostname will useInetAddress.getLocalHost().getHostAddress(),which
corresponds to the default host network interface.

Warning: Explicitly setting this to localhost refers to thelocal loopback of 127.0.0.1, which is not
network visible and will cause no replications to be received from remote hosts. You should only use
this setting when multiple CacheManagers are on the same machine.

• port (mandatory) - the port the listener listens on.

• socketTimeoutMillis (optional) - the number of seconds client sockets will wait when sending mes-
sages to this listener until they give up. By default this is 2000ms.

90 Ehcache v1.2.4 User Guide

17.4 Configuring CacheReplicators

Each cache that will be distributed needs to set a cache eventlistener which then replicates messages to the
other CacheManager peers. This is done by adding a cacheEventListenerFactory element to each cache’s
configuration.

<!-- Sample cache named sampleCache2. -->
<cache name="sampleCache2"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true, replicateUpdates=true,

</cache>

class - use net.sf.ehcache.distribution.RMICacheReplicatorFactory

The factory recognises the following properties:

• replicatePuts=true |false - whether new elements placed ina cache are replicated to others. Defaults
to true.

• replicateUpdates=true |false - whether new elements whichoverride an element already existing with
the same key are replicated. Defaults to true.

• replicateRemovals=true - whether element removals are replicated. Defaults to true.

• replicateAsynchronously=true |false - whether replications are asyncrhonous (true) or synchronous
(false). Defaults to true.

• replicateUpdatesViaCopy=true |false - whether the new elements are copied to other caches (true),
or whether a remove message is sent. Defaults to true.

To reduce typing if you want default behaviour, which is replicate everything in asynchronous mode, you
can leave off theRMICacheReplicatorFactory properties as per the following example:

<!-- Sample cache named sampleCache4. All missing RMICacheReplicatorFactory properties default
<cache name="sampleCache4"

maxElementsInMemory="10"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="LFU">

<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
</cache>

17.5 Common Problems

17.5.1 Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listener will fail to start on Tomcat if the installa-
tion path has spaces in it. See http://archives.java.sun.com/cgi-bin/wa?A2=ind0205&L=rmi-users&P=797
and http://www.ontotext.com/kim/doc/sys-doc/faq-howto-bugs/known-bugs.html.

As the default on Windows is to install Tomcat in "Program Files", this issue will occur by default.

Ehcache v1.2.4 User Guide 91

17.5.2 Multicast Blocking

The automatic peer discovery process relies on multicast. Multicast can be blocked by routers. Virtualisa-
tion technologies like Xen and VMWare may be blocking multicast. If so enable it. You may also need to
turn it on in the configuration for your network interface card.

An easy way to tell if your mutlicast is getting through is to use the ehcache remote debugger and watch
for the heartbeat packets to arrive.

17.5.3 Multicast Not Progagating Far Enough or PropagatingToo Far

You can control how far the multicast packets propagate by setting the badly misnamed time to live. Using
the multicast IP protocol, the timeToLive value indicates the scope or range in which a packet may be
forwarded. By convention:

0 is restricted to the same host
1 is restricted to the same subnet
32 is restricted to the same site
64 is restricted to the same region
128 is restricted to the same continent
255 is unrestricted

The default value in Java is 1, which propagates to the same subnet. Change the timeToLive property to
restrict or expand propagation.

92 Ehcache v1.2.4 User Guide

Chapter 18

The Design of the ehcache constructs
package

This is a discussion and explanation of the reasons for and the design forces behind the constructs package
in ehcache.

18.1 Acknowledgements

Much of the material here was drawn from Concurrent Programming in Java by Doug Lea. Thanks also to
Doug for answering several questions along the way.

18.2 The purpose of the Constructs package

Doug Lea in his book Concurrent Programming in Java talks about concurrency support constructs. One
meaning of a construct is "an abstract or general idea inferred or derived from specific instances". Just
like patterns emerge from noting the similarities of problems and gradually finding a solution to classes of
them, so to constructs are general solutions to commond problems.

The ehcache constructs package, literally the net.sf.ehcache.constructs package, provides ready to use,
extensible implementations are offered to solve common problems in J2EE and light-weight container
applications.

Why not leave ehcache at the core and let everyone create their own applications? Well, everyone is doing
that. But getting it right can be devilishly hard.

18.3 Caching meets Concurrent Programming

So, why not just use Doug’s library or the one he contributed to in JDK1.5? The ehcache constructs are
around the intersection of concurrency programming and caching. It uses a number of Doug’s classes
copied verbatim into the net.sf.ehcache.concurrent package, as permiited under the license.

93

94 Ehcache v1.2.4 User Guide

18.4 What can possibly go wrong?

That is a favourite tongue in cheek saying of Adam Murdoch, anoriginal contributor to the ehcache project.
The answer in concurrent programming is a lot.

(The following section is based heavily on Chapter 1.3 of Doug Lea’s Concurrent Programming in Java).

There are two often conflicting design goals at play in concurrent programming. They are:

• liveness, where something eventually happens within an activity.

• safety, where nothing bad ever happens to an object.

18.4.1 Safety Failures

Failures of safety include:

• Read/Write Conflicts, where one thread is reading from a fieldand another is writing to it. The value
read depends on who won the race.

• Write/Write Conflicts, where two threads write to the same field. The value on the next read is
impossible to predict.

A cache is similar to a global variable. By its nature it is accessible to multiple threads. Cache
entries, and the locking around them, are often highly contended for.

18.4.2 Liveness Failures

Failures of liveness include:

• Deadlock. This is caused by a circular dependency among locks. The threads involved cannot make
progress.

• Missed Signals. A thread entered the wait state after a notification to wake it up was produced.

• Nested monitor lockouts. A waiting thread holds a lock needed by a thread wishing to wake it up

• Livelock. A continously retried action continously fails.

• Starvation. Some threads never get allocated CPU time.

• Resource Exhaustion. All resourcesof some kind are in use bythreads, none of which will give one
up.

• Distributed Failure. A remote machine connected by socket becomes inaccessible.

• Stampede. With notifyAll(), all threads wake up and in a stampede, attempt to make progress.

18.5 The constructs

18.5.1 Blocking Cache

Imagine you have a very busy web site with thousands of concurrent users. Rather than being evenly
distributed in what they do, they tend to gravitate to popular pages. These pages are not static, they have
dynamic data which goes stale in a few minutes. Or imagine youhave collections of data which go stale in
a few minutes. In each case the data is extremely expensive tocalculate.

Ehcache v1.2.4 User Guide 95

Let’s say each request thread asks for the same thing. That isa lot of work. Now, add a cache. Get each
thread to check the cache; if the data is not there, go and get it and put it in the cache. Now, imagine that
there are so many users contending for the same data that in the time it takes the first user to request the
data and put it in the cache, 10 other users have done the same thing. The upstream system, whether a JSP
or velocity page, or interactions with a service layer or database are doing 10 times more work than they
need to.

Enter the BlockingCache.

96 Ehcache v1.2.4 User Guide

Ehcache v1.2.4 User Guide 97

It is blocking because all threads requesting the same key wait for the first thread to complete. Once the
first thread has completed the other threads simply obtain the cache entry and return.

The BlockingCache can scale up to very busy systems.

18.5.2 SelfPopulatingCache

You want to use the BlockingCache, but the requirement to always release the lock creates gnarly code.
You also want to think about what you are doing without thinking about the caching.

Enter the SelfPopulatingCache. The name SelfPopulatingCache is synonymous with Pull-through cache,
which is a common caching term. SelfPopulatingCache thoughalways is in addition to a BlockingCache.

SelfPopulatingCache uses aCacheEntryFactory, that given a key, knows how to populate the entry.

18.5.3 CachingFilter

You want to use the BlockingCache with web pages, but the requirement to always release the lock creates
gnarly code. You also want to think about what you are doing without thinking about the caching.

Enter the CachingFilter, a Servlet 2.3 compliant filter. Whynot just do a JSP tag library, like OSCache? The
answer is that you want the caching of your responses to be independent of the rendering technology. The
filter chain is reexcuted every time a RequestDispatcher is involved. This is on every jsp:include and every
Servlet. And you can programmatically add your own. If you have content generated by JSP, Velocity,
XSLT, Servlet output or anything else, it can all be cached byCachingFilter. A separation of concerns.

How do you determine what the key of a page is? The filter has an abstract calculateKey method, so it is
up to you.

You notice a problem and an opportunity. The problem is that the web pages you are caching are huge.
That chews up either a lot of memory (MemoryStore) or a lot of disk space (DiskStore). Also you notive
that these pages take their time going over the Internet. Theopportunity is that you notice that all modern
browsers support gzip encoding. A survey of logs reveals that 85% of the time the browser accepts gzip-
ping. (The majority of the 15% that does not is IE behind a proxy). Ok, so gzip the response before caching
it. Ungzipping is fast - so just ungzip for the 15% of the time the browser does not accept gzipping.

18.5.4 SimplePageCachingFilter

What if you just want to get started with the CachingFilter and don’t want to think too hard? Just use Sim-
plePageCachingFilter which has a calculateKey method already implemented. It useshttpRequest.getRequestURI()).append(http
for the key. This works most of the time. It tends to get less effective when referrals and affiliates are added
to the query, which is the case for a lot of e-commerce sites.

SimplePageCachingFilter is 10 lines of code.

18.5.5 PageFragmentCachingFilter

You notice that an entire page cannot be cached because the data on it vary in staleness. Say, an address
which changes very infrequently, and the price and availability of inventory, which changes quite a lot. Or
you have a portal, with lots of components and with differentstalenesses. Or you use the replicated cache
functionality in ehcache and you only want to rebuild the part of the page that got invalidated.

Enter the PageFragmentCachingFilter. It does everyting that SimplePageCachingFilter does, except it never
gzips, so the fragments can be combined.

98 Ehcache v1.2.4 User Guide

18.5.6 SimplePageFragmentCachingFilter

What if you just want to get started with the PageFragmentCachingFilter and don’t want to think too
hard? Just use SimplePageFragmentCachingFilter which hasa calculateKey method already implemented.
It useshttpRequest.getRequestURI()).append(httpRequest.getQueryString() for the key.
This works most of the time. It tends to get less effective when referrals and affiliates are added to the
query, which is the case for a lot of e-commerce sites.

SimplePageFragmentCachingFilter is 10 lines of code.

18.5.7 AsynchronousCommandExecutor

What happens if your JMS server is down? The usual answer it tohave two of them. Unfortunately, not all
JMS servers do a good job of clustering. Plus it takes twice the hardware.

Once a message makes it to a JMS server, they can usually be configured to store the message in a database.
You are pretty safe after that if there is a crash.

Enter AsynchronousCommandExecutor. It lets you create a command for future execution. The command
is cached and is then immediately executed in another thread. Thus the asynchronous bit. If it fails, it
retries on a set interval up to a set number of times. Thus it isfault-tolerant.

Use this where you really don’t want to lose messages or commands that execute against another system.

18.6 Real-life problems in the constructs package and theirsolutions

At the time of revising this document, ehcache is almost three years old. That leaves plenty of time to
observe some concurrency failures. The problems that aroseand how they were fixed are illustrative of the
subtleties of concurrent programming.

18.6.1 The Blocking Cache Stampede

The first BlockingCache implementation ran for almost a yearon a very busy application before the first
problems came to light. It was using notifyAll() together with coarse grained synchronization on the
BlockingCache instance.

Once the load on the cache got very high indeed, the thread with the lock would notifyAll. Then hundreds
of threads would "stampede" - they would each attempt to get the lock. Gradually more and more CPU
time was spent resolving contention for the object lock after each notifyAll. Eventually the server threads
went to 1500 and server output dropped to almost nothing.

The solution was to create a Mutex representing each key as itwas requested and to lock on that rather than
the BlockingCache itself. That gave a 10 times improvement in scalability. See Scalability Test vs the old
ScalabilityTest.

18.6.2 The Blank Page problem

About a year into the use of the CachingFilter, the idea to gzip was born. Having implemented it, it worked
fine. A few weeks into production use strange reports came in that people were occasionally getting blank
pages. Timing suggested the gzip change, but how? A tester came across similar issues that had been
reported with Apache mod_gzip. It looked like there was a rare code path that was somehow screwing up.

In the end, that was how the filters made their way into the ehcache project. The level of testing required
to focus on the issue was way beyond what you would normally doin a business app. In the end I sat
down with the Servlet specification and looked at everythingthat could go wrong. I ended up creating

Ehcache v1.2.4 User Guide 99

FilterNonReentrantException, AlreadyGzippedExceptionand ResponseHeadersNotModifiableException.
These conditions are detected and an exception thrown rather than a blank page. Then the developer fixes
the coding error that produced it.

The exception contain comments on how each issue happens, which are reproduced below:

FilterNonReentrantException - Thrown when it is detected that a caching filter’s doFilter method is reen-
tered by the same thread. Reentrant calls will block indefinitely because the first request has not yet
unblocked the cache. Nasty.

AlreadyGzippedException - The web package performs gzipping operations. One cause of problems on
web browsers is getting content that is double or triple gzipped. They will either get gobblydeegook or a
blank page. This exception is thrown when a gzip is attemptedon already gzipped content.

ResponseHeadersNotModifiableException - A gzip encoding header needs to be added for gzipped content.
The HttpServletResponse#setHeader() method is used for that purpose. If the header had already been set,
the new value normally overwrites the previous one. In some cases according to the servlet specification,
setHeader silently fails. Two scenarios where this happensare:

• The response is committed.

• RequestDispatcher#include method caused the request.

This issue is extremely subtle and nasty.

There are tests that reproduce each of these issues. The CachingFilter and its subclasses have been in
production for nearly two years with no more reports of trouble.

18.6.3 Blocking Cascade

Let’s say you do use the BlockingCache but something goes wrong upstream. Maybe it is something like
a database backup that slows the database down for 10 minutes. Or greedy SQL. With the BlockingCache
the JDBC connection will eventually timeout. The first thread fails. The next queued thread then attempts
the same thing. It fails. And so on. While this is going on, more and more threads queue up. The result
is a Blocking cascade. Eventually, if the slow upstream server or process does not pick up you exhaust the
thread limit on your server and it goes down with an OutOfMemoryError.

Is this what you want? Or would you prefer to have the affectedpart of the system degrade with errors
while the rest of the system keeps ticking? That is a judgement call.

BlockingCache has a parameter in its constructor called timeoutMillis. If you set that then any queued
thread will immediately timeout when its turn comes in the above scenario. Some requests get exceptions,
but you do not lose your VM.

100 Ehcache v1.2.4 User Guide

Chapter 19

CacheManager Event Listeners

• Configuration

• Implementing a CacheManagerEventListenerFactory and CacheManagerEventListener

CacheManager event listeners allow implementers to register callback methods that will be executed when
aCacheManager event occurs. Cache listeners implement the CacheManagerEventListener interface.

The events include:

• adding aCache

• removing aCache

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the implementer
to safely handle the potential performance and thread safety issues depending on what their listener is doing.

19.1 Configuration

One CacheManagerEventListenerFactory and hence one CacheManagerEventListener can be specified per
CacheManager instance.

The factory is configured as below:

<cacheManagerEventListenerFactory class=""
properties=""/>

The entry specifies a CacheManagerEventListenerFactory which will be used to create a CacheManager-
PeerProvider, which is notified when Caches are added or removed from the CacheManager.

The attributes of CacheManagerEventListenerFactory are:

• class - a fully qualified factory class name

• properties - comma separated properties having meaning only to the factory.

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance andthread safety issues depending on what
their listener is doing.

If no class is specified, or there is no cacheManagerEventListenerFactory element, no listener is
created. There is no default.

101

102 Ehcache v1.2.4 User Guide

19.2 Implementing a CacheManagerEventListenerFactory and Cache-
ManagerEventListener

CacheManagerEventListenerFactory is an abstract factoryfor creating cache manager listeners. Imple-
menters should provide their own concrete factory extending this abstract factory. It can then be configured
in ehcache.xml.

The factory class needs to be a concrete subclass of the abstract factory CacheManagerEventListenerFac-
tory, which is reproduced below:

/**
* An abstract factory for creating {@link CacheManagerEventListener}s. Implementers should

* provide their own concrete factory extending this factory. It can then be configured in

* ehcache.xml

*
* @author Greg Luck

* @version $Id: cachemanager_event_listeners.apt 135 2006-06-26 06:55:03Z gregluck $

* @see "http://ehcache.sourceforge.net/documentation/cachemanager_event_listeners.html"

*/
public abstract class CacheManagerEventListenerFactory {

/**
* Create a <code>CacheEventListener</code>

*
* @param properties implementation specific properties. These are configured as comma

* separated name value pairs in ehcache.xml. Properties may be null

* @return a constructed CacheManagerEventListener

*/
public abstract CacheManagerEventListener

createCacheManagerEventListener(Properties properties);
}

The factory creates a concrete implementation of CacheManagerEventListener, which is reproduced below:

/**
* Allows implementers to register callback methods that will be executed when a

* <code>CacheManager</code> event occurs.

* The events include:

*

* adding a <code>Cache</code>

* removing a <code>Cache</code>

*

* <p/>

* Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of

* the implementer to safely handle the potential performance and thread safety issues

* depending on what their listener is doing.

* @author Greg Luck

* @version $Id: cachemanager_event_listeners.apt 135 2006-06-26 06:55:03Z gregluck $

* @since 1.2

* @see CacheEventListener

*/
public interface CacheManagerEventListener {

/**
* Called immediately after a cache has been added and activated.

* <p/>

Ehcache v1.2.4 User Guide 103

* Note that the CacheManager calls this method from a synchronized method. Any attempt to

* call a synchronized method on CacheManager from this method will cause a deadlock.

* <p/>

* Note that activation will also cause a CacheEventListener status change notification

* from {@link net.sf.ehcache.Status#STATUS_UNINITIALISED} to

* {@link net.sf.ehcache.Status#STATUS_ALIVE}. Care should be taken on processing that

* notification because:

*

* the cache will not yet be accessible from the CacheManager.

* the addCaches methods whih cause this notification are synchronized on the

* CacheManager. An attempt to call {@link net.sf.ehcache.CacheManager#getCache(String)}

* will cause a deadlock.

*

* The calling method will block until this method returns.

* <p/>

* @param cacheName the name of the <code>Cache</code> the operation relates to

* @see CacheEventListener

*/
void notifyCacheAdded(String cacheName);

/**
* Called immediately after a cache has been disposed and removed. The calling method will

* block until this method returns.

* <p/>

* Note that the CacheManager calls this method from a synchronized method. Any attempt to

* call a synchronized method on CacheManager from this method will cause a deadlock.

* <p/>

* Note that a {@link CacheEventListener} status changed will also be triggered. Any

* attempt from that notification to access CacheManager will also result in a deadlock.

* @param cacheName the name of the <code>Cache</code> the operation relates to

*/
void notifyCacheRemoved(String cacheName);

}

The implementations need to be placed in the classpath accessible to ehcache. Ehcache uses the Class-
Loader returned byThread.currentThread().getContextClassLoader() to load classes.

104 Ehcache v1.2.4 User Guide

Chapter 20

Cache Event Listeners

Cache listeners allow implementers to register callback methods that will be executed when a cache event
occurs. Cache listeners implement the CacheEventListenerinterface.

The events include:

• an Element has been put

• an Element has been updated. Updated means that an Element exists in the Cache with the same key
as the Element being put.

• an Element has been removed

• an Element expires, either because timeToLive or timeToIdle have been reached.

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the implementer
to safely handle the potential performance and thread safety issues depending on what their listener is doing.

Listeners are guaranteed to be notified of events in the orderin which they occurred.

Elements can be put or removed from a Cache without notifyinglisteners by using the putQuiet and re-
moveQuiet methods.

20.1 Configuration

Cache event listeners are configured per cache. Each cache can have multiple listeners.

Each listener is configured by adding a cacheManagerEventListenerFactory element as follows:

<cache ...>
<cacheEventListenerFactory class="" properties=""/>
...
</cache>

The entry specifies a CacheManagerEventListenerFactory which is used to create a CachePeerProvider,
which then receives notifications.

The attributes of CacheManagerEventListenerFactory are:

105

106 Ehcache v1.2.4 User Guide

• class - a fully qualified factory class name * properties - an optional comma separated properties
having meaning only to the factory.

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance andthread safety issues depending on what
their listener is doing.

20.2 Implementing a CacheEventListenerFactory and CacheEventLis-
tener

CacheEventListenerFactory is an abstract factory for creating cache event listeners. Implementers should
provide their own concrete factory, extending this abstract factory. It can then be configured in ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class CacheEventListenerFactory,
which is reproduced below:

/**
* An abstract factory for creating listeners. Implementers should provide their own

* concrete factory extending this factory. It can then be configured in ehcache.xml

*
* @author Greg Luck

* @version $Id: cache_event_listeners.apt 135 2006-06-26 06:55:03Z gregluck $

*/
public abstract class CacheEventListenerFactory {

/**
* Create a <code>CacheEventListener</code>

*
* @param properties implementation specific properties. These are configured as comma

* separated name value pairs in ehcache.xml

* @return a constructed CacheEventListener

*/
public abstract CacheEventListener createCacheEventListener(Properties properties);

}

The factory creates a concrete implementation of the CacheEventListener interface, which is reproduced
below:

/**
* Allows implementers to register callback methods that will be executed when a cache event

* occurs.

* The events include:

*

* put Element

* update Element

* remove Element

* an Element expires, either because timeToLive or timeToIdle has been reached.

*

* <p/>

* Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of

* the implementer to safely handle the potential performance and thread safety issues

* depending on what their listener is doing.

* <p/>

* Events are guaranteed to be notified in the order in which they occurred.

* <p/>

Ehcache v1.2.4 User Guide 107

* Cache also has putQuiet and removeQuiet methods which do not notify listeners.

*
* @author Greg Luck

* @version $Id: cache_event_listeners.apt 135 2006-06-26 06:55:03Z gregluck $

* @see CacheManagerEventListener

* @since 1.2

*/
public interface CacheEventListener extends Cloneable {

/**
* Called immediately after an element has been removed. The remove method will block until

* this method returns.

* <p/>

* Ehcache does not chech for

* <p/>

* As the {@link net.sf.ehcache.Element} has been removed, only what was the key of the

* element is known.

* <p/>

*
* @param cache the cache emitting the notification

* @param element just deleted

*/
void notifyElementRemoved(final Ehcache cache, final Element element) throws CacheException;

/**
* Called immediately after an element has been put into the cache. The

* {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method

* will block until this method returns.

* <p/>

* Implementers may wish to have access to the Element’s fields, including value, so the

* element is provided. Implementers should be careful not to modify the element. The

* effect of any modifications is undefined.

*
* @param cache the cache emitting the notification

* @param element the element which was just put into the cache.

*/
void notifyElementPut(final Ehcache cache, final Element element) throws CacheException;

/**
* Called immediately after an element has been put into the cache and the element already

* existed in the cache. This is thus an update.

* <p/>

* The {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method

* will block until this method returns.

* <p/>

* Implementers may wish to have access to the Element’s fields, including value, so the

* element is provided. Implementers should be careful not to modify the element. The

* effect of any modifications is undefined.

*
* @param cache the cache emitting the notification

* @param element the element which was just put into the cache.

*/
void notifyElementUpdated(final Ehcache cache, final Element element) throws CacheException;

/**
* Called immediately after an element is <i>found</i> to be expired. The

* {@link net.sf.ehcache.Cache#remove(Object)} method will block until this method returns.

108 Ehcache v1.2.4 User Guide

* <p/>

* As the {@link Element} has been expired, only what was the key of the element is known.

* <p/>

* Elements are checked for expiry in ehcache at the following times:

*

* When a get request is made

* When an element is spooled to the diskStore in accordance with a MemoryStore

* eviction policy

* In the DiskStore when the expiry thread runs, which by default is

* {@link net.sf.ehcache.Cache#DEFAULT_EXPIRY_THREAD_INTERVAL_SECONDS}

*

* If an element is found to be expired, it is deleted and this method is notified.

*
* @param cache the cache emitting the notification

* @param element the element that has just expired

* <p/>

* Deadlock Warning: expiry will often come from the <code>DiskStore</code>

* expiry thread. It holds a lock to the DiskStorea the time the

* notification is sent. If the implementation of this method calls into a

* synchronized <code>Cache</code> method and that subsequently calls into

* DiskStore a deadlock will result. Accordingly implementers of this method

* should not call back into Cache.

*/
void notifyElementExpired(final Ehcache cache, final Element element);

/**
* Give the replicator a chance to cleanup and free resources when no longer needed

*/
void dispose();

/**
* Creates a clone of this listener. This method will only be called by ehcache before a

* cache is initialized.

* <p/>

* This may not be possible for listeners after they have been initialized. Implementations

* should throw CloneNotSupportedException if they do not support clone.

* @return a clone

* @throws CloneNotSupportedException if the listener could not be cloned.

*/
public Object clone() throws CloneNotSupportedException;

}

The implementations need to be placed in the classpath accessible to ehcache.

See the chapter on Classloading for details on how classloading of these classes will be done.

Chapter 21

Frequently Asked Questions

21.1 Does ehcache run on JDK1.3?

Versions prior to ehcache-1.2.4 do. From 1.2.4 onwards, JDK1.4 if the minimum supported JDK.

21.2 Can you use more than one instance of ehcache in a single VM?

Yes. Create your CacheManager using new CacheManager(...)and keep hold of the reference. The single-
ton approach accessible with the getInstance(...) method is still available too. Remember that ehcache can
supports hundreds of caches within one CacheManager. You would use separate CacheManagers where
you want quite different configurations.

The Hibernate EhCacheProvider has also been updated to support this behaviour.

21.3 Can you use ehcache with Hibernate and outside of Hibernate
at the same time?

Yes. You use 1 instance of ehcache and 1 ehcache.xml. You configure your caches with Hibernate names
for use by Hibernate. You can have other caches which you interact with directly outside of Hibernate.

That is how I use ehcache in the original project it was developed in. For Hibernate we have about 80
Domain Object caches, 10 StandardQueryCaches, 15 Domain Object Collection caches.

We have around 5 general caches we interact with directly using BlockingCacheManager. We have 15
general caches we interact with directly using SelfPopulatingCacheManager. You can use one of those or
you can just use CacheManager directly.

I have updated the documentation extensively over the last few days. Check it out and let me know if
you have any questions. See the tests for example code on using the caches directly. Look at CacheMan-
agerTest, CacheTest and SelfPopulatingCacheTest.

21.4 What happens when maxElementsInMemory is reached? Are
the oldest items are expired when new ones come in?

When the maximum number of elements in memory is reached, theleast recently used ("LRU") element is
removed. Used in this case means inserted with a put or accessed with a get.

109

110 Ehcache v1.2.4 User Guide

If the overflowToDisk cache attribute is false, the LRU Element is discarded. If true, it is transferred
asynchronously to the DiskStore.

21.5 Is it thread safe to modify Element values after retrieval from a
Cache?

Remember that a value in a cache element is globally accessible from multiple threads. It is inherently not
thread safe to modify the value. It is safer to retrieve a value, delete the cache element and then reinsert the
value.

The UpdatingCacheEntryFactory does work by modifying the contents of values in place in the cache. This
is outside of the core of ehcache and is targeted at high performance CacheEntryFactories for SelfPopulat-
ingCaches.

21.6 Can non-Serializable objects be stored in a cache?

Yes, they can be stored in caches with MemoryStores.

Elements attempted to be replicated or overflowed to disk will be removed and a warning logged if not
Serializable.

21.7 Why is there an expiry thread for the DiskStore but not for the
MemoryStore?

Because the memory store has a fixed maximum number of elements, it will have a maximum memory use
equal to the number of elements * the average size. When an element is added beyond the maximum size,
the LRU element gets pushed into the DiskStore.

While we could have an expiry thread to expire elements periodically, it is far more efficient to only check
when we need to. The tradeoff is higher average memory use.

The DiskStore’s size is unbounded. The expiry thread keeps the disk store clean. There is hopefully less
contention for the DiskStore’s locks because commonly usedvalues are in the MemoryStore. We mount
our DiskStore on Linux using RAMFS so it is using OS memory. While we have more of this than the
2GB 32 bit process size limit it is still an expensive resource. The DiskStore thread keeps it under control.

If you are concerned about cpu utilisation and locking in theDiskStore, you can set the diskExpiryThread-
IntervalSeconds to a high number - say 1 day. Or you can effectively turn it off by setting the diskExpiry-
ThreadIntervalSeconds to a very large value.

21.8 What elements are mandatory in ehcache.xml?

The documentation has been updated with comprehensive coverage of the schema for ehcache and all
elements and attributes, including whether they are mandatory. See the Declarative Configuration chapter.

21.9 Can I use ehcache as a memory cache only?

Yes. Just set the overflowToDisk attribute of cache to false.

Ehcache v1.2.4 User Guide 111

21.10 Can I use ehcache as a disk cache only?

Yes. Set the maxElementsInMemory attribute of cache to 0.

This is strongly not recommended however. The minimum recommended value is 1. Performance is as
much as 10 times higher when to one rather than 0. If not set to at least 1 a warning will be issued at Cache
creation time.

21.11 Where is the source code? The source code is distributed in
the root directory of the download.

It is called ehcache-x.x.zip. It is also available from SourceForge online or through cvs.

21.12 How do you get statistics on an Element without affecting them?

Use the Cache.getQuiet() method. It returns an Element without updating statistics.

21.13 How do you get WebSphere to work with ehcache?

It has been reported that IBM Websphere 5.1 running on IBM JDK1.4 requires commons-collection.jar in
its classpath even though ehcache will not use it for JDK1.4 and JDK5.

21.14 Do you need to call CacheManager.getInstance().shutdown()
when you finish with ehcache?

Yes, it is recommended. If the JVM keeps running after you stop using ehcache, you should call Cache-
Manager.getInstance().shutdown() so that the threads arestopped and cache memory released back to the
JVM. Calling shutdown also insures that your persistent disk stores get written to disk in a consistent state
and will be usable the next time they are used.

If the CacheManager does not get shutdown it should not be a problem. There is a shutdown hook which
calls the shutdown on JVM exit. This is explained in the documentation here.

21.15 Can you use ehcache after a CacheManager.shutdown()?

Yes. When you call CacheManager.shutdown() is sets the singleton in CacheManager to null. If you try an
use a cache after this you will get a CacheException.

You need to call CacheManager.create(). It will create a brand new one good to go. Internally the Cache-
Manager singleton gets set to the new one. So you can create and shutdown as many times as you like.

There is a test which expliciyly confirms this behaviour. SeeCacheManagerTest#testCreateShutdownCreate()

112 Ehcache v1.2.4 User Guide

21.16 I have created a new cache and its status is STATUS_UNINITIALISED.
How do I initialise it?

You need to add a newly created cache to a CacheManager beforeit gets intialised. Use code like the
following:

CacheManager manager = CacheManager.create();
Cache myCache = new Cache("testDiskOnly", 0, true, false, 5, 2);
manager.addCache(myCache);

21.17 Is there a simple way to disable ehcache when testing?

Yes. There is a System Property based method of disabling ehcache. If disabled no elements will be added
to a cache. Set the property "net.sf.ehcache.disabled=true" to disable ehcache.

This can easily be done using-Dnet.sf.ehcache.disabled=true> in the command line.

21.18 Is there a Maven bundle for ehcache?

Yes. http://www.ibiblio.org/maven/net.sf.ehcache/ forehcache-1.2 and higher.

http://www.ibiblio.org/maven/ehcache/ for earlier versions.

21.19 How do I dynamically change Cache attributes at runtime?

You can’t but you can achieve the same result as follows:

Cache cache = new Cache("test2", 1, true, true, 0, 0, true, 120, ...); cacheManager.addCache(cache);

See the JavaDoc for the full parameters, also reproduced here:

Having created the new cache, get a list of keys using cache.getKeys, then get each one and put it in the
new cache. None of this will use much memory because the new cache element have values that reference
the same data as the original cache. Then use cacheManager.removeCache("oldcachename") to remove the
original cache.

21.20 I get net.sf.ehcache.distribution.RemoteCacheException: Er-
ror doing put to remote peerremote peer. Message was: Error
unmarshaling return header; nested exception is: java.net.SocketTimeoutException:
Read timed out. What does this mean.

It typically means you need to increase your socketTimeoutMillis. This is the amount of time a sender
should wait for the call to the remote peer to complete. How long it takes depends on the network and the
size of the Elements being replicated.

The configuration that controls this is the socketTimeoutMillis setting in cacheManagerPeerListenerFac-
tory. 120000 seems to work well for most scenarios.

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"

Ehcache v1.2.4 User Guide 113

properties="hostName=fully_qualified_hostname_or_ip,
port=40001,
socketTimeoutMillis=120000"/>

21.21 Should I use this directive when doing distributed caching?
cacheManagerEventListenerFactory class="" properties=""/

No. It is unrelated. It is for listening to changes in your local CacheManager.

21.22 What is the minimum config to get distributed caching going?

The minimum configuration you need to get distributed going is:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic,

multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446"/>

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>

and then at least one cache declaration with

<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>>>>

in it. An example cache is:

<cache name="sampleDistributedCache1"
maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
</cache>

Each server in the cluster can have the same config.

21.23 How can I see if distributed caching is working?

You should see the listener port open on each server.

You can use the distributed debug tool to see what is going on.(See).

114 Ehcache v1.2.4 User Guide

21.24 I get net.sf.ehcache.CacheException: Problem starting listener
for RMICachePeer ... java.rmi.UnmarshalException: error
unmarshalling arguments; nested exception is: java.net.MalformedURLException:
no protocol: Files/Apache. What is going on?

This issue occurs to any RMI listener started on Tomcat, whenTomcat has spaces in its installation path.

It is is a JDK bug which can be worked around in Tomcat but is not. See http://archives.java.sun.com/cgi-
bin/wa?A2=ind0205&L=rmi-users&P=797and http://www.ontotext.com/kim/doc/sys-doc/faq-howto-bugs/known-
bugs.html.

The workaround is to remove the spaces in your tomcat installation path.

21.25 Why can’t I run multiple applications using ehcache onone
machine?

Because of an RMI bug, in JDKs before JDK1.5 such as JDK1.4.2,ehcache is limited to one CacheManager
operating in distributed mode per virtual machine. (The buglimits the number of RMI registries to one
per virtual machine). Because this is the expected deployment configuration, however, there should be
no practical effect. The tell tail error isjava.rmi.server.ExportException: internal error:

ObjID already in use

On JDK1.5 and higher it is possible to have multiple CacheManagers per VM each participating in the
same or different clusters. Indeed the replication tests dothis with 5 CacheManagers on the same VM all
run from JUnit.

21.26 How many threads does ehcache use, and how much memory
does that consume?

The CacheManager creates one shutdown hook. Each DiskStoreuses one Thread. If your cache overflows
to Disk it uses a DiskStore.

If your cache replicates asynchronously, a thread is used per cache to handle it.

Versions prior to ehcache-1.2.4 used 3 threads per DiskStore.

The amount of memory consumed per thread is determined by theStack Size. This is set using -Xss. The
amount varies by OS. It is 512KB for Linux. I tend to override the default and set it to 100kb.

Chapter 22

About the ehcache name and logo

Adam Murdoch (an all round top Java coder) came up with the name in a moment of inspiration while we
were stuck on the SourceForge project create page. Ehcache is a palindrome. We thought the name was
wicked cool.

The logo is similarly symmetrical, and is evocative of the diagram symbol for a doubly-linked list. The
JDK1.4 LinkedHashMap, and Apache’s LRUMap are a HashMap with a doubly-linked list running through
all of its entries. These structures lie at the heart of ehcache.

115

Index

A
About the ehcache name and logo 12, 115
Adam Murdoch . 12, 115
Adding and Removing Caches Programmatically40
Amdahl’s Law . 15
Apache 2.0 license . 29
AsynchronousCommandExecutor98
Automated Load, Limit and Performance System Tests

28
Automatic Peer Discovery . 88

B
Blocking Cache . 94
Blocking Cache to avoid duplicate processing for

concurrent operations 27
BlockingCache . 54
Bootstrapping from Peers . 27
Browse the JUnit Tests . 44

C
Cache Configuration . 57
Cache Decorators . 53
Cache Event Listeners . 105
Cache event listeners . 26
Cache Size and Eviction . 36
Cache Usage Patterns. .37
Cacheable Commands . 27
CacheManager .32
CacheManager Event Listeners 101
CacheManager listeners . 25
CacheManagerEventListener 102
CacheManagerEventListenerFactory 102
CachingFilter . 97
Code Samples . 39
Commons Logging . 47
Configuration. .105
Conservative Commit policy 29
Copy Or Invalidate Replication 26
CPU bound Applications . 14
Creating a new cache from defaults 43
Creating a new cache with custom parameters . . .43

D
Deadlock .94
DEBUG. .47

Disk Persistence on demand42
DiskStore . 68
DiskStore Eviction Algorithms 37
Distributed . 25
Distributed Caching . 26
Distributed Failure . 94

E
Ehcache .34
ehcache constructs . 93
ehcache.xsd . 57
ehcache-1.x-remote-debugger.jar 48
Element . 35
ERROR . 47
Expiry Strategy . 67
Extensible . 26

F
Fast .22
Features .21
FIFO . 37
Flush to disk on demand . 25
Full public information on the history of every bug

29
Fully documented . 29

G
General Purpose Caching . 19

H
Hibernate . 73
Hibernate Caching . 73
Hibernate Doclet . 75
Hibernate Mapping Files .74
High Quality . 28
High Test Coverage . 28

I
I/O bound Applications . 14
Implementing a CacheEventListenerFactoryand CacheEventLis-

tener .106
Instance Mode . 33

J
J2EE and Applied Caching .27
J2EE Gzipping Servlet Filter 27

116

Ehcache v1.2.4 User Guide 117

Java Requirements . 45
JDK1.3 . 109
JDK1.4 logging . 47

K
Key Ehcache Concepts . 31

L
Least Recently Used . 36, 68
Less Frequently Used . 36, 68
LFU. .36, 68
Listeners may be plugged in25
Livelock . 94
Liveness Failures . 94
Loading of ehcache.xml resources 50
Locality of Reference. .13
log4j . 47
LRU . 36, 68

M
Manual Peer Discovery . 88
Memory Store . 67
MemoryStore Eviction Algorithms.36
Minimal dependencies . 24
Missed Signals. .94
Mixed Singleton and Instance Mode 33
Multiple CacheManagers per virtual machine . . . 24

N
Nested monitor lockouts . 94

O
Obtaining a reference to a Cache 41
Obtaining Cache Sizes. .42
Obtaining Statistics of Cache Hits and Misses . . . 42
Open Source Licensing . 29

P
PageFragmentCachingFilter 97
Peer Discovery . 26, 87
Peer Discovery, Replicators and Listeners may be

plugged in .25
Performance Considerations.51
Performing CRUD operations 41
Persistence . 69
Persistent disk store which stores data between VM

restarts . 25
Plugin class loading . 49
Production tested . 28
Programmatic setting of the Hibernate Cache Provider

74
Provides LRU, LFU and FIFO cache eviction poli-

cies . 24
Provides Memory and Disk stores 25

Provides Memory and Disk stores for scalabilty into
gigabytes. .24

R
Reliable Delivery . 26
Remote Network debugging and monitoring for Dis-

tributed Caches . 48
replaceCacheWithDecoratedCache.53
Resource Exhaustion . 94
Responsiveness to serious bugs 29

S
Safety Failures . 94
Scalable to hundreds of caches 24
SelfPopulating Cache for pull through caching of

expensive operations 27
SelfPopulatingCache . 56, 97
Setting ehcache as the cache provider 73
Shutdown the CacheManager.41
Simple . 23
SimpleLog . 47
SimplePageCachingFilter . 97
SimplePageFragmentCachingFilter 98
Singleton Mode . 32
Singleton versus Instance . 39
Small foot print . 23
Specific Concurrency Testing.28
Spooling . 67
Stampede . 94
Starvation . 94
Support cache-wide or Element-based expiry poli-

cies . 24
Supported Eviction Algorithms 36
Supports Object or Serializable caching 24
Synchronous Or Asynchronous Replication 26

T
The Long Tail . 13
Transparent Replication. .26
Trusted by Popular Frameworks 29
Tuned for high concurrent load on large multi-cpu

servers . 24

U
Using Caches . 41
Using the CacheManager . 39
Using the ehcache provider from the Hibernate project

74

V
Virtual Machine Shutdown Considerations71

W
WARNING. .47
Ways of loading Cache Configuration 40
Works with Hibernate . 28

