
Ehcache Guide & Reference

Version 1.6

Contents

1 Preface 15
1.1 Version . 15
1.2 Audience . 15

1.3 Acknowledgements . 15

1.4 About the ehcache name and logo . 16

2 Introduction 17
2.1 About Caches . 17
2.2 Why caching works . 17

2.2.1 Locality of Reference . 17
2.2.2 The Long Tail . 17

2.3 Will an Application Benefit from Caching? . 18

2.3.1 Speeding up CPU bound Applications . 18
2.3.2 Speeding up I/O bound Applications . 18

2.3.3 Increased Application Scalability . 19
2.4 How much will an application speed up with Caching? 19

2.4.1 The short answer . 19
2.4.2 Applying Amdahl’s Law . 19

2.4.3 Cache Efficiency . 20

2.4.4 Cluster Efficiency . 21
2.4.5 A cache version of Amdahl’s law . 21

2.4.6 Web Page example . 22

3 Getting Started 23
3.1 General Purpose Caching . 23
3.2 Hibernate . 23

3.3 Java EE Servlet Caching . 23

3.4 RESTful and SOAP Caching with the Cache Server . 24
3.5 JCache style caching . 24

3.6 Spring, Cocoon, Acegi and other frameworks . 24

1

4 Features 25
4.1 Fast and Light Weight . 27

4.1.1 Fast . 27
4.1.2 Simple . 28
4.1.3 Small foot print . 28
4.1.4 Minimal dependencies . 28

4.2 Scalable . 28
4.2.1 Provides Memory and Disk stores for scalabilty into gigabytes 28
4.2.2 Scalable to hundreds of caches . 28
4.2.3 Tuned for high concurrent load on large multi-cpu servers 28
4.2.4 Multiple CacheManagers per virtual machine . 28

4.3 Flexible . 28
4.3.1 Supports Object or Serializable caching . 28
4.3.2 Support cache-wide or Element-based expiry policies 29
4.3.3 Provides LRU, LFU and FIFO cache eviction policies 29
4.3.4 Provides Memory and Disk stores . 29
4.3.5 Distributed . 29

4.4 Standards Based . 29
4.4.1 Full implementation of JSR107 JCACHE API . 29

4.5 Extensible . 29
4.5.1 Listeners may be plugged in . 29
4.5.2 Peer Discovery, Replicators and Listeners may be plugged in 29
4.5.3 Cache Extensions may be plugged in . 30
4.5.4 Cache Loaders may be plugged in . 30
4.5.5 Cache Exception Handlers may be plugged in . 30

4.6 Application Persistence . 30
4.6.1 Persistent disk store which stores data between VM restarts 30
4.6.2 Flush to disk on demand . 30

4.7 Listeners . 30
4.7.1 CacheManager listeners . 30
4.7.2 Cache event listeners . 30

4.8 JMX Enabled . 31
4.9 Distributed Caching . 31

4.9.1 Support for replication via RMI or JGroups . 31
4.9.2 Peer Discovery . 31
4.9.3 Reliable Delivery . 31
4.9.4 Synchronous Or Asynchronous Replication . 31
4.9.5 Copy Or Invalidate Replication . 31
4.9.6 Transparent Replication . 31
4.9.7 Extensible . 32

2

4.9.8 Bootstrapping from Peers . 32
4.10 Cache Server . 32

4.10.1 RESTful cache server . 32
4.10.2 SOAP cache server . 32
4.10.3 comes as a WAR or as a complete server . 33

4.11 Java EE and Applied Caching . 33
4.11.1 Blocking Cache to avoid duplicate processing for concurrent operations 33
4.11.2 SelfPopulating Cache for pull through caching of expensive operations 33
4.11.3 Java EE Gzipping Servlet Filter . 33
4.11.4 Cacheable Commands . 33
4.11.5 Works with Hibernate . 33
4.11.6 Works with Google App Engine . 34

4.12 High Quality . 34
4.12.1 High Test Coverage . 34
4.12.2 Automated Load, Limit and Performance System Tests 34
4.12.3 Specific Concurrency Testing . 34
4.12.4 Production tested . 34
4.12.5 Fully documented . 35
4.12.6 Trusted by Popular Frameworks . 35
4.12.7 Conservative Commit policy . 35
4.12.8 Full public information on the history of every bug 35
4.12.9 Responsiveness to serious bugs . 35

4.13 Open Source Licensing . 35
4.13.1 Apache 2.0 license . 35

5 Key Ehcache Concepts 37
5.1 Key Ehcache Classes . 37

5.1.1 CacheManager . 38
5.1.2 Ehcache . 40
5.1.3 Element . 41

5.2 Cache Usage Patterns . 42
5.2.1 Direct Manipulation . 42
5.2.2 Self Populating . 42

6 Cache Configuration 43
6.1 ehcache.xsd . 43
6.2 ehcache-failsafe.xml . 46
6.3 ehcache.xml and other configuration files . 46
6.4 Special System Properties . 55

6.4.1 net.sf.ehcache.disabled . 55

3

6.4.2 net.sf.ehcache.use.classic.lru . 55
6.5 Memory Store . 55

6.5.1 Memory Use, Spooling and Expiry Strategy . 56
6.6 DiskStore . 57

6.6.1 DiskStores are Optional . 57
6.6.2 Suitable Element Types . 57
6.6.3 Storage . 57
6.6.4 Expiry . 58
6.6.5 Eviction . 58
6.6.6 Serializable Objects . 58
6.6.7 Safety . 58
6.6.8 Persistence . 58

7 Cache Eviction Algorithms 61
7.1 Eviction . 61

7.1.1 Supported MemoryStore Eviction Algorithms 61
7.1.2 MemoryStore Eviction Algorithms . 61
7.1.3 DiskStore Eviction Algorithms . 62

8 Code Samples 63
8.1 Using the CacheManager . 63

8.1.1 Singleton versus Instance . 64
8.1.2 Ways of loading Cache Configuration . 64
8.1.3 Adding and Removing Caches Programmatically 64
8.1.4 Shutdown the CacheManager . 65

8.2 Using Caches . 65
8.2.1 Obtaining a reference to a Cache . 65
8.2.2 Performing CRUD operations . 65
8.2.3 Disk Persistence on demand . 66
8.2.4 Obtaining Cache Sizes . 66
8.2.5 Obtaining Statistics of Cache Hits and Misses . 67

8.3 Creating a new cache from defaults . 67
8.4 Creating a new cache with custom parameters . 67
8.5 Registering CacheStatistics in an MBeanServer . 68
8.6 Browse the JUnit Tests . 68

9 Java Requirements and Dependencies 69
9.1 Java Requirements . 69
9.2 Mandatory Dependencies . 69

10 Logging 71

4

10.1 Java Util Logging . 71
10.2 Working with SL4J . 71
10.3 Recommended Logging Levels . 71

11 Remote Network debugging and monitoring for Distributed Caches 73
11.1 Introduction . 73
11.2 Packaging . 73
11.3 Limitations . 73
11.4 Usage . 73

11.4.1 Output . 74
11.4.2 Providing more Detailed Logging . 74
11.4.3 Yes, but I still have a cluster problem . 74

12 Garbage Collection 75
12.1 Detecting Garbage Collection Problems . 75
12.2 Garbage Collection Tuning . 75
12.3 Distributed Caching Garbage Collection Tuning . 76

13 JMXManagement and Monitoring 77
13.1 JMX Overview . 77
13.2 MBeans . 78
13.3 JMX Remoting . 78
13.4 ObjectName naming scheme . 78
13.5 The Management Service . 78
13.6 JConsole Example . 80
13.7 JMX Tutorial . 80

14 Class loading and Class Loaders 81
14.1 Plugin class loading . 81
14.2 Loading of ehcache.xml resources . 82

15 Performance Considerations 83
15.1 DiskStore . 83
15.2 Replication . 83

16 Cache Decorators 85
16.1 Creating a Decorator . 85
16.2 Accessing the decorated cache . 85

16.2.1 Using CacheManager to access decorated caches 85
16.3 Built-in Decorators . 86

16.3.1 BlockingCache . 86
16.3.2 SelfPopulatingCache . 87

5

16.3.3 Caches with Exception Handling . 88

17 Shutting Down Ehcache 89
17.1 ServletContextListener . 89
17.2 The Shutdown Hook . 89

17.2.1 When to use the shutdown hook . 89
17.2.2 What the shutdown hook does . 90
17.2.3 When a shutdown hook will run, and when it will not 90

17.3 Dirty Shutdown . 90

18 Web Caching 91
18.1 SimplePageCachingFilter . 91
18.2 Keys . 91
18.3 Configuring the cacheName . 92
18.4 Concurent Cache Misses . 92
18.5 Gzipping . 92
18.6 Caching Headers . 92
18.7 Init-Params . 93
18.8 Reentrance . 93
18.9 SimplePageFragmentCachingFilter . 93
18.10Example web.xml configuration . 93

19 An ehcache.xml configuration file, matching the above would then be: 95

20 Distributed Caching with ehcache 97
20.1 Pluggable Mechanisms . 97
20.2 The need for shared cache data . 97
20.3 Replicated Caches . 97
20.4 Using a Cache Server . 98
20.5 Notification Strategies . 98
20.6 Potential Issues with Distributed Caching . 98

20.6.1 Potential for Inconsisent Data . 98
20.6.2 Use of Time To Idle . 99

21 RMI Distributed Caching 101
21.1 Suitable Element Types . 102
21.2 Configuring the Peer Provider . 102

21.2.1 Peer Discovery . 102
21.2.2 Automatic Peer Discovery . 102
21.2.3 Manual Peer Discovery . 102

21.3 Configuring the CacheManagerPeerListener . 103

6

21.4 Configuring Cache Replicators . 104
21.5 Configuring Bootstrap from a Cache Peer . 105
21.6 Full Example . 105
21.7 Common Problems . 106

21.7.1 Tomcat on Windows . 106
21.7.2 Multicast Blocking . 106
21.7.3 Multicast Not Progagating Far Enough or Propagating Too Far 106

22 Distributed Caching using JGroups 107
22.1 Suitable Element Types . 107
22.2 Peer Discovery . 107
22.3 Configuration . 107
22.4 Example configuration using UDP Multicast . 108
22.5 Example configuration using TCP Unicast . 108
22.6 Protocol considerations. 108
22.7 Configuring CacheReplicators . 108
22.8 Complete Sample configuration . 109
22.9 Common Problems . 110

23 Distributed Caching using JMS 111
23.1 Ehcache Replication and External Publishers . 111

23.1.1 Configuration . 112
23.1.2 External JMS Publishers . 114

23.2 Using the JMSCacheLoader . 118
23.2.1 Example Configuration Using Active MQ . 119
23.2.2 Example Configuration Using Open MQ . 119

23.3 Configuring Clients for Message Queue Reliability . 120
23.4 Known JMS Issues . 120

23.4.1 Active MQ Temporary Destinatons . 120

24 Distributed Caching via Terracotta 121
24.1 Features . 121
24.2 Getting Started . 121

25 The ehcache constructs package 123
25.1 Acknowledgements . 123
25.2 The purpose of the Constructs package . 123
25.3 Caching meets Concurrent Programming . 123
25.4 Types of Concurrency Failures . 123

25.4.1 Safety Failures . 124
25.4.2 Liveness Failures . 124

7

25.5 The constructs . 124
25.5.1 Blocking Cache . 124
25.5.2 SelfPopulatingCache . 126
25.5.3 CachingFilter . 126
25.5.4 SimplePageCachingFilter . 127
25.5.5 PageFragmentCachingFilter . 127
25.5.6 SimplePageFragmentCachingFilter . 127
25.5.7 AsynchronousCommandExecutor . 127

26 CacheManager Event Listeners 129
26.1 Configuration . 129
26.2 Implementing a CacheManagerEventListenerFactory and CacheManagerEventListener . . 130

27 Cache Loaders 133
27.1 Declarative Configuration . 133
27.2 Implementing a CacheLoaderFactory and CacheLoader 134
27.3 Programmatic Configuration . 136

28 Cache Event Listeners 139
28.1 Configuration . 139
28.2 Implementing a CacheEventListenerFactory and CacheEventListener 140

29 Cache Exception Handlers 143
29.1 Declarative Configuration . 143
29.2 Implementing a CacheExceptionHandlerFactory and CacheExceptionHandler 143
29.3 Programmatic Configuration . 145

30 Cache Extensions 147
30.1 Declarative Configuration . 147
30.2 Implementing a CacheExtensionFactory and CacheExtension 147
30.3 Programmatic Configuration . 149

31 Cache Server 151
31.1 Introduction . 151
31.2 RESTful Web Services . 151

31.2.1 RESTFul Web Services API . 151
31.2.2 CacheManager Resource Operations . 152
31.2.3 Cache Resource Operations . 152
31.2.4 Element Resource Operations . 152
31.2.5 Resource Representations . 153
31.2.6 RESTful Code Samples . 153

31.3 Creating Massive Caches with Load Balancers and Partitioning 159

8

31.3.1 Non-redundant, Scalable with client hash-based routing 159
31.3.2 Redundant, Scalable with client hash-based routing 160
31.3.3 Redundant, Scalable with load balancer hash-based routing 160

31.4 W3C (SOAP) Web Services . 161
31.4.1 W3C Web Services API . 161
31.4.2 Security . 162

31.5 Requirements . 162
31.5.1 Java . 162
31.5.2 Web Container (WAR packaged version only) . 162

31.6 Downloading . 162
31.6.1 Sourceforge . 163
31.6.2 Maven . 163

31.7 Installation . 163
31.7.1 Installing the WAR . 163
31.7.2 Configuring the Web Application . 163

31.8 Installing the Standalone Server . 164
31.8.1 Configuring the Standalone Server . 164
31.8.2 Starting and Stopping the Standalone Server . 164

31.9 Monitoring . 165
31.9.1 Remotely Monitoring the Standalone Server with JMX 165

32 Hibernate Caching 167
32.1 Setting ehcache as the cache provider . 167

32.1.1 Using one of the two ehcache providers from the ehcache project 167
32.1.2 Using multiple Hibernate instances . 168
32.1.3 Using the Hibernate ehcache provider . 168
32.1.4 Programmatic setting of the Hibernate Cache Provider 168

32.2 Hibernate Mapping Files . 168
32.2.1 read-write . 169
32.2.2 nonstrict-read-write . 169
32.2.3 read-only . 169

32.3 Hibernate Doclet . 169
32.4 Configuration with ehcache.xml . 170

32.4.1 Domain Objects . 170
32.4.2 Hibernate . 170
32.4.3 Collections . 170
32.4.4 Hibernate CacheConcurrencyStrategy . 171
32.4.5 Queries . 171
32.4.6 StandardQueryCache . 171
32.4.7 UpdateTimestampsCache . 171

9

32.4.8 Named Query Caches . 172
32.4.9 Using Query Caches . 172
32.4.10Hibernate CacheConcurrencyStrategy . 172

32.5 Hibernate Caching Performance Tips . 173
32.5.1 In-Process Cache . 173
32.5.2 Object Id . 173
32.5.3 Session.load . 173
32.5.4 Session.find and Query.find . 173
32.5.5 Session.iterate and Query.iterate . 173

33 JSR107 (JCACHE) Support 175
33.1 JSR107 Implementation . 175
33.2 Using JCACHE . 175

33.2.1 Creating JCaches . 175
33.2.2 Getting a JCache . 176
33.2.3 Using a JCache . 176

33.3 Problems and Limitations in the early draft of JSR107 . 177
33.3.1 net.sf.jsr107cache.CacheManager . 177
33.3.2 net.sf.jsr107cache.CacheFactory . 177
33.3.3 net.sf.jsr107cache.Cache . 178
33.3.4 net.sf.jsr107cache.CacheEntry . 179
33.3.5 net.sf.jsr107cache.CacheStatistics . 179
33.3.6 net.sf.jsr107cache.CacheListener . 180
33.3.7 net.sf.jsr107cache.CacheLoader . 181

33.4 Other Areas . 181
33.4.1 JMX . 181

34 Glassfish HowTo & FAQ 183
34.1 Versions . 183
34.2 HowTo . 183

34.2.1 HowToGet A Sample Application using Ehcache packaged andDeployed to Glass-
fish . 183

34.2.2 How to get around the EJB Container restrictions on thread creation 184
34.2.3 How To Enable Read Behind Page Caching in Glassfish 184

34.3 Glassfish FAQ . 184
34.3.1 Ehcache page caching versions below Ehcache 1.3 get an IllegalStateException in

Glassfish. 184
34.3.2 I get a Could not ungzip. Heartbeat will not be working. Not in

GZIP format reported from PayloadUtil exception when using ehcache with my
Glassfish cluster. Why? . 184

35 Google App Engine HowTo 185

10

35.1 Why? . 185
35.2 Compatibility . 185

35.3 Limitations . 185
35.4 Versions . 185
35.5 Configuring ehcache.xml . 185

35.6 Recipes . 186
35.6.1 Setting up Ehcache as a local cache in front of memcacheg 186

35.6.2 Using memcacheg in place of a DiskStore . 187
35.6.3 Distributed Caching . 187

35.6.4 Dynamic Web Content Caching . 187
35.7 Google App Engine FAQ . 187

35.7.1 I get an error java.lang.NoClassDefFoundError: java.rmi.server.UID
is a restricted class . 187

36 Tomcat Issues and Best Practices 189
36.1 Tomcat Known Issues . 189

36.1.1 If I restart/reload a web application in Tomcat that has a CacheManager that is part
of a cluster, the CacheManager is unable to rejoin the cluster. If I set logging for
net.sf.ehcache.distribution to FINE I see the following exception: "FINE: Unable
to lookup remote cache peer for Removing from peer list. Cause was: error
unmarshalling return; nested exception is: java.io.EOFException. 189

36.1.2 In development, there appear to be classloader memory leak as I continually rede-
ploy my web application. 189

36.1.3 I get net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer
... java.rmi.UnmarshalException: error unmarshalling arguments; nested exception
is: java.net.MalformedURLException: no protocol: Files/Apache. What is going
on? . 189

36.1.4 Multiple Host Entries in Tomcat’s server.xml stops replication from occurring . . . 190

37 Building from Source 191
37.1 Building an ehcache distribution from source . 191
37.2 Running Tests for Ehcache . 191

37.3 Deploying Maven Artifacts . 191
37.4 Building the Site . 192

37.5 Deploying a release . 192
37.5.1 Maven Release . 192

37.5.2 Sourceforge Release . 192

38 Frequently Asked Questions 193
38.1 Does ehcache run on JDK1.3? . 193
38.2 Can you use more than one instance of ehcache in a single VM? 193

38.3 Can you use ehcache with Hibernate and outside of Hibernate at the same time? 193

11

38.4 What happens when maxElementsInMemory is reached? Are the oldest items are expired
when new ones come in? . 194

38.5 Is it thread safe to modify Element values after retrieval from a Cache? 194
38.6 Can non-Serializable objects be stored in a cache? . 194
38.7 Why is there an expiry thread for the DiskStore but not for the MemoryStore? 194
38.8 What elements are mandatory in ehcache.xml? . 194
38.9 Can I use ehcache as a memory cache only? . 195
38.10Can I use ehcache as a disk cache only? . 195
38.11Where is the source code? The source code is distributed in the root directory of the download.195
38.12How do you get statistics on an Element without affecting them? 195
38.13How do you get WebSphere to work with ehcache? . 195
38.14Do you need to call CacheManager.getInstance().shutdown() when you finish with ehcache? 195
38.15Can you use ehcache after a CacheManager.shutdown()? 195
38.16I have created a new cache and its status is STATUS_UNINITIALISED.How do I initialise

it? . 196
38.17Is there a simple way to disable ehcache when testing? 196
38.18How do I dynamically change Cache attributes at runtime? 196
38.19I get net.sf.ehcache.distribution.RemoteCacheException: Error doing put to remote peer.

Message was: Error unmarshaling return header; nested exception is: java.net.SocketTimeoutException:
Read timed out. What does this mean. 196

38.20Should I use this directive when doing distributed caching? cacheManagerEventListener-
Factory class="" properties=""/ . 197

38.21What is the minimum config to get distributed caching going? 197
38.22How can I see if distributed caching is working? . 197
38.23Why can’t I run multiple applications using ehcache on one machine? 197
38.24How many threads does ehcache use, and how much memory does that consume? 198
38.25I am using Tomcat 5, 5.5 or 6 and I am having a problem. What can I do? 198
38.26I am using Java 6 and getting a java.lang.VerifyError on the Backport Concurrent classes.

Why? . 198
38.27How do I get a memory only cache to persist to disk between VM restarts? 198
38.28I get a javax.servlet.ServletException: Could not initialise servlet filter when using Sim-

plePageCachingFilter. Why? . 199
38.29I see, in my application’s log: . 199
38.30How do I add a CacheReplicator to a cache that already exists? The cache event listening

works but it does not get plumbed into the peering mechanism. 199
38.31I am using the RemoteDebugger to monitor cluster messages but all I see is "Cache size: 0" 199
38.32With distributed replication on Ubuntu or Debian, I see the following warning, 200
38.33I see log messages about SoftReferences. What are these about and how do I stop getting

the messages? . 200
38.34My Hibernate Query caches entries are replicating but the other caches in the cluster are

not using them. 200
38.35Active MQ Temporary Destinatons . 200

12

38.36Is Ehcache compatible with Google App Engine? . 201

39 About the ehcache name and logo 203

13

14

Chapter 1

Preface

This is a book about ehcache, a widely used open source Java cache. Ehcache has grown in size and scope
since it was introduced in October 2003. As people used it they often noticed it was missing a feature they
wanted. Over time, the features that were repeatedly asked for, and make sense for a Cache, have been
added.
Ehcache is now used for Hibernate caching, data access object caching, security credential caching, web
caching, SOAP and RESTful server caching, application persistence and distributed caching.

1.1 Version

This book is for Ehcache version 1.5.

1.2 Audience

The intended audience for this book is developers who use ehcache. It should be able to be used to start
from scratch, get up and running quickly, and also be useful for the more complex options.
Ehcache is about performance and load reduction of underlying resources. Another natural audience is
performance specialists.
It is also intended for application and enterprise architects. Some of the features of ehcache, such as
distributed caching and Java EE caching, are alternatives to be considered along with other ways of solving
those problems. This book discusses the trade-offs in ehcache’s approach to help make a decision about
appropriateness of use.

1.3 Acknowledgements

Ehcache has hadmany contributions in the form of forum discussions, feature requests, bug reports, patches
and code commits.
Rather than try and list the many hundreds of people who have contributed to ehcache in some way it is
better to link to the web site where contributions are acknowledged in the following ways:

• Bug reports and features requests appear in the changes report here:

• Patch contributors generally end up with an author tag in the source they contributed to

15

• Team members appear on the team list page here:
Thanks to Denis Orlov for suggesting the need for a book in the first place.

1.4 About the ehcache name and logo

Adam Murdoch (an all round top Java coder) came up with the name in a moment of inspiration while we
were stuck on the SourceForge project create page. Ehcache is a palindrome. He thought the name was
wicked cool and we agreed.
The logo is similarly symmetrical, and is evocative of the diagram symbol for a doubly-linked list. That
structure lies at the heart of ehcache.

16

Chapter 2

Introduction

Ehcache is a cache library. Before getting into ehcache, it is worth stepping back and thinking about
caching generally.

2.1 About Caches

Wiktionary defines a cache as A store of things that will be required in future, and can be retrieved rapidly.
That is the nub of it.
In computer science terms, a cache is a collection of temporary data which either duplicates data located
elsewhere or is the result of a computation. Once in the cache, the data can be repeatedly accessed inex-
pensively.

2.2 Why caching works

2.2.1 Locality of Reference

While ehcache concerns itself with Java objects, caching is used throughout computing, from CPU caches
to the DNS system. Why? Because many computer systems exhibit locality of reference. Data that is near
other data or has just been used is more likely to be used again.

2.2.2 The Long Tail

Chris Anderson, of Wired Magazine, coined the term The Long Tail to refer to Ecommerce systems. The
idea that a small number of items may make up the bulk of sales, a small number of blogs might get the
most hits and so on. While there is a small list of popular items, there is a long tail of less popular ones.

The Long Tail

17

The Long Tail is itself a vernacular term for a Power Law probability distribution. They don’t just appear
in ecommerce, but throughout nature. One form of a Power Law distribution is the Pareto distribution,
commonly know as the 80:20 rule.
This phenomenon is useful for caching. If 20% of objects are used 80% of the time and a way can be found
to reduce the cost of obtaining that 20%, then the system performance will improve.

2.3 Will an Application Benefit from Caching?

The short answer is that it often does, due to the effects noted above.
The medium answer is that it often depends on whether it is CPU bound or I/O bound. If an application
is I/O bound then then the time taken to complete a computation depends principally on the rate at which
data can be obtained. If it is CPU bound, then the time taken principally depends on the speed of the CPU
and main memory.
While the focus for caching is on improving performance, it it also worth realizing that it reduces load. The
time it takes something to complete is usually related to the expense of it. So, caching often reduces load
on scarce resources.

2.3.1 Speeding up CPU bound Applications

CPU bound applications are often sped up by:

• improving algorithm performance

• parallelizing the computations across multiple CPUs (SMP) or multiple machines (Clusters).

• upgrading the CPU speed.
The role of caching, if there is one, is to temporarily store computations that may be reused again.
An example from ehcachewould be large web pages that have a high rendering cost. Another caching
of authentication status, where authentication requires cryptographic transforms.

2.3.2 Speeding up I/O bound Applications

Many applications are I/O bound, either by disk or network operations. In the case of databases they can
be limited by both.
There is no Moore’s law for hard disks. A 10,000 RPM disk was fast 10 years ago and is still fast. Hard
disks are speeding up by using their own caching of blocks into memory.
Network operations can be bound by a number of factors:

• time to set up and tear down connections

• latency, or the minimum round trip time

• throughput limits

• marshalling and unmarhshalling overhead
The caching of data can often help a lot with I/O bound applications. Some examples of ehcache
uses are:

• Data Access Object caching for Hibernate

• Web page caching, for pages generated from databases.

18

2.3.3 Increased Application Scalability

The flip side of increased performance is increased scalability. Say you have a database which can do 100
expensive queries per second. After that it backs up and if connections are added to it it slowly dies.
In this case, caching may be able to reduce the workload required. If caching can cause 90 of that 100 to
be cache hits and not even get to the database, then the database can scale 10 times higher than otherwise.

2.4 How much will an application speed up with Caching?

2.4.1 The short answer

The short answer is that it depends on a multitude of factors being:

• how many times a cached piece of data can and is reused by the application

• the proportion of the response time that is alleviated by caching
In applications that are I/O bound, which is most business applications, most of the response time is
getting data from a database. Therefore the speed up mostly depends on how much reuse a piece of
data gets.
In a system where each piece of data is used just once, it is zero. In a system where data is reused a
lot, the speed up is large.

The long answer, unfortunately, is complicated and mathematical. It is considered next.

2.4.2 Applying Amdahl’s Law

Amdahl’s law, after Gene Amdahl, is used to find the system speed up from a speed up in part of the system.

1 / ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl’s law to common situations. In the interests of sim-
plicity, we assume:

• a single server

• a system with a single thing in it, which when cached, gets 100% cache hits and lives forever.

Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1000 times faster from cache than from a database.
A typical Hibernate query will return a list of IDs from the database, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the database to load each object.
Imagine a scenario where we execute a query against the database which returns a hundred IDs and then
load each one.
The query takes 20% of the time and the roundtrip loading takes the rest (80%). The database query itself
is 75% of the time that the operation takes. The proportion being sped up is thus 60% (75% * 80%).
The expected system speedup is thus:

19

1 / ((1 - .6) + .6 / 1000)

= 1 / (.4 + .006)

= 2.5 times system speedup

Web Page Caching

An observed speed up from caching a web page is 1000 times. Ehcache can retrieve a page from its
SimplePageCachingFilter in a few ms.
Because the web page is the end result of a computation, it has a proportion of 100%.
The expected system speedup is thus:

1 / ((1 - 1) + 1 / 1000)

= 1 / (0 + .001)

= 1000 times system speedup

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liveness requirements vary in different parts of the
page. Here the SimplePageFragmentCachingFilter can be used.
Let’s say we have a 1000 fold improvement on a page fragment that taking 40% of the page render time.
The expected system speedup is thus:

1 / ((1 - .4) + .4 / 1000)

= 1 / (6 + .004)

= 1.6 times system speedup

2.4.3 Cache Efficiency

In real life cache entrie do not live forever. Some examples that come close are "static" web pages or
fragments of same, like page footers, and in the database realm, reference data, such as the currencies in
the world.
Factors which affect the efficiency of a cache are:

liveness how live the data needs to be. The less live the more it can be cached

proportion of data cached what proportion of the data can fit into the resource limits of the machine. For
32 bit Java systems, there was a hard limit of 2GB of address space. While now relaxed, garbage
collection issues make it harder to go a lot large. Various eviction algorithms are used to evict excess
entries.

Shape of the usage distribution If only 300 out of 3000 entries can be cached, but the Pareto distribution
applies, it may be that 80% of the time, those 300 will be the ones requested. This drives up the
average request lifespan.

Read/Write ratio The proportion of times data is read compared with how often it is written. Things such
as the number of rooms left in a hotel will be written to quite a lot. However the details of a room

20

sold are immutable once created so have a maximum write of 1 with a potentially large number of
reads.
Ehcache keeps these statistics for each Cache and each element, so they can be measured directly
rather than estimated.

2.4.4 Cluster Efficiency

Also in real life, we generally do not find a single server?
Assume a round robin load balancer where each hit goes to the next server.
The cache has one entry which has a variable lifespan of requests, say caused by a time to live. The
following table shows how that lifespan can affect hits and misses.

Server 1 Server 2 Server 3 Server 4

M M M M
H H H H
H H H H
H H H H
H H H H
...

The cache hit ratios for the system as a whole are as follows:

Entry
Lifespan Hit Ratio Hit Ratio Hit Ratio Hit Ratio
in Hits 1 Server 2 Servers 3 Servers 4 Servers

2 1/2 0/2 0/2 0/2
4 3/4 2/4 1/4 0/4
10 9/10 8/10 7/10 6/10
20 19/20 18/20 17/20 16/10
50 49/50 48/50 47/20 46/50

The efficiency of a cluster of standalone caches is generally:

(Lifespan in requests - Number of Standalone Caches) / Lifespan in requests

Where the lifespan is large relative to the number of standalone caches, cache efficiency is not much
affected.
However when the lifespan is short, cache efficiency is dramatically affected.
(To solve this problem, ehcache supports distributed caching, where an entry put in a local cache is also
propagated to other servers in the cluster.)

2.4.5 A cache version of Amdahl’s law

From the above we now have:

1 / ((1 - Proportion Sped Up * effective cache efficiency) +
(Proportion Sped Up * effective cache efficiency)/ Speed up)

effective cache efficiency = cache efficiency * cluster efficiency

21

2.4.6 Web Page example

Applying this to the earlier web page cache example where we have cache efficiency of 35% and average
request lifespan of 10 requests and two servers:

cache efficiency = .35

cluster efficiency = .(10 - 1) / 10
= .9

effective cache efficiency = .35 * .9
= .315

1 / ((1 - 1 * .315) + 1 * .315 / 1000)

= 1 / (.685 + .000315)

= 1.45 times system speedup

What if, instead the cache efficiency is 70%; a doubling of efficiency. We keep to two servers.

cache efficiency = .70

cluster efficiency = .(10 - 1) / 10
= .9

effective cache efficiency = .70 * .9
= .63

1 / ((1 - 1 * .63) + 1 * .63 / 1000)

= 1 / (.37 + .00063)

= 2.69 times system speedup

What if, instead the cache efficiency is 90%; a doubling of efficiency. We keep to two servers.

cache efficiency = .90

cluster efficiency = .(10 - 1) / 10
= .9

effective cache efficiency = .9 * .9
= .81

1 / ((1 - 1 * .81) + 1 * .81 / 1000)

= 1 / (.19 + .00081)

= 5.24 times system speedup

Why is the reduction so dramatic? Because Amdahl’s law is most sensitive to the proportion of the system
that is sped up.

22

Chapter 3

Getting Started

Ehcache can be used directly. It can also be used with the popular Hibernate Object/Relational tool. Finally,
it can be used for Java EE Servlet Caching.
This quick guide gets you started on each of these. The rest of the documentation can be explored for a
deeper understanding.

3.1 General Purpose Caching

• Make sure you are using a supported Java version.

• Place the ehcache jar into your classpath.

• Ensure that any libraries required to satisfy dependencies are also in the classpath.

• Configure ehcache.xml and place it in your classpath.

• Optionally, configure an appropriate logging level.
See the Code Samples chapter for more information on direct interaction with ehcache.

3.2 Hibernate

• Perform the same steps as General Purpose Caching.

• Create caches in ehcache.xml.
See the Hibernate Caching chapter for more information.

3.3 Java EE Servlet Caching

• Perform the same steps as General Purpose Caching.

• Configure a cache for your web page in ehcache.xml.

• To cache an entire web page, either use SimplePageCachingFilter or create your own subclass of
CachingFilter

• To cache a jsp:Include or anything callable from a RequestDispatcher, either use SimplePageFrag-
mentCachingFilter or create a subclass of PageFragmentCachingFilter.

23

• Configure the web.xml. Declare the filters created above and create filter mapping associating the
filter with a URL.
See the Web Caching chapter for more information.

3.4 RESTful and SOAP Caching with the Cache Server

• Download the standalone cache server from http://sourceforge.net/project/showfiles.php?group_id=93232

• cd to the bin directory

• Type startup.sh to start the server with the log in the foreground.
By default it will listen on port 8080, will have both RESTful and SOAP web services enabled, and
will use a sample Ehcache configuration from the WAR module.

• See the code samples in the Cache Server chapter. You can use Java or any other programming
language to the use the Cache Server.
See the Cache Server chapter for more information.

3.5 JCache style caching

Ehcache contains an early draft implementation of JCache contained in the net.sf.ehcache.jcache package.
See the JSR107 chapter for usage.

3.6 Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using ehcache without even realising it. The first steps in getting more control
over what is happening are:

• discover the cache names used by the framework

• create your own ehcache.xml with settings for the caches and place it in the application classpath.

24

Chapter 4

Features

• Fast and Light Weight

– Fast
– Simple
– Small foot print
– Minimal dependencies

• Scalable

– Provides Memory and Disk stores for scalabilty into gigabytes
– Scalable to hundreds of caches
– Tuned for high concurrent load on large multi-cpu servers
– Multiple CacheManagers per virtual machine

• Flexible

– Supports Object or Serializable caching
– Support cache-wide or Element-based expiry policies
– Provides LRU, LFU and FIFO cache eviction policies
– Provides Memory and Disk stores
– Distributed Caching

• Standards Based

– Full implementation of JSR107 JCACHE API

• Extensible

– Listeners may be plugged in
– Peer Discovery, Replicators and Listeners may be plugged in
– Cache Extensions may be plugged in
– Cache Loaders may be plugged in
– Cache Exception Handlers may be plugged in

• Application Persistence

25

– Persistent disk store which stores data between VM restarts
– Flush to disk on demand

• Supports Listeners

– CacheManager listeners
– Cache event listeners

• JMX Enabled

• Distributed

– Support for replication via RMI, JGroups, JMS or Terracotta
– Peer Discovery
– Reliable Delivery
– Synchronous Or Asynchronous Replication
– Copy Or Invalidate Replication
– Transparent Replication
– Extensible
– Bootstrapping from Peers

• Cache Server

– #RESTful cache server
– #SOAP cache server
– #comes as a WAR or as a complete server

• Java EE and Applied Caching

– Blocking Cache to avoid duplicate processing for concurrent operations
– SelfPopulating Cache for pull through caching of expensive operations
– Java EE Gzipping Servlet Filter
– Cacheable Commands
– Works with Hibernate
– Works with Google App Engine

• High Quality

– High Test Coverage
– Automated Load, Limit and Performance System Tests
– Production tested
– Fully documented
– Trusted by Popular Frameworks
– Conservative Commit policy
– Full public information on the history of every bug
– Responsiveness to serious bugs

• Open Source Licensing

– Apache 2.0 license

26

4.1 Fast and Light Weight

4.1.1 Fast

Over the years, various performance tests have shown ehcache to be one of the fastest Java caches.
Ehcache’s threading is designed for large, high concurrency systems.
Extensive performance tests in the test suite keep ehcache’s performance consistent between releases.
As an example, some guys have created a java cache test tool called cache4j_perfomance_tester.
The results for ehcache-1.1 and ehcache-1.2 follow.

ehcache-1.1

[java] ---
[java] java.version=1.4.2_09
[java] java.vm.name=Java HotSpot(TM) Client VM
[java] java.vm.version=1.4.2-54
[java] java.vm.info=mixed mode
[java] java.vm.vendor="Apple Computer, Inc."
[java] os.name=Mac OS X
[java] os.version=10.4.5
[java] os.arch=ppc
[java] ---
[java] This test can take about 5-10 minutes. Please wait ...
[java] ---
[java] |GetPutRemoveT |GetPutRemove |Get |
[java] ---
[java] cache4j 0.4 |9240 |9116 |5556 |
[java] oscache 2.2 |33577 |30803 |8350 |
[java] ehcache 1.1 |7697 |6145 |3395 |
[java] jcs 1.2.7.0 |8966 |9455 |4072 |
[java] ---

ehcache-1.2
[java] ---
[java] java.version=1.4.2_09
[java] java.vm.name=Java HotSpot(TM) Client VM
[java] java.vm.version=1.4.2-54
[java] java.vm.info=mixed mode
[java] java.vm.vendor="Apple Computer, Inc."
[java] os.name=Mac OS X
[java] os.version=10.4.5
[java] os.arch=ppc
[java] ---
[java] This test can take about 5-10 minutes. Please wait ...
[java] ---
[java] |GetPutRemoveT |GetPutRemove |Get |
[java] ---
[java] cache4j 0.4 |9410 |9053 |5865 |
[java] oscache 2.2 |28076 |30833 |8031 |
[java] ehcache 1.2 |8753 |7072 |3479 |
[java] jcs 1.2.7.0 |8806 |9522 |4097 |
[java] ---

27

4.1.2 Simple

Many users of ehcache hardly know they are using it. Sensible defaults require no initial configuration.
The API is very simple and easy to use, making it possible to get up and running in minutes. See the Code
Samples for details.

4.1.3 Small foot print

Ehcache 1.2 is 110KB making it convenient to package.

4.1.4 Minimal dependencies

The only dependency for core use is the JCACHE API.

4.2 Scalable

4.2.1 Provides Memory and Disk stores for scalabilty into gigabytes

The largest ehcache installations use memory and disk stores in the gigabyte range. Ehcache is tuned for
these large sizes.

4.2.2 Scalable to hundreds of caches

The largest ehcache installations use hundreds of caches.

4.2.3 Tuned for high concurrent load on large multi-cpu servers

There is a tension between thread safety and performance. Ehcache’s threading started off coarse-grained,
but has increasingly made use of ideas from Doug Lea to achieve greater performance. Over the years there
have been a number of scalability bottlenecks identified and fixed.

4.2.4 Multiple CacheManagers per virtual machine

Ehcache 1.2 introduced multiple CacheManagers per virtual machine. This enables completely difference
ehcache.xml configurations to be applied.

4.3 Flexible

4.3.1 Supports Object or Serializable caching

As of ehcache-1.2 there is an API for Objects in addition to the one for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStore and replication. If an attempt is made to persist
or replicate them they are discarded and a WARNING level log message emitted.
The APIs are identical except for the return methods from Element. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differences between the Serializable and Object APIs. This
makes it very easy to start with caching Objects and then change your Objects to Seralizable to participate
in the extra features when needed. Also a large number of Java classes are simply not Serializable.

28

4.3.2 Support cache-wide or Element-based expiry policies

Time to lives and time to idles are settable per cache. In addition, from ehcache-1.2.1, overrides to these
can be set per Element.

4.3.3 Provides LRU, LFU and FIFO cache eviction policies

Ehcache 1.2 introduced Less Frequently Used and First In First Out caching eviction policies. These round
out the eviction policies.

4.3.4 Provides Memory and Disk stores

Ehcache, like most of the cache solutions, provides high performance memory and disk stores.

4.3.5 Distributed

Flexible, extensible, high performance distributed caching. The default implementation supports cache
discovery via multicast or manual configuration. Updates are delivered either asynchronously or syn-
chronously via custom RMI connections. Additional discovery or delivery schemes can be plugged in by
third parties.
See the Distributed Caching documentation for more feature details.

4.4 Standards Based

4.4.1 Full implementation of JSR107 JCACHE API

Ehcache offers the the most complete implementation of the JSR107 JCACHE to date.
Because JCACHE has not yet been released the JCACHE API that Ehcache implements has been released
as net.sf.jsr107cache.
Implementers can code to the JCACHE API which will create portability to other caching solutions in the
future.
The maintainer of ehcache, Greg Luck, is on the expert committee for JSR107.

4.5 Extensible

4.5.1 Listeners may be plugged in

Ehcache 1.2 provides CacheManagerEventListener and CacheEventListener interfaces. Imple-
mentations can be plugged in and configured in ehcache.xml.

4.5.2 Peer Discovery, Replicators and Listeners may be plugged in

Distributed caching, introduced in ehcache 1.2 involves many choices and tradeoffs. The ehcache team
believe that one size will not fit all. Implementers can use built-in mechanisms or write their own. A plugin
development guide is included for this purpose.

29

4.5.3 Cache Extensions may be plugged in

Create your own Cache Extensions, which hold a reference to a cache and are bound to its lifecycle.

4.5.4 Cache Loaders may be plugged in

Create your own Cache Loaders, which are general purpose asynchronous methods for loading data into
caches, or use them in pull-through configuration.

4.5.5 Cache Exception Handlers may be plugged in

Create an Exception Handler which is invoked if any Exception occurs on a cache operation.

4.6 Application Persistence

4.6.1 Persistent disk store which stores data between VM restarts

With ehcache 1.1 in 2004, ehcache was the first open source Java cache to introduce persistent storage of
cache data on disk on shutdown. The cached data is then accessible the next time the application runs.

4.6.2 Flush to disk on demand

With ehcache 1.2, the flushing of entries to disk can be executed with a cache.flush()method whenever
required, making it easier to use ehcache

4.7 Listeners

4.7.1 CacheManager listeners

Register Cache Manager listeners through the CacheManagerEventListener interface with the follow-
ing event methods:

• notifyCacheAdded()

• notifyCacheRemoved()

4.7.2 Cache event listeners

Register Cache Event Listeners through the CacheEventListener interfaces, which provides a lot of
flexibility for post-processing of cache events. The methods are:

• notifyElementRemoved

• notifyElementPut

• notifyElementUpdated

• notifyElementExpired

30

4.8 JMX Enabled

Ehcache is JMX enabled. You can monitor and manage the following MBeans:

• CacheManager

• Cache

• CacheConfiguration

• CacheStatistics

See the net.sf.ehcache.management package.
See http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html for an online tutorial.

4.9 Distributed Caching

Ehcache 1.2 introduced a full-featured, fine-grained distributed caching mechanism for clusters, supporting
multiple replication mechanisms through plugins.

4.9.1 Support for replication via RMI or JGroups

Ehcache 1.6 supports replication via RMI, JGroups, JMS or Terracotta.

4.9.2 Peer Discovery

Peer discovery may be either manually configured or automatic, using multicast. Multicast is simple, and
adds and removes peers automatically. Manual configuration gives fine control and is useful for situations
where multicast is blocked.

4.9.3 Reliable Delivery

The built-in delivery mechanism uses RMI with custom sockets over TCP, not UDP.

4.9.4 Synchronous Or Asynchronous Replication

Replication can be set to synchronous Or asynchronous, per cache.

4.9.5 Copy Or Invalidate Replication

Replication can be set to copy or invalidate, per cache, as is appropriate.

4.9.6 Transparent Replication

No programming changes are required to make use of replication. Only configuration in ehcache.xml.

31

4.9.7 Extensible

Distributed caching, introduced in ehcache 1.2 involves many choices and tradeoffs. The ehcache team
believe that one size will not fit all. Implementers can use built-in mechanisms or write their own. A plugin
development guide is included for this purpose.

4.9.8 Bootstrapping from Peers

Distributed caches enter and leave the cluster at different times. Caches can be configured to bootstrap
themselves from the cluster when they are first initialized.
An abstract factory, BootstrapCacheLoaderFactory has been defined along with an interface Bootstrap-
CacheLoader along with an RMI based default implementation.

4.10 Cache Server

Ehcache now comes with a Cache Server, available as a WAR for most web containers, or as a standalone
server. The Cache Server has two apis: RESTful resource oriented, and SOAP. Both support clients in any
programming language.

4.10.1 RESTful cache server

The ehcache implementation strictly follows the RESTful resource-oriented architecture style.
Specifically:

• The HTTP methods GET, HEAD, PUT/POST and DELETE are used to specify the method of the
operation. The URI does not contain method information.

• The scoping information, used to identify the resource to perform the method on, is contained in the
URI path.

• The RESTful Web Service is described by and exposes a WADL (Web Application Description
Language) file. It contains the URIs you can call, and what data to pass and get back. Use the
OPTIONS method to return the WADL.

For performance, HTTP/1.1 caching features are fully supported such as Last-Modified, ETag and
so on. Ehcache responsds correctly to HEAD and conditional GET requests.

4.10.2 SOAP cache server

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically has been
configured in ehcache.xml or an IoC container. Multiple CacheManagers are not supported.
The API definition is as follows:

• WSDL - EhcacheWebServiceEndpointService.wsdl

• Types - EhcacheWebServiceEndpointService_schema1.xsd

32

4.10.3 comes as a WAR or as a complete server

The standalone server comes with its own embedded Glassfish web container.
It also comes packaged as a WAR for deployment to any Servlet 2.5 web container. Glassfish V2/3, Tomcat
6 and Jetty 6 have been tested.

4.11 Java EE and Applied Caching

High quality implementations for common caching scenarios and patterns.

4.11.1 Blocking Cache to avoid duplicate processing for concurrent operations

A cache which blocks subsequent threads until the first read thread populates a cache entry.

4.11.2 SelfPopulating Cache for pull through caching of expensive operations

SelfPopulatingCache - a read-through cache. A cache that populates elements as they are requested without
requiring the caller to know how the entries are populated. It also enables refreshes of cache entries without
blocking reads on the same entries.

4.11.3 Java EE Gzipping Servlet Filter

• CachingFilter - an abstract, extensible caching filter.

• SimplePageCachingFilter
A high performance Java EE servlet filter that caches pages based on the request URI and Query
String. It also gzips the pages and delivers them to browsers either gzipped or ungzipped depending
on the HTTP request headers. Use to cache entire Servlet pages, whether from JSP, velocity, or any
other rendering technology.
Tested with Orion and Tomcat.

• SimplePageFragmentCachingFilter
A high performance Java EE filter that caches page fragments based on the request URI and Query
String. Use with Servlet request dispatchers to cache parts of pages, whether from JSP, velocity, or
any other rendering technology. Can be used from JSPs using jsp:include.
Tested with Orion and Tomcat.

• Works with Servlet 2.3 and Servlet 2.4 specifications.

4.11.4 Cacheable Commands

This is the trusty old command pattern with a twist: asynchronous behaviour, fault tolerance and caching.
Creates a command, caches it and then attempts to execute it.

4.11.5 Works with Hibernate

Tested with Hibernate2.1.8 and Hibernate3.1.3, which can utilise all of the new features except for Object
API and multiple session factories each using a different ehcache CacheManager.

33

A new net.sf.ehcache.hibernate.EhCacheProvidermakes those additional features available to
Hibernate-3.1.3. A version of the new provider should make it into the Hibernate3.2 release.

4.11.6 Works with Google App Engine

Ehcache-1.6 is compatible with Google App Engine.
See the Google App Engine HowTo.

4.12 High Quality

4.12.1 High Test Coverage

The ehcache team believe that the first and most important quality measure is a well designed and compre-
hensive test suite.
Ehcache has a relatively high 86% test coverage of source code. This has edged higher over time. Clover
enforces the test coverage. Most of the missing 14% is logging and exception paths.

4.12.2 Automated Load, Limit and Performance System Tests

The ehcache JUnit test suite contains some long-running system tests which place high load on different
ehcache subsystems to the point of failure and then are back off to just below that point. The same is done
with limits such as the amount of Elements that can fit in a given heap size. The same is also done with
performance testing of each subsystem and the whole together. The same is also done with network tests
for cache replication.
The tests serve a number of purposes:

• establishing well understood metrics and limits

• preventing regressions

• reproducing any reported issues in production

• Allowing the design principle of graceful degradation to be achieved. For example, the asynchronous
cache replicator uses SoftReferences for queued messages, so that the messages will be reclaimed
before before an OutOfMemoryError occurs, thus favouring stability over replication.

4.12.3 Specific Concurrency Testing

Ehcache also has concurrency testing, which typically uses 50 concurrent threads hammering a piece of
code. The test suites are also run on multi-core or multi-cpu machines so that concurrency is real rather
than simulated. Additionally, every concurrency related issue that has ever been anticipated or resulted in
a bug report has a unit test which prevents the condition from recurring. There are no reported issues that
have not been reproduced in a unit test.
Concurrency unit tests are somewhat difficult to write, and are often overlooked. The team considers these
tests a major factor in ehcache’s quality.

4.12.4 Production tested

Ehcache came about in the first place because of production issues with another open source cache.

34

Final release versions of ehcache have been production tested on a very busy e-commerce site, supporting
thousands of concurrent users, gigabyte size caches on largemulti-cpumachines. It has been the experience
of the team that most threading issues do not surface until this type of load has been applied. Once an issue
has been identified and investigated a concurrency unit test can then be crafted.

4.12.5 Fully documented

A core belief held by the project team is that a project needs good documentation to be useful.
In ehcache, this is manifested by:

• comprehensive written documentation

• Complete, meaningful JavaDoc for every package, class and public and protected method. Check-
style rules enforce this level of documentation.

• an up-to-date FAQ

4.12.6 Trusted by Popular Frameworks

Ehcache is used extensively. See the Who is Using? page, or browse Google.

4.12.7 Conservative Commit policy

Projects like Linux maintain their quality through a restricted change process, whereby changes are sub-
mitted as patches, then reviewed by the maintainer and included, or modified. Ehcache follows the same
process.

4.12.8 Full public information on the history of every bug

Through the SourceForge project bug tracker, the full history of all bugs are shown, including current status.
We take this for granted in an open source project, as this is typically a feature that all open source projects
have, but this transparency makes it possible to gauge the quality and riskiness of a library, something not
usually possible in commercial products.

4.12.9 Responsiveness to serious bugs

The ehcache team is serious about quality. If one user is having a problem, it probably means others are
too, or will have. The ehcache team use ehcache themselves in production. Every effort will be made to
provide fixes for serious production problems as soon as possible. These will be committed to trunk. From
there an affected user can apply the fix to their own branch.

4.13 Open Source Licensing

4.13.1 Apache 2.0 license

Ehcache’s original Apache1.1 copyright and licensing was reviewed and approved by the Apache Software
Foundation, making ehcache suitable for use in Apache projects. ehcache-1.2 is released under the updated
Apache 2.0 license.

35

The Apache license is also friendly one, making it safe and easy to include ehcache in other open source
projects or commercial products.

36

Chapter 5

Key Ehcache Concepts

5.1 Key Ehcache Classes

Top Level Package Diagram

Ehcache consists of a CacheManager, which manages caches. Caches contain elements, which are essen-
tially name value pairs. Caches are physically implemented either in-memory, or on disk.

37

5.1.1 CacheManager

CacheManager Class Diagram

The CacheManager comprises Caches which in turn comprise Elements.
Creation of, access to and removal of caches is controlled by the CacheManager.

CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

SingletonMode Ehcache-1.1 supported only one CacheManager instance which was a singleton. Cache-
Manager can still be used in this way using the static factory methods.

InstanceMode From ehcache-1.2, CacheManager has constructors which mirror the various static create
methods. This enables multiple CacheManagers to be created and used concurrently. Each CacheManager

38

requires its own configuration.
If the Caches under management use only the MemoryStore, there are no special considerations. If Caches
use the DiskStore, the diskStore path specified in each CacheManager configuration should be unique.
When a new CacheManager is created, a check is made that there are no other CacheManagers using the
same diskStore path. If there are, a CacheException is thrown. If a CacheManager is part of a cluster, there
will also be listener ports which must be unique.

Mixed Singleton and Instance Mode If an application creates instances of CacheManager using a con-
structor, and also calls a static create method, there will exist a singleton instance of CacheManager which
will be returned each time the create method is called together with any other instances created via con-
structor. The two types will coexist peacefully.

39

5.1.2 Ehcache

Ehcache Interface Diagram

All caches implement the Ehcache interface. A cache has a name and attributes. Each cache contains
Elements.
A Cache in ehcache is analogous to a cache region in other caching systems.
Cache elements are stored in the MemoryStore. Optionally they also overflow to a DiskStore.

40

5.1.3 Element

Element Class Diagram

An element is an atomic entry in a cache. It has a key, a value and a record of accesses. Elements are
put into and removed from caches. They can also expire and be removed by the Cache, depending on the
Cache settings.
As of ehcache-1.2 there is an API for Objects in addition to the one for Serializable. Non-serializable
Objects can use all parts of ehcache except for DiskStore and replication. If an attempt is made to persist
or replicate them they are discarded without error and with a DEBUG level log message.
The APIs are identical except for the return methods from Element. Two new methods on Element: getO-
bjectValue and getKeyValue are the only API differences between the Serializable and Object APIs. This
makes it very easy to start with caching Objects and then change your Objects to Seralizable to participate

41

in the extra features when needed. Also a large number of Java classes are simply not Serializable.

5.2 Cache Usage Patterns

Caches can be used in different ways. Each of these ways follows a cache usage pattern. Ehcache supports
the following:

• direct manipulation

• pull-through

• self-populating

5.2.1 Direct Manipulation

Here, to put something in the cache you do cache.put(Element element) and to get something from
the cache you do cache.get(Object key).
You are aware you are using a cache and you are doing so consciously.

5.2.2 Self Populating

Here, you just do gets to the cache using cache.get(Object key). The cache itself knows how to
populate an entry.
See the SelfPopulatingCache for more on this pattern.

42

Chapter 6

Cache Configuration

Caches can be configured in ehcache either declaratively, in xml, or by creating them programmatically
and specifying their parameters in the constructor.
While both approaches are fully supported it is generally a good idea to separate the cache configuration
from runtime use. There are also these benefits:

• It is easy if you have all of your configuration in one place. Caches consume memory, and disk
space. They need to be carefully tuned. You can see the total effect in a configuration file. You could
do this code, but it would not as visible.

• Cache configuration can be changed at deployment time.

• Configuration errors can be checked for at start-up, rather than causing a runtime error.

This chapter covers XML declarative configuration. See the Code samples for programmatic configuration.
Ehcache is redistributed by lots of projects. They may or may not provide a sample ehcache XML config-
uration file. If one is not provided, download ehcache from http://ehcache.sf.net. It, and the ehcache.xsd is
provided in the distribution.

6.1 ehcache.xsd

Ehcache configuration files must be comply with the ehcache XML schema, ehcache.xsd, reproduced be-
low.
It can also be downloaded from http://ehcache.sf.net/ehcache.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="ehcache" >

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="1" ref="diskStore"/>
<xs:element minOccurs="0" maxOccurs="1"

ref="cacheManagerEventListenerFactory"/>
<xs:element minOccurs="0" maxOccurs="1"

ref="cacheManagerPeerProviderFactory"/>
<xs:element minOccurs="0" maxOccurs="1"

ref="cacheManagerPeerListenerFactory"/>
<xs:element ref="defaultCache"/>

43

<xs:element minOccurs="0" maxOccurs="unbounded" ref="cache"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="diskStore">

<xs:complexType>
<xs:attribute name="path" use="optional" />

</xs:complexType>
</xs:element>
<xs:element name="cacheManagerEventListenerFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="cacheManagerPeerProviderFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="cacheManagerPeerListenerFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>

</xs:complexType>
</xs:element>
<!-- add clone support for addition of cacheExceptionHandler. Important! -->
<xs:element name="defaultCache">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="cacheEventListenerFactory"/>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="cacheExtensionFactory"/>
<xs:element minOccurs="0" maxOccurs="1" ref="bootstrapCacheLoaderFactory"/>
<xs:element minOccurs="0" maxOccurs="1" ref="cacheExceptionHandlerFactory"/>
<xs:element minOccurs="0" maxOccurs="1" ref="cacheLoaderFactory"/>

</xs:sequence>
<xs:attribute name="diskExpiryThreadIntervalSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="diskSpoolBufferSizeMB" use="optional" type="xs:integer"/>
<xs:attribute name="diskPersistent" use="optional" type="xs:boolean"/>
<xs:attribute name="eternal" use="required" type="xs:boolean"/>
<xs:attribute name="maxElementsInMemory" use="required" type="xs:integer"/>
<xs:attribute name="memoryStoreEvictionPolicy" use="optional" type="xs:string"/>
<xs:attribute name="overflowToDisk" use="required" type="xs:boolean"/>
<xs:attribute name="clearOnFlush" use="optional" type="xs:boolean"/>
<xs:attribute name="timeToIdleSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="timeToLiveSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="maxElementsOnDisk" use="optional" type="xs:integer"/>

</xs:complexType>
</xs:element>
<xs:element name="cache">

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="cacheEventListenerFactory"/>
<xs:element minOccurs="0" maxOccurs="unbounded" ref="cacheExtensionFactory"/>

44

<xs:element minOccurs="0" maxOccurs="1" ref="bootstrapCacheLoaderFactory"/>
<xs:element minOccurs="0" maxOccurs="1" ref="cacheExceptionHandlerFactory"/>
<xs:element minOccurs="0" maxOccurs="1" ref="cacheLoaderFactory"/>

</xs:sequence>
<xs:attribute name="diskExpiryThreadIntervalSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="diskSpoolBufferSizeMB" use="optional" type="xs:integer"/>
<xs:attribute name="diskPersistent" use="optional" type="xs:boolean"/>
<xs:attribute name="eternal" use="required" type="xs:boolean"/>
<xs:attribute name="maxElementsInMemory" use="required" type="xs:integer"/>
<xs:attribute name="memoryStoreEvictionPolicy" use="optional" type="xs:string"/>
<xs:attribute name="clearOnFlush" use="optional" type="xs:boolean"/>
<xs:attribute name="name" use="required" type="xs:string"/>
<xs:attribute name="overflowToDisk" use="required" type="xs:boolean"/>
<xs:attribute name="timeToIdleSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="timeToLiveSeconds" use="optional" type="xs:integer"/>
<xs:attribute name="maxElementsOnDisk" use="optional" type="xs:integer"/>

</xs:complexType>
</xs:element>
<xs:element name="cacheEventListenerFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="bootstrapCacheLoaderFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="cacheExtensionFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="cacheExceptionHandlerFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>

</xs:complexType>
</xs:element>
<xs:element name="cacheLoaderFactory">

<xs:complexType>
<xs:attribute name="class" use="required"/>
<xs:attribute name="properties" use="optional"/>
<xs:attribute name="propertySeparator" use="optional"/>

</xs:complexType>
</xs:element>
</xs:schema>

45

6.2 ehcache-failsafe.xml

If the CacheManager default constructor or factory method is called, ehcache looks for a file called
ehcache.xml in the top level of the classpath. Failing that it looks for ehcache-failsafe.xml in the class-
path. ehcache-failsafe.xml is packaged in the ehcache jar and should always be found.
ehcache-failsafe.xml provides an extremely simple default configuration to enable users to get started be-
fore they create their own ehcache.xml.
If it used ehcache will emit a warning, reminding the user to set up a proper configuration.
The meaning of the elments and attributes are explained in the section on ehcache.xml.

<ehcache>
<diskStore path="java.io.tmpdir"/>
<defaultCache

maxElementsInMemory="10000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="true"
maxElementsOnDisk="10000000"
diskPersistent="false"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU"
/>

</ehcache>

6.3 ehcache.xml and other configuration files

Prior to ehcache-1.6, ehcache only supported ASCII ehcache.xml configuration files. Since ehcache-1.6,
UTF8 is supported, so that configuration can use Unicode. As UTF8 is backwardly compatible with ASCII,
no conversion is necessary.
If the CacheManager default constructor or factory method is called, ehcache looks for a file called
ehcache.xml in the top level of the classpath.
The non-default creation methods allow a configuration file to be specified which can be called anything.
One XML configuration is required for each CacheManager that is created. It is an error to use the same
configuration, because things like directory paths and listener ports will conflict. Ehcache will attempt
to resolve conflicts and will emit a warning reminding the user to configure a separate configuration for
multiple CacheManagers with conflicting settings.
The sample ehcache.xml, which is included in the ehcache distribution is reproduced below. The sample
contains full commentary required to configure each element. Further information can be found in specific
chapters in the Guide.
It can also be downloaded from http://ehcache.sf.net/ehcache.xml.

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

CacheManager Configuration
==========================
An ehcache.xml corresponds to a single CacheManager.

See instructions below or the ehcache schema (ehcache.xsd) on how to configure.

System property tokens can be specified in this file which are replaced when the configuration

46

is loaded. For example multicastGroupPort=${multicastGroupPort} can be replaced with the
System property either from an environment variable or a system property specified with a
command line switch such as -DmulticastGroupPort=4446.

DiskStore configuration
=======================

The diskStore element is optional. It must be configured if you have overflowToDisk
or diskPersistent enabled for any cache. If it is not configured, a warning will be
issues and java.io.tmpdir will be used.

diskStore has only one attribute - "path". It is the path to the directory where
.data and .index files will be created.

If the path is a Java System Property it is replaced by its value in the
running VM.

The following properties are translated:
* user.home - User’s home directory
* user.dir - User’s current working directory
* java.io.tmpdir - Default temp file path

The following properties are translated:
* user.home - User’s home directory
* user.dir - User’s current working directory
* java.io.tmpdir - Default temp file path
* ehcache.disk.store.dir - A system property you would normally specify on the command line

e.g. java -Dehcache.disk.store.dir=/u01/myapp/diskdir ...

Subdirectories can be specified below the property e.g. java.io.tmpdir/one
-->
<diskStore path="java.io.tmpdir"/>

<!--
CacheManagerEventListener
=========================
Specifies a CacheManagerEventListenerFactory, be used to create a CacheManagerPeerProvider,
which is notified when Caches are added or removed from the CacheManager.

The attributes of CacheManagerEventListenerFactory are:
* class - a fully qualified factory class name
* properties - comma separated properties having meaning only to the factory.

Sets the fully qualified class name to be registered as the CacheManager event listener.

The events include:
* adding a Cache
* removing a Cache

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility
of the implementer to safely handle the potential performance and thread safety issues
depending on what their listener is doing.

If no class is specified, no listener is created. There is no default.
-->
<cacheManagerEventListenerFactory class="" properties=""/>

47

<!--
CacheManagerPeerProvider
========================
(Enable for distributed operation)

Specifies a CacheManagerPeerProviderFactory which will be used to create a
CacheManagerPeerProvider, which discovers other CacheManagers in the cluster.

The attributes of cacheManagerPeerProviderFactory are:
* class - a fully qualified factory class name
* properties - comma separated properties having meaning only to the factory.

Ehcache comes with a built-in RMI-based distribution system with two means of discovery of
CacheManager peers participating in the cluster:
* automatic, using a multicast group. This one automatically discovers peers and detects

changes such as peers entering and leaving the group
* manual, using manual rmiURL configuration. A hardcoded list of peers is provided at

configuration time.

Configuring Automatic Discovery:
Automatic discovery is configured as per the following example:
<cacheManagerPeerProviderFactory

class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,

multicastGroupPort=4446, timeToLive=32"/>

Valid properties are:
* peerDiscovery (mandatory) - specify "automatic"
* multicastGroupAddress (mandatory) - specify a valid multicast group address
* multicastGroupPort (mandatory) - specify a dedicated port for the multicast heartbeat

traffic
* timeToLive - specify a value between 0 and 255 which determines how far the packets will

propagate.

By convention, the restrictions are:
0 - the same host
1 - the same subnet
32 - the same site
64 - the same region
128 - the same continent
255 - unrestricted

Configuring Manual Discovery:
Manual discovery is configured as per the following example:
<cacheManagerPeerProviderFactory class=

"net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=manual,
rmiUrls=//server1:40000/sampleCache1|//server2:40000/sampleCache1
| //server1:40000/sampleCache2|//server2:40000/sampleCache2"
propertySeparator="," />

Valid properties are:
* peerDiscovery (mandatory) - specify "manual"
* rmiUrls (mandatory) - specify a pipe separated list of rmiUrls, in the form

//hostname:port

The hostname is the hostname of the remote CacheManager peer. The port is the listening

48

port of the RMICacheManagerPeerListener of the remote CacheManager peer.

-->
<cacheManagerPeerProviderFactory

class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic,

multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446, timeToLive=1"

propertySeparator=","
/>

<!--
CacheManagerPeerListener
========================
(Enable for distributed operation)

Specifies a CacheManagerPeerListenerFactory which will be used to create a
CacheManagerPeerListener, which
listens for messages from cache replicators participating in the cluster.

The attributes of cacheManagerPeerListenerFactory are:
class - a fully qualified factory class name
properties - comma separated properties having meaning only to the factory.

Ehcache comes with a built-in RMI-based distribution system. The listener component is
RMICacheManagerPeerListener which is configured using
RMICacheManagerPeerListenerFactory. It is configured as per the following example:

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"
properties="hostName=fully_qualified_hostname_or_ip,

port=40001,
socketTimeoutMillis=120000"
propertySeparator="," />

All properties are optional. They are:
* hostName - the hostName of the host the listener is running on. Specify

where the host is multihomed and you want to control the interface over which cluster
messages are received. Defaults to the host name of the default interface if not
specified.

* port - the port the listener listens on. This defaults to a free port if not specified.
* socketTimeoutMillis - the number of ms client sockets will stay open when sending

messages to the listener. This should be long enough for the slowest message.
If not specified it defaults 120000ms.

-->
<cacheManagerPeerListenerFactory

class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>

<!--
Cache configuration
===================

The following attributes are required.

name:

49

Sets the name of the cache. This is used to identify the cache. It must be unique.

maxElementsInMemory:
Sets the maximum number of objects that will be created in memory

maxElementsOnDisk:
Sets the maximum number of objects that will be maintained in the DiskStore
The default value is zero, meaning unlimited.

eternal:
Sets whether elements are eternal. If eternal, timeouts are ignored and the
element is never expired.

overflowToDisk:
Sets whether elements can overflow to disk when the memory store
has reached the maxInMemory limit.

The following attributes and elements are optional.

timeToIdleSeconds:
Sets the time to idle for an element before it expires.
i.e. The maximum amount of time between accesses before an element expires
Is only used if the element is not eternal.
Optional attribute. A value of 0 means that an Element can idle for infinity.
The default value is 0.

timeToLiveSeconds:
Sets the time to live for an element before it expires.
i.e. The maximum time between creation time and when an element expires.
Is only used if the element is not eternal.
Optional attribute. A value of 0 means that and Element can live for infinity.
The default value is 0.

diskPersistent:
Whether the disk store persists between restarts of the Virtual Machine.
The default value is false.

clearOnFlush:
cache parameter. It determines whether the MemoryStore should be cleared when flush()
is called on the cache. By default, the MemoryStore is cleared. Useful is you want to
back up a cache to the file system without clearing the MemoryStore.

diskExpiryThreadIntervalSeconds:
The number of seconds between runs of the disk expiry thread. The default value
is 120 seconds.

diskSpoolBufferSizeMB:
This is the size to allocate the DiskStore for a spool buffer. Writes are made
to this area and then asynchronously written to disk. The default size is 30MB.
Each spool buffer is used only by its cache. If you get OutOfMemory errors consider
lowering this value. To improve DiskStore performance consider increasing it. Trace level
logging in the DiskStore will show if put back ups are occurring.

memoryStoreEvictionPolicy:
Policy would be enforced upon reaching the maxElementsInMemory limit. Default
policy is Least Recently Used (specified as LRU). Other policies available -
First In First Out (specified as FIFO) and Less Frequently Used
(specified as LFU)

50

Cache elements can also contain sub elements which take the same format of a factory class
and properties. Defined sub-elements are:

* cacheEventListenerFactory - Enables registration of listeners for cache events, such as
put, remove, update, and expire.

* bootstrapCacheLoaderFactory - Specifies a BootstrapCacheLoader, which is called by a
cache on initialisation to prepopulate itself.

* cacheExtensionFactory - Specifies a CacheExtension, a generic mechansim to tie a class
which holds a reference to a cache to the cache lifecycle.

* cacheExceptionHandlerFactory - Specifies a CacheExceptionHandler, which is called when
cache exceptions occur.

* cacheLoaderFactory - Specifies a CacheLoader, which can be used both asynchronously and
synchronously to load objects into a cache.

RMI Cache Replication

Each cache that will be distributed needs to set a cache event listener which replicates
messages to the other CacheManager peers. For the built-in RMI implementation this is done
by adding a cacheEventListenerFactory element of type RMICacheReplicatorFactory to each
distributed cache’s configuration as per the following example:

<cacheEventListenerFactory class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=true,
replicatePuts=true,
replicateUpdates=true,
replicateUpdatesViaCopy=true,
replicateRemovals=true
asynchronousReplicationIntervalMillis=<number of milliseconds"
propertySeparator="," />

The RMICacheReplicatorFactory recognises the following properties:

* replicatePuts=true|false - whether new elements placed in a cache are
replicated to others. Defaults to true.

* replicateUpdates=true|false - whether new elements which override an
element already existing with the same key are replicated. Defaults to true.

* replicateRemovals=true - whether element removals are replicated. Defaults to true.

* replicateAsynchronously=true | false - whether replications are
asynchronous (true) or synchronous (false). Defaults to true.

* replicateUpdatesViaCopy=true | false - whether the new elements are
copied to other caches (true), or whether a remove message is sent. Defaults to true.

* asynchronousReplicationIntervalMillis=<number of milliseconds> - The asynchronous
replicator runs at a set interval of milliseconds. The default is 1000. The minimum
is 10. This property is only applicable if replicateAsynchronously=true

Cluster Bootstrapping

51

The RMIBootstrapCacheLoader bootstraps caches in clusters where RMICacheReplicators are
used. It is configured as per the following example:

<bootstrapCacheLoaderFactory
class="net.sf.ehcache.distribution.RMIBootstrapCacheLoaderFactory"
properties="bootstrapAsynchronously=true, maximumChunkSizeBytes=5000000"
propertySeparator="," />

The RMIBootstrapCacheLoaderFactory recognises the following optional properties:

* bootstrapAsynchronously=true|false - whether the bootstrap happens in the background
after the cache has started. If false, bootstrapping must complete before the cache is
made available. The default value is true.

* maximumChunkSizeBytes=<integer> - Caches can potentially be very large, larger than the
memory limits of the VM. This property allows the bootstraper to fetched elements in
chunks. The default chunk size is 5000000 (5MB).

Cache Exception Handling

By default, most cache operations will propagate a runtime CacheException on failure. An
interceptor, using a dynamic proxy, may be configured so that a CacheExceptionHandler can
be configured to intercept Exceptions. Errors are not intercepted.

It is configured as per the following example:

<cacheExceptionHandlerFactory class="com.example.ExampleExceptionHandlerFactory"
properties="logLevel=FINE"/>

Caches with ExceptionHandling configured are not of type Cache, but are of type Ehcache only,
and are not available using CacheManager.getCache(), but using CacheManager.getEhcache().

Cache Loader

A default CacheLoader may be set which loads objects into the cache through asynchronous and
synchronous methods on Cache. This is different to the bootstrap cache loader, which is used
only in distributed caching.

It is configured as per the following example:

<cacheLoaderFactory class="com.example.ExampleCacheLoaderFactory"
properties="type=int,startCounter=10"/>

Cache Extension

CacheExtensions are a general purpose mechanism to allow generic extensions to a Cache.
CacheExtensions are tied into the Cache lifecycle.

CacheExtensions are created using the CacheExtensionFactory which has a
<code>createCacheCacheExtension()</code> method which takes as a parameter a
Cache and properties. It can thus call back into any public method on Cache, including, of
course, the load methods.

Extensions are added as per the following example:

<cacheExtensionFactory class="com.example.FileWatchingCacheRefresherExtensionFactory"

52

properties="refreshIntervalMillis=18000, loaderTimeout=3000,
flushPeriod=whatever, someOtherProperty=someValue ..."/>

-->

<!--
Mandatory Default Cache configuration. These settings will be applied to caches
created programmtically using CacheManager.add(String cacheName).

The defaultCache has an implicit name "default" which is a reserved cache name.
-->
<defaultCache

maxElementsInMemory="10000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="true"
diskSpoolBufferSizeMB="30"
maxElementsOnDisk="10000000"
diskPersistent="false"
diskExpiryThreadIntervalSeconds="120"
memoryStoreEvictionPolicy="LRU"
/>

<!--
Sample caches. Following are some example caches. Remove these before use.
-->

<!--
Sample cache named sampleCache1
This cache contains a maximum in memory of 10000 elements, and will expire
an element if it is idle for more than 5 minutes and lives for more than
10 minutes.

If there are more than 10000 elements it will overflow to the
disk cache, which in this configuration will go to wherever java.io.tmp is
defined on your system. On a standard Linux system this will be /tmp"
-->
<cache name="sampleCache1"

maxElementsInMemory="10000"
maxElementsOnDisk="1000"
eternal="false"
overflowToDisk="true"
diskSpoolBufferSizeMB="20"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU"
/>

<!--
Sample cache named sampleCache2
This cache has a maximum of 1000 elements in memory. There is no overflow to disk, so 1000
is also the maximum cache size. Note that when a cache is eternal, timeToLive and
timeToIdle are not used and do not need to be specified.
-->
<cache name="sampleCache2"

53

maxElementsInMemory="1000"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="FIFO"
/>

<!--
Sample cache named sampleCache3. This cache overflows to disk. The disk store is
persistent between cache and VM restarts. The disk expiry thread interval is set to 10
minutes, overriding the default of 2 minutes.
-->
<cache name="sampleCache3"

maxElementsInMemory="500"
eternal="false"
overflowToDisk="true"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
diskPersistent="true"
diskExpiryThreadIntervalSeconds="1"
memoryStoreEvictionPolicy="LFU"
/>

<!--
Sample distributed cache named sampleDistributedCache1.
This cache replicates using defaults.
It also bootstraps from the cluster, using default properties.
-->
<cache name="sampleDistributedCache1"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>

<bootstrapCacheLoaderFactory
class="net.sf.ehcache.distribution.RMIBootstrapCacheLoaderFactory"/>

</cache>

<!--
Sample distributed cache named sampleDistributedCache2.
This cache replicates using specific properties.
It only replicates updates and does so synchronously via copy
-->
<cache name="sampleDistributedCache2"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=false, replicatePuts=false,

replicateUpdates=true, replicateUpdatesViaCopy=true,
replicateRemovals=false"/>

54

</cache>

<!--
Sample distributed cache named sampleDistributedCache3.
This cache replicates using defaults except that the asynchronous replication
interval is set to 200ms.
-->
<cache name="sampleDistributedCache3"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="asynchronousReplicationIntervalMillis=200"/>

</cache>

</ehcache>

6.4 Special System Properties

6.4.1 net.sf.ehcache.disabled

Setting this System Property to true disables caching in ehcache. If disabled no elements will be added to
a cache. i.e. puts are silently discarded.
e.g. java -Dnet.sf.ehcache.disabled=true in the Java command line.

6.4.2 net.sf.ehcache.use.classic.lru

Set this System property to true to use the older LruMemoryStore implementation when LRU is selected
as the eviction policy.
This is provided for ease of migration.
e.g. java -Dnet.sf.ehcache.use.classic.lru=true in the Java command line. Storage Options
Ehcache has two stores:

• a MemoryStore and

• a DiskStore

6.5 Memory Store

The MemoryStore is always enabled. It is not directly manipulated, but is a component of every cache.

• Suitable Element Types

All Elements are suitable for placement in the MemoryStore.

It has the following characteristics:

55

– Safety
Thread safe for use by multiple concurrent threads.
Tested formemory leaks. SeeMemoryCacheTest#testMemoryLeak. This test passes for ehcache
but exploits a number of memory leaks in JCS. JCS will give an OutOfMemory error with a
default 64M in 10 seconds.

– Backed By JDK
LinkedHashMap The MemoryStore for JDK1.4 and JDK 5 it is backed by an extended Linked-
HashMap. This provides a combined linked list and a hash map, and is ideally suited for
caching. Using this standard Java class simplifies the implementation of the memory cache. It
directly supports obtaining the least recently used element.

– Fast
The memory store, being all in memory, is the fastest caching option.

6.5.1 Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in terms of the number of elements, at configuration
time.
When an element is added to a cache and it goes beyond its maximum memory size, an existing element
is either deleted, if overflowToDisk is false, or evaluated for spooling to disk, if overflowToDisk is true.
In the latter case, a check for expiry is carried out. If it is expired it is deleted; if not it is spooled. The
eviction of an item from the memory store is based on the MemoryStoreEvictionPolicy setting specified in
the configuration file.
memoryStoreEvictionPolicy is an optional attribute in ehcache.xml introduced since 1.2. Legal values are
LRU (default), LFU and FIFO.
LRU, LFU and FIFO eviction policies are supported. LRU is the default, consistent with all earlier releases
of ehcache.

• Least Recently Used (LRU) - Default
The eldest element, is the Least Recently Used (LRU). The last used timestamp is updated when an
element is put into the cache or an element is retrieved from the cache with a get call.

• Less Frequently Used (LFU)
For each get call on the element the number of hits is updated. When a put call is made for a new
element (and assuming that the max limit is reached for the memory store) the element with least
number of hits, the Less Frequently Used element, is evicted.

• First In First Out (FIFO)
Elements are evicted in the same order as they come in. When a put call is made for a new element
(and assuming that the max limit is reached for the memory store) the element that was placed first
(First-In) in the store is the candidate for eviction (First-Out).
For all the eviction policies there are also putQuiet and getQuiet methods which do not update
the last used timestamp.
When there is a get or a getQuiet on an element, it is checked for expiry. If expired, it is removed
and null is returned.
Note that at any point in time there will usually be some expired elements in the cache. Memory
sizing of an application must always take into account the maximum size of each cache. There is a
convenience method which can provide an estimate of the size in bytes of the MemoryStore. See
calculateInMemorySize(). It returns the serialized size of the cache. Do not use this method in
production. It is very slow. It is only meant to provide a rough estimate.

56

The alternative would have been to have an expiry thread. This is a trade-off between lower memory
use and short locking periods and cpu utilisation. The design is in favour of the latter. For those
concerned with memory use, simply reduce the maxElementsInMemory.

6.6 DiskStore

The DiskStore provides a disk spooling facility.

6.6.1 DiskStores are Optional

The diskStore element in ehcache.xml is now optional (as of 1.5). If all caches use only MemoryStores,
then there is no need to configure a diskStore. This simplifies configuration, and uses less threads. It is
also good where where multiple CacheManagers are being used, and multiple disk store paths would need
to be configured.
If one or more caches requires a DiskStore, and none is configured, java.io.tmpdir will be used and a
warning message will be logged to encourage explicity configuration of the diskStore path.

Turning off disk stores

To turn off disk store path creation, comment out the diskStore element in ehcache.xml.
The ehcache-failsafe.xml configuration uses a disk store. This will remain the case so as to not affect
existing ehcache deployments. So, if you do not wish to use a disk store make sure you specify your own
ehcache.xml and comment out the diskStore element.

6.6.2 Suitable Element Types

Only Elements which are Serializable can be placed in the DiskStore. Any non serializable Elements
which attempt to overflow to the DiskStorewill be removed instead, and a WARNING level log message
emitted.

6.6.3 Storage

Files

The disk store creates a data file for each cache on startup called "cache_name.data", and, if the DiskStore
is configured to be persistent, an index file called "cache name.index" on flushing of the DiskStore either
explicitly using Cache.flush or on CacheManager shutdown.

Storage Location

Files are created in the directory specified by the diskStore configuration element. The diskStore configu-
ration for the ehcache-failsafe.xml and bundled sample configuration file ehcache.xml is "java.io.tmpdir",
which causes files to be created in the system’s temporary directory.

diskStore Element

The diskStore element is has one attribute called path. --- diskStore path="java.io.tmpdir"/ --- Legal
values for the path attibute are legal file system paths. e.g.for Unix

57

/home/application/cache

The following system properties are also legal, in which case they are translated:

• user.home - User’s home directory

• user.dir - User’s current working directory

• java.io.tmpdir - Default temp file path

• ehcache.disk.store.di?r - A system property you would normally specify on the command line e.g.
java -Dehcache.disk.store.dir=/u01/myapp/diskdir ...
Subdirectories can be specified below the system property e.g.

java.io.tmpdir/one

becomes, on a Unix system,

/tmp/one

6.6.4 Expiry

One thread per cache is used to remove expired elements. The optional attribute diskExpiryThreadIntervalSeconds
sets the interval between runs of the expiry thread. Warning: setting this to a low value is not recommended.
It can cause excessive DiskStore locking and high cpu utilisation. The default value is 120 seconds.

6.6.5 Eviction

If the maxElementsOnDisk attribute is set, elements will be evicted from the DiskStorewhen it exceeds
that amount. The LFU algorithm is used for these evictions. It is not configurable to use another algorithm.

6.6.6 Serializable Objects

Only Serializable objects can be stored in a DiskStore. A NotSerializableException will be thrown if the
object is not serializable.

6.6.7 Safety

DiskStores are thread safe.

6.6.8 Persistence

DiskStore persistence is controlled by the diskPersistent configuration element. If false or omitted,
DiskStores will not persist between CacheManager restarts. The data file for each cache will be deleted,
if it exists, both on shutdown and startup. No data from a previous instance CacheManager is available.
If diskPersistent is true, the data file, and an index file, are saved. Cache Elements are available to a new
CacheManager. This CacheManagermay be in the same VM instance, or a new one.
The data file is updated continuously during operation of the Disk Store if overflowToDisk is true.
Otherwise it is not updated until either cache.flush() is called or the cache is disposed.

58

In all cases the index file is only written when dispose is called on the DiskStore. This happens when
the CacheManager is shut down, a Cache is disposed, or the VM is being shut down. It is recommended
that the CacheManager shutdown() method be used. See Virtual Machine Shutdown Considerations for
guidance on how to safely shut the Virtual Machine down.
When a DiskStore is persisted, the following steps take place:

• Any non-expired Elements of the MemoryStore are flushed to the DiskStore

• Elements awaiting spooling are spooled to the data file

• The free list and element list are serialized to the index file

On startup the following steps take place:

• An attempt is made to read the index file. If it does not exist or cannot be read successfully, due to
disk corruption, upgrade of ehcache, change in JDK version etc, then the data file is deleted and the
DiskStore starts with no Elements in it.

• If the index file is read successfully, the free list and element list are loaded into memory. Once this
is done, the index file contents are removed. This way, if there is a dirty shutdown, when restarted,
ehcache will delete the dirt index and data files.

• The DiskStore starts. All data is available.

• The expiry thread starts. It will delete Elements which have expired.

These actions favour safety over persistence. Ehcache is a cache, not a database. If a file gets dirty, all
data is deleted. Once started there is further checking for corruption. When a get is done, if the Element
cannot be successfully derserialized, it is deleted, and null is returned. These measures prevent corrupt and
inconsistent data being returned.

• Fragmentation
Expiring an element frees its space on the file. This space is available for reuse by new elements.
The element is also removed from the in-memory index of elements.

• Speed
Spool requests are placed in-memory and then asynchronously written to disk. There is one thread
per cache. An in-memory index of elements on disk is maintained to quickly resolve whether a key
exists on disk, and if so to seek it and read it.

• Serialization
Writes to and from the disk use ObjectInputStream and the Java serialization mechanism. This is not
required for the MemoryStore. As a result the DiskStore can never be as fast as the MemoryStore.
Serialization speed is affected by the size of the objects being serialized and their type. It has been
found in the ElementTest test that:

– The serialization time for a Java object being a large Map of String arrays was 126ms, where
the a serialized size was 349,225 bytes.

– The serialization time for a byte[] was 7ms, where the serialized size was 310,232 bytes

Byte arrays are 20 times faster to serialize. Make use of byte arrays to increase DiskStore perfor-
mance.

59

• RAMFS
One option to speed up disk stores is to use a RAM file system. On some operating systems there are
a plethora of file systems to choose from. For example, the Disk Cache has been successfully used
with Linux’ RAMFS file system. This file system simply consists of memory. Linux presents it as a
file system. The Disk Cache treats it like a normal disk - it is just way faster. With this type of file
system, object serialization becomes the limiting factor to performance.

– Operation of a Cache where overflowToDisk is false and diskPersistent is true
In this configuration case, the disk will be written on flush or shutdown.
The next time the cache is started, the disk store will initialise but will not permit overflow from
the MemoryStore. In all other respects it acts like a normal disk store.
In practice this means that persistent in-memory cache will start up with all of its elements on
disk. As gets cause cache hits, they will be loaded up into the MemoryStore. The oher thing
that may happen is that the elements will expire, in which case the DiskStore expiry thread
will reap them, (or they will get removed on a get if they are expired).
So, the ehcache design does not load them all into memory on start up, but lazily loads them as
required.

60

Chapter 7

Cache Eviction Algorithms

7.1 Eviction

A cache eviction algorithm is a way of deciding which Element to evict when the cache is full.
In ehcache the MemoryStore has a fixed limited size set by maxElementsInMemory. When the store
gets full, elements are evicted. The eviction algorithms in ehcache determines which elements is evicted.
The default is LRU.
What happens on eviction depends on the cache configuration. If a DiskStore is configured, the evicted
element will overflow to disk, otherwise it will be removed.
The DiskStore size by default is unbounded. But a maximum size can be set using the maxElementsOnDisk
cache attribute. If the DiskStore is full, then adding an element will cause one to be evicted. The
DiskStore eviction algorithm is not configurable. It uses LFU.

7.1.1 Supported MemoryStore Eviction Algorithms

The idea here is, given a limit on the number of items to cache, how to choose the thing to evict that gives
the best result.
In 1966 Laszlo Belady showed that the most efficient caching algorithm would be to always discard the
information that will not be needed for the longest time in the future. This it a theoretical result that is
unimplementable without domain knowledge. The Least Recently Used ("LRU") algorithm is often used
as a proxy. It works pretty well because of the locality of reference phenonemon. As a result, LRU is the
default eviction algorithm in ehcache, as it is in most caches.
Ehcache users may sometimes have a good domain knowledge. Accordingly, ehcache provides three evic-
tion algorithms to choose from for the MemoryStore.

7.1.2 MemoryStore Eviction Algorithms

The MemoryStore supports three eviction algorithms: LRU, LFU and FIFO.
The default is LRU.

Least Recently Used (LRU)

The eldest element, is the Least Recently Used (LRU). The last used timestamp is updated when an element
is put into the cache or an element is retrieved from the cache with a get call.

61

Less Frequently Used (LFU)

For each get call on the element the number of hits is updated. When a put call is made for a new element
(and assuming that the max limit is reached) the element with least number of hits, the Less Frequently
Used element, is evicted.
If cache element use follows a pareto distribution, this algorithm may give better results than LRU.
LFU is an algorithm unique to ehcache. It takes a random sample of the Elements and evicts the smallest.
Using the sample size of 30 elements, empirical testing shows that an Element in the lowest quartile of use
is evicted 99.99% of the time.

First In First Out (FIFO)

Elements are evicted in the same order as they come in. When a put call is made for a new element (and
assuming that the max limit is reached for the memory store) the element that was placed first (First-In) in
the store is the candidate for eviction (First-Out).
This algorithm is used if the use of an element makes it less likely to be used in the future. An example
here would be an authentication cache.

7.1.3 DiskStore Eviction Algorithms

The DiskStore uses the Less Frequently Used algorithm to evict an element when it is full.

62

Chapter 8

Code Samples

This page shows some of the more common code samples to get you started. Code samples for each feature
are in the relevant chapters.

• Using the CacheManager

– Singleton versus Instance
– Ways of loading Cache Configuration
– Adding and Removing Caches Programmatically
– Shutdown the CacheManager

• Using Caches

– Obtaining a reference to a Cache
– CRUD operations
– Disk Persistence on demand
– Cache Sizes
– Statistics of Cache Hits and Misses

• Programmatically Creating Caches

– Creating a new cache from defaults
– Creating a new cache with custom parameters

• Registering CacheStatistics in an MBeanServer

• JCache Examples

• Cache Server Examples

• Browse the JUnit Tests

8.1 Using the CacheManager

All usages of ehcache start with the creation of a CacheManager.

63

8.1.1 Singleton versus Instance

As of ehcache-1.2, ehcache CacheManagers can be created as either singletons (use the create factory
method) or instances (use new).
Create a singleton CacheManager using defaults, then list caches.

CacheManager.create();
String[] cacheNames = CacheManager.getInstance().getCacheNames();

Create a CacheManager instance using defaults, then list caches.

CacheManager manager = new CacheManager();
String[] cacheNames = manager.getCacheNames();

Create two CacheManagers, each with a different configuration, and list the caches in each.

CacheManager manager1 = new CacheManager("src/config/ehcache1.xml");
CacheManager manager2 = new CacheManager("src/config/ehcache2.xml");
String[] cacheNamesForManager1 = manager1.getCacheNames();
String[] cacheNamesForManager2 = manager2.getCacheNames();

8.1.2 Ways of loading Cache Configuration

When the CacheManager is created it creates caches found in the configuration.
Create a CacheManager using defaults. Ehcache will look for ehcache.xml in the classpath.

CacheManager manager = new CacheManager();

Create a CacheManager specifying the path of a configuration file.

CacheManager manager = new CacheManager("src/config/ehcache.xml");

Create a CacheManager from a configuration resource in the classpath.

URL url = getClass().getResource("/anotherconfigurationname.xml");
CacheManager manager = new CacheManager(url);

Create a CacheManager from a configuration in an InputStream.

InputStream fis = new FileInputStream(new File("src/config/ehcache.xml").getAbsolutePath());
try {

CacheManager manager = new CacheManager(fis);
} finally {

fis.close();
}

8.1.3 Adding and Removing Caches Programmatically

You are not just stuck with the caches that were placed in the configuration. You can create and remove
them programmatically.
Add a cache using defaults, then use it. The following example creates a cache called testCache, which
will be configured using defaultCache from the configuration.

64

CacheManager singletonManager = CacheManager.create();
singletonManager.addCache("testCache");
Cache test = singletonManager.getCache("testCache");

Create a Cache and add it to the CacheManager, then use it. Note that Caches are not usable until they have
been added to a CacheManager.

CacheManager singletonManager = CacheManager.create();
Cache memoryOnlyCache = new Cache("testCache", 5000, false, false, 5, 2);
manager.addCache(memoryOnlyCache);
Cache test = singletonManager.getCache("testCache");

See Cache#Cache(...) for the full parameters for a new Cache:
Remove cache called sampleCache1

CacheManager singletonManager = CacheManager.create();
singletonManager.removeCache("sampleCache1");

8.1.4 Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdown hook, but it is best practice to shut it down
in your code.
Shutdown the singleton CacheManager

CacheManager.getInstance().shutdown();

Shutdown a CacheManager instance, assuming you have a reference to the CacheManager called manager

manager.shutdown();

See the CacheManagerTest for more examples.

8.2 Using Caches

All of these examples refer to manager, which is a reference to a CacheManager, which has a cache in it
called sampleCache1.

8.2.1 Obtaining a reference to a Cache

Obtain a Cache called "sampleCache1", which has been preconfigured in the configuration file

Cache cache = manager.getCache("sampleCache1");

8.2.2 Performing CRUD operations

Put an element into a cache

Cache cache = manager.getCache("sampleCache1");
Element element = new Element("key1", "value1");
cache.put(element);

65

Update an element in a cache. Even though cache.put() is used, ehcache knows there is an existing
element, and considers the put an update for the purpose of notifying cache listeners.

Cache cache = manager.getCache("sampleCache1");
cache.put(new Element("key1", "value1"));
//This updates the entry for "key1"
cache.put(new Element("key1", "value2"));

Get a Serializable value from an element in a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
Element element = cache.get("key1");
Serializable value = element.getValue();

Get a NonSerializable value from an element in a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
Element element = cache.get("key1");
Object value = element.getObjectValue();

Remove an element from a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
cache.remove("key1");

8.2.3 Disk Persistence on demand

sampleCache1 has a persistent diskStore. We wish to ensure that the data and index are written immedi-
ately.

Cache cache = manager.getCache("sampleCache1");
cache.flush();

8.2.4 Obtaining Cache Sizes

Get the number of elements currently in the Cache.

Cache cache = manager.getCache("sampleCache1");
int elementsInMemory = cache.getSize();

Get the number of elements currently in the MemoryStore.

Cache cache = manager.getCache("sampleCache1");
long elementsInMemory = cache.getMemoryStoreSize();

Get the number of elements currently in the DiskStore.

Cache cache = manager.getCache("sampleCache1");
long elementsInMemory = cache.getDiskStoreSize();

66

8.2.5 Obtaining Statistics of Cache Hits and Misses

These methods are useful for tuning cache configurations.
Get the number of times requested items were found in the cache. i.e. cache hits

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getHitCount();

Get the number of times requested items were found in the MemoryStore of the cache.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMemoryStoreHitCount();

Get the number of times requested items were found in the DiskStore of the cache.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getDiskStoreCount();

Get the number of times requested items were not found in the cache. i.e. cache misses.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMissCountNotFound();

Get the number of times requested items were not found in the cache due to expiry of the elements.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMissCountExpired();

These are just the most commonly used methods. See CacheTest for more examples. See Cache for the
full API.

8.3 Creating a new cache from defaults

A new cache with a given name can be created from defaults very simply:

manager.addCache("cache name");

8.4 Creating a new cache with custom parameters

The configuration for a Cache can be specified programmatically in the Cache constructor:

public Cache(
String name,
int maxElementsInMemory,
MemoryStoreEvictionPolicy memoryStoreEvictionPolicy,
boolean overflowToDisk,
boolean eternal,
long timeToLiveSeconds,
long timeToIdleSeconds,
boolean diskPersistent,
long diskExpiryThreadIntervalSeconds) {
...

}

67

Here is an example which creates a cache called test.

//Create a CacheManager using defaults
CacheManager manager = CacheManager.create();

//Create a Cache specifying its configuration.

Cache testCache = new Cache("test", maxElements,
MemoryStoreEvictionPolicy.LFU, true, false, 60, 30, false, 0);
manager.addCache(cache);

Once the cache is created, add it to the list of caches managed by the CacheManager:

manager.addCache(testCache);

The cache is not usable until it has been added.

8.5 Registering CacheStatistics in an MBeanServer

This example shows how to register CacheStatistics in the JDK1.5 platform MBeanServer, which works
with the JConsole management agent.

CacheManager manager = new CacheManager();
MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
ManagementService.registerMBeans(manager, mBeanServer, false, false, false, true);

8.6 Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, which not only tests the code, but shows you how to
use ehcache.
A link to browsable unit test source code for the major ehcache classes is given per section. The unit tests
are also in the src.zip in the ehcache tarball.

• JCache Examples
See the JSR107 Chapter.

• Cache Server Examples
See the Cache Server Chapter.

68

Chapter 9

Java Requirements and Dependencies

9.1 Java Requirements

Current Ehcache releases requires Java 1.5 and 1.6 at runtime. Ehcache 1.5 requires Java 1.4.

9.2 Mandatory Dependencies

Ehcache core 1.6 has no dependencies.
Other modules have dependencies as specified in their maven poms or

69

70

Chapter 10

Logging

10.1 Java Util Logging

As of 1.6, Ehcache uses the built-in Java Util library ("j.u.l") for logging.

10.2 Working with SL4J

Simple Logging Facade For Java (SL4J) is an increasingly popular replacement for commons-logging.
You can still log via SL4J using the SLF4JBridgeHandler. See http://www.slf4j.org/legacy.html
According to http://blog.cn-consult.dk/2009/03/bridging-javautillogging-to-slf4j.html this will install an
extra logger. To stop j.u.l. from logging at all
To remove j.u.l logging all together use the following code snippet.

java.util.logging.Logger rootLogger = LogManager.getLogManager().getLogger("");
Handler[] handlers = rootLogger.getHandlers();
for (int i = 0; i < handlers.length; i++) {

rootLogger.removeHandler(handlers[i]);
}
SLF4JBridgeHandler.install();

10.3 Recommended Logging Levels

Ehcache seeks to trade off informing production support developers or important messages and cluttering
the log.
SEVERE JDK logging SEVERE messages should not occur in normal production and indicate that action
should be taken.
WARN JDK logging WARN messages generally indicate a configuration change should be made or an
unusual event has occurred.
FINE JDK logging FINE messages are for development use. All DEBUG level statements are surrounded
with a guard so that they are not executed unless the level is DEBUG.
Setting the logging level to FINE should provide more information on the source of any problems. Many
logging systems enable a logging level change to be made without restarting the application.

71

72

Chapter 11

Remote Network debugging and
monitoring for Distributed Caches

11.1 Introduction

The ehcache-1.x-remote-debugger.jar} can be used to debug replicated cache operations. When started
with the same configuration as the cluster, it will join the cluster and then report cluster events for the cache
of interest. By providing a window into the cluster it can help to identify the cause of cluster problems.

11.2 Packaging

From version 1.5 it is packaged in its own distribution tarball along with a maven module.
It is provided as an executable jar.

11.3 Limitations

This version of the debugger has been tested only with the default RMI based replication.

11.4 Usage

It is invoked as follows:

java -classpath [add your application jars here]
-jar ehcache-debugger-1.5.0.jar ehcache.xml sampleCache1 path_to_ehcache.xml [cacheToMonitor]

Note: Add to the classpath any libraries your project uses in addition to these above, otherwise RMI will
attempt to load them remotely which requires specific security policy settings that surprise most people.
It takes one or two arguments:

• the first argument, which is mandatory, is the ehcache configuration file e.g. app/config/ehcache.xml.
This file should be configured to allow ehcache to joing the cluster. Using one of the existing
ehcache.xml files from the other nodes normally is sufficient.

73

• the second argument, which is optional, is the name of the cache e.g. distributedCache1
If only the first argument is passed, it will print our a list of caches with replication configured from
the configuration file, which are then available for monitoring.
If the second argument is also provided, the debugger will monitor cache operations received for the
given cache.
This is done by registering a CacheEventListener which prints out each operation.

11.4.1 Output

When monitoring a cache it prints a list of caches with replication configured, prints notifications as they
happen, and periodically prints the cache name, size and total events received. See sample output below
which is produced when the RemoteDebuggerTest is run.

Caches with replication configured which are available for monitoring are:
sampleCache19 sampleCache20 sampleCache26 sampleCache42 sampleCache33
sampleCache51 sampleCache40 sampleCache32 sampleCache18 sampleCache25
sampleCache9 sampleCache15 sampleCache56 sampleCache31 sampleCache7
sampleCache12 sampleCache17 sampleCache45 sampleCache41 sampleCache30
sampleCache13 sampleCache46 sampleCache4 sampleCache36 sampleCache29
sampleCache50 sampleCache37 sampleCache49 sampleCache48 sampleCache38
sampleCache6 sampleCache2 sampleCache55 sampleCache16 sampleCache27
sampleCache11 sampleCache3 sampleCache54 sampleCache28 sampleCache10
sampleCache8 sampleCache47 sampleCache5 sampleCache53 sampleCache39
sampleCache23 sampleCache34 sampleCache22 sampleCache44 sampleCache52
sampleCache24 sampleCache35 sampleCache21 sampleCache43 sampleCache1
Monitoring cache: sampleCache1
Cache: sampleCache1 Notifications received: 0 Elements in cache: 0
Received put notification for element [key = this is an id, value=this is
a value, version=1, hitCount=0, CreationTime = 1210656023456,
LastAccessTime = 0]
Received update notification for element [key = this is an id, value=this
is a value, version=1210656025351, hitCount=0, CreationTime =
1210656024458, LastAccessTime = 0]
Cache: sampleCache1 Notifications received: 2 Elements in cache: 1
Received remove notification for element this is an id
Received removeAll notification.

11.4.2 Providing more Detailed Logging

If you see nothing happening, but cache operations should be going through, enable trace (LOG4J) or finest
(JDK) level logging on codenet.sf.ehcache.distribution/code in the logging configuration being used by the
debugger. A large volume of log messages will appear. The normal problem is that the CacheManager has
not joined the cluster. Look for the list of cache peers.

11.4.3 Yes, but I still have a cluster problem

Check the FAQ where a lot of commonly reported errors and their solutions are provided. Beyond that,
post to the forums or mailing list or contact ehcache for support.

74

Chapter 12

Garbage Collection

Applications which use ehcache can be expected to have larger heaps. Some ehcache applications have
heap sizes greater than 6GB.
Ehcache works well at this scale. However large heaps or long held object, which is what a cache is, can
place strain on the default Garbage Collector.
Note. The following documentation relates to Sun JDK 1.5.

12.1 Detecting Garbage Collection Problems

A full garbage collection event pauses all threads in the JVM. Nothing happens during the pause. If this
pause takes more than a few seconds it will become noticeable.
The clearest way to see if this is happening is to run jstat. The following command will produce a log of
garbage collection statistics, updated each ten seconds.

jstat -gcutil <pid> 10 1000000

The thing to watch for is the Full Garbage Collection Time. The difference between the total time for each
reading is the time the system spends time paused. If there is a jump more than a few seconds this will not
be acceptable in most application contexts.

12.2 Garbage Collection Tuning

The Sun core garbage collection team has offered the following tuning suggestion for virtual machiens
with large heaps using caching:

java ... -XX:+DisableExplicitGC -XX:+UseConcMarkSweepGC
-XX:NewSize=<1/4 of total heap size> -XX:SurvivorRatio=16

The reasoning for each setting is as follows:

• -XX:+DisableExplicitGC - some libs call System.gc(). This is usually a bad idea and could explain
some of what we saw.

• -XX:+UseConcMarkSweepGC - use the low pause collector

• -XX:NewSize=1/4 of total heap size -XX:SurvivorRatio=16

75

12.3 Distributed Caching Garbage Collection Tuning

Some users have reported that enabling distributed caching causes a full GC each minute. This is an issue
with RMI generally, which can be worked around by increasing the interval for garbage collection. The
effect that RMI is having is similar to a user application calling System.gc() each minute. In the settings
above this is disabled, but it does not disable the full GC initiated by RMI.
The default in JDK6 was increased to 1 hour. The following system properties control the interval.

-Dsun.rmi.dgc.client.gcInterval=60000
-Dsun.rmi.dgc.server.gcInterval=60000

See http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367 for the bug report and detailed in-
structions on workarounds.
Increase the interval as required in your application.

76

Chapter 13

JMX Management and Monitoring

13.1 JMX Overview

JMX, part of JDK1.5, and available as a download for 1.4, creates a standard way of instrumenting classes
and making them available to a management and monitoring infrastructure.
The net.sf.ehcache.management package contains MBeans and a ManagementService for JMX
management of ehcache. It is in a separate package so that JMX libraries are only required if you wish to
use it - there is no leakage of JMX dependencies into the core ehcache package.
This implementation attempts to follow Sun’s JMX best practices. See http://java.sun.com/javase/technologies/core/mntr-
mgmt/ javamanagement/best-practices.jsp.
Use net.sf.ehcache.management.ManagementService.registerMBeans(...) static method to
register a selection of MBeans to the MBeanServer provided to the method.
If you wish to monitor ehcache but not use JMX, just use the existing public methods on Cache and
CacheStatistics.

The Management Package

77

13.2 MBeans

Ehcache uses Standard MBeans. MBeans are available for the following:

• CacheManager

• Cache

• CacheConfiguration

• CacheStatistics

All MBean attributes are available to a local MBeanServer. The CacheManager MBean allows
traversal to its collection of Cache MBeans. Each Cache MBean likewise allows traversal to its
CacheConfiguration MBean and its CacheStatistics MBean.

13.3 JMX Remoting

The JMXRemote API allows connection from a remote JMXAgent to anMBeanServer via an MBeanServerConnection.
Only Serializable attributes are available remotely. The following Ehcache MBean attributes are avail-
able remotely:

• limited CacheManager attributes

• limited Cache attributes

• all CacheConfiguration attributes

• all CacheStatistics attributes

Most attributes use built-in types. To access all attributes, you need to add ehcache.jar to the remote
JMX client’s classpath e.g. jconsole -J-Djava.class.path=ehcache.jar.

13.4 ObjectName naming scheme

• CacheManager - "net.sf.ehcache:type=CacheManager,name=CacheManager"

• Cache - "net.sf.ehcache:type=Cache,CacheManager=cacheManagerName,name=cacheName"

• CacheConfiguration - "net.sf.ehcache:type=CacheConfiguration,CacheManager=cacheManagerName,name=cacheName"

• CacheStatistics - "net.sf.ehcache:type=CacheStatistics,CacheManager=cacheManagerName,name=cacheName"

13.5 The Management Service

The ManagementService class is the API entry point.

78

ManagementService

There is only one method, ManagementService.registerMBeanswhich is used to initiate JMX regis-
tration of an ehcache CacheManager’s instrumentedMBeans. The ManagementService is a CacheManagerEventListener
and is therefore notified of any new Caches added or disposed and updates the MBeanServer appropriately.
Once initiated the MBeans remain registered in the MBeanServer until the CacheManager shuts down, at
which time the MBeans are deregistered. This behaviour ensures correct behaviour in application servers
where applications are deployed and undeployed.

/**
* This method causes the selected monitoring options to be be registered
* with the provided MBeanServer for caches in the given CacheManager.
* <p/>
* While registering the CacheManager enables traversal to all of the other
* items,
* this requires programmatic traversal. The other options allow entry points closer
* to an item of interest and are more accessible from JMX management tools like JConsole.
* Moreover CacheManager and Cache are not serializable, so remote monitoring is not
* possible * for CacheManager or Cache, while CacheStatistics and CacheConfiguration are.
* Finally * CacheManager and Cache enable management operations to be performed.
* <p/>
* Once monitoring is enabled caches will automatically added and removed from the
* MBeanServer * as they are added and disposed of from the CacheManager. When the
* CacheManager itself * shutsdown all registered MBeans will be unregistered.
*
* @param cacheManager the CacheManager to listen to
* @param mBeanServer the MBeanServer to register MBeans to
* @param registerCacheManager Whether to register the CacheManager MBean
* @param registerCaches Whether to register the Cache MBeans
* @param registerCacheConfigurations Whether to register the CacheConfiguration MBeans
* @param registerCacheStatistics Whether to register the CacheStatistics MBeans
*/

public static void registerMBeans(
net.sf.ehcache.CacheManager cacheManager,
MBeanServer mBeanServer,
boolean registerCacheManager,
boolean registerCaches,
boolean registerCacheConfigurations,
boolean registerCacheStatistics) throws CacheException {

79

13.6 JConsole Example

This example shows how to register CacheStatistics in the JDK1.5 platform MBeanServer, which works
with the JConsole management agent.

CacheManager manager = new CacheManager();
MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
ManagementService.registerMBeans(manager, mBeanServer, false, false, false, true);

CacheStatistics MBeans are then registered.

CacheStatistics MBeans in JConsole

13.7 JMX Tutorial

See http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html for an online tutorial.

80

Chapter 14

Class loading and Class Loaders

Class loading within the plethora of environments ehcache can be running is a somewhat vexed issue.
Since ehcache-1.2 all classloading is done in a standard way in one utility class: ClassLoaderUtil.

14.1 Plugin class loading

Ehcache allows plugins for events and distribution. These are loaded and created as follows:

/**
* Creates a new class instance. Logs errors along the way. Classes are loaded using the
* ehcache standard classloader.
*
* @param className a fully qualified class name
* @return null if the instance cannot be loaded
*/

public static Object createNewInstance(String className) throws CacheException {
Class clazz;
Object newInstance;
try {

clazz = Class.forName(className, true, getStandardClassLoader());
} catch (ClassNotFoundException e) {

//try fallback
try {

clazz = Class.forName(className, true, getFallbackClassLoader());
} catch (ClassNotFoundException ex) {

throw new CacheException("Unable to load class " + className +
". Initial cause was " + e.getMessage(), e);

}
}

try {
newInstance = clazz.newInstance();

} catch (IllegalAccessException e) {
throw new CacheException("Unable to load class " + className +

". Initial cause was " + e.getMessage(), e);
} catch (InstantiationException e) {

throw new CacheException("Unable to load class " + className +
". Initial cause was " + e.getMessage(), e);

}
return newInstance;

81

}

/**
* Gets the <code>ClassLoader</code> that all classes in ehcache, and extensions, should
* use for classloading. All ClassLoading in ehcache should use this one. This is the only
* thing that seems to work for all of the class loading situations found in the wild.
* @return the thread context class loader.
*/

public static ClassLoader getStandardClassLoader() {
return Thread.currentThread().getContextClassLoader();

}

/**
* Gets a fallback <code>ClassLoader</code> that all classes in ehcache, and extensions,
* should use for classloading. This is used if the context class loader does not work.
* @return the <code>ClassLoaderUtil.class.getClassLoader();</code>
*/

public static ClassLoader getFallbackClassLoader() {
return ClassLoaderUtil.class.getClassLoader();

}

If this does not work for some reason a CacheException is thrown with a detailed error message.

14.2 Loading of ehcache.xml resources

If the configuration is otherwise unspecified, ehcache looks for a configuration in the following order:

• Thread.currentThread().getContextClassLoader().getResource("/ehcache.xml")

• ConfigurationFactory.class.getResource("/ehcache.xml")

• ConfigurationFactory.class.getResource("/ehcache-failsafe.xml")

Ehcache uses the first configuration found.
Note the use of "/ehcache.xml" which requires that ehcache.xml be placed at the root of the classpath, i.e.
not in any package.

82

Chapter 15

Performance Considerations

15.1 DiskStore

Ehcache comes with a MemoryStore and a DiskStore. The MemoryStore is approximately an order
of magnitude faster than the DiskStore. The reason is that the DiskStore incurs the following extra
overhead:

• Serialization of the key and value

• Eviction from the MemoryStore using an eviction algorithm

• Reading from disk

Note that writing to disk is not a synchronous performance overhead because it is handled by a separate
thread.
A Cache should alway have its maximumSize attribute set to 1 or higher. A Cache with a maximum size
of 1 has twice the performance of a disk only cache, i.e. one where the maximumSize is set to 0. For this
reason a warning will be issued if a Cache is created with a 0 maximumSize.

15.2 Replication

The asynchronous replicator is the highest performance. There are two different effects:

• Because it is asynchronous the caller returns immediately

• The messages are placed in a queue. As the queue is processed, multiple messages are sent in one
RMI call, dramatically accelerating replication performance.

83

84

Chapter 16

Cache Decorators

Ehcache 1.2 introduced the Ehcache interface, of which Cache is an implementation. It is possible and
encouraged to create Ehcache decorators that are backed by a Cache instance, implement Ehcache and
provide extra functionality.
The Decorator pattern is one of the the well known Gang of Four patterns.

16.1 Creating a Decorator

Cache decorators are created as follows:

BlockingCache newBlockingCache = new BlockingCache(cache);

The class must implement Ehcache.

16.2 Accessing the decorated cache

Having created a decorator it is generally useful to put it in a place where multiple threads may access it.
This can be achieved in multiple ways.

16.2.1 Using CacheManager to access decorated caches

A built-in way is to replace the Cache in CacheManager with the decorated one. This is achieved as in the
following example:

cacheManager.replaceCacheWithDecoratedCache(cache, newBlockingCache);

The CacheManager replaceCacheWithDecoratedCachemethod requires that the decorated cache be
built from the underlying cache from the same name.
Note that any overwritten Ehcache methods will take on new behaviours without casting, as per the normal
rules of Java. Casting is only required for new methods that the decorator introduces.
Any calls to get the cache out of the CacheManager now return the decorated one.
A word of caution. This method should be called in an appropriately synchronized init style method before
multiple threads attempt to use it. All threads must be referencing the same decorated cache. An example
of a suitable init method is found in CachingFilter:

85

/**
* The cache holding the web pages. Ensure that all threads for a given cache name
* are using the same instance of this.
*/

private BlockingCache blockingCache;

/**
* Initialises blockingCache to use
*
* @throws CacheException The most likely cause is that a cache has not been
* configured in ehcache’s configuration file ehcache.xml for the
* filter name
*/

public void doInit() throws CacheException {
synchronized (this.getClass()) {

if (blockingCache == null) {
final String cacheName = getCacheName();
Ehcache cache = getCacheManager().getEhcache(cacheName);
if (!(cache instanceof BlockingCache)) {

//decorate and substitute
BlockingCache newBlockingCache = new BlockingCache(cache);
getCacheManager().replaceCacheWithDecoratedCache(cache, newBlockingCache);

}
blockingCache = (BlockingCache) getCacheManager().getEhcache(getCacheName());

}
}

}

Ehcache blockingCache = singletonManager.getEhcache("sampleCache1");

The returned cache will exhibit the decorations.

16.3 Built-in Decorators

16.3.1 BlockingCache

A blocking decorator for an Ehcache, backed by a @link Ehcache.
It allows concurrent read access to elements already in the cache. If the element is null, other reads will
block until an element with the same key is put into the cache.
This is useful for constructing read-through or self-populating caches.
BlockingCache is used by CachingFilter.

86

BlockingCache

16.3.2 SelfPopulatingCache

A selfpopulating decorator for @link Ehcache that creates entries on demand.
Clients of the cache simply call it without needing knowledge of whether the entry exists in the cache. If
null the entry is created.
The cache is designed to be refreshed. Refreshes operate on the backing cache, and do not degrade perfor-
mance of get calls.

87

SelfPopulatingCache extends BlockingCache. Multiple threads attempting to access a null element will
block until the first thread completes. If refresh is being called the threads do not block - they return the
stale data.
This is very useful for engineering highly scalable systems.

SelfPopulatingCache

16.3.3 Caches with Exception Handling

These are decorated. See Cache Exception Handlers for full details.

88

Chapter 17

Shutting Down Ehcache

If you are using persistent disk stores, or distributed caching, care should be taken to shutdown ehcache.
Note that Hibernate automatically shuts down its ehcache CacheManager.
The recommended way to shutdown the Ehcache is:

• to call CacheManager.shutdown()

• in a web app, register the Ehcache ShutdownListener

Though not recommended, ehcache also lets you register a JVM shutdown hook.

17.1 ServletContextListener

Ehcache proivdes a ServletContextListener that shutsdown CacheManager. Use this when you want to
shutdown ehcache automatically when the web application is shutdown.
To receive notification events, this class must be configured in the deployment descriptor for the web
application.
To do so, add the following to web.xml in your web application:

<listener>
<listener-class>net.sf.ehcache.constructs.web.ShutdownListener</listener-class>

</listener>

17.2 The Shutdown Hook

Ehcache CacheManager can optionally register a shutdown hook.
To do so, set the system property net.sf.ehcache.enableShutdownHook=true.
This will shutdown the CacheManager when it detects the Virtual Machine shutting down and it is not
already shut down.

17.2.1 When to use the shutdown hook

Use the shutdown hook where:

89

• you need guaranteed orderly shutdown, when for example using persistent disk stores, or distributed
caching.

• CacheManager is not already being shutdown by a framework you are using or by your application.
Having said that, shutdown hooks are inherently dangerous. The JVM is shutting down, so some-
times things that can never be null are. Ehcache guards against as many of these as it can, but the
shutdown hook should be the last option to use.

17.2.2 What the shutdown hook does

The shutdown hook is on CacheManager. It simply calls the shutdown method.
The sequence of events is:

• call dispose for each registered CacheManager event listener

• call dispose for each Cache.
Each Cache will:

– shutdown the MemoryStore. The MemoryStore will flush to the DiskStore
– shutdown the DiskStore. If the DiskStore is persistent, it will write the entries and index to
disk.

– shutdown each registered CacheEventListener
– set the Cache status to shutdown, preventing any further operations on it.

• set the CacheManager status to shutdown, preventing any further operations on it

17.2.3 When a shutdown hook will run, and when it will not

The shutdown hook runs when:

• a program exists normally. e.g. System.exit() is called, or the last non-daemon thread exits

• the Virtual Machine is terminated. e.g. CTRL-C. This corresponds to kill -SIGTERM pid or
kill -15 pid on Unix systems.

The shutdown hook will not run when:

• the Virtual Machine aborts

• A SIGKILL signal is sent to the Virtual Machine process on Unix systems. e.g. kill -SIGKILL
pid or kill -9 pid

• A TerminateProcess call is sent to the process on Windows systems.

17.3 Dirty Shutdown

If ehcache is shutdown dirty then any persistent disk stores will be corrupted. They will be deleted, with a
log message, on the next startup.
Replications waiting to happen to other nodes in a distributed cache will also not get written.

90

Chapter 18

Web Caching

Ehcache provides a set of general purpose web caching filters in the ehcache-webmodule.
Using these can make an amazing difference to web application performance. A typical server can deliver
5000+ pages per second from the page cache. With built-in gzipping, storage and network transmission is
highly efficient. Cache pages and fragments make excellent candidates for DiskStore storage, because
the object graphs are simple and the largest part is already a byte[].

18.1 SimplePageCachingFilter

This is a simple caching filter suitable for caching compressable HTTP responses such as HTML, XML or
JSON.
It uses a Singleton CacheManager created with the default factory method. Override to use a different
CacheManager
It is suitable for:

• complete responses i.e. not fragments.

• A content type suitable for gzipping. e.g. text or text/html

For fragments see the SimplePageFragmentCachingFilter.

18.2 Keys

Pages are cached based on their key. The key for this cache is the URI followed by the query string. An
example is /admin/SomePage.jsp?id=1234&name=Beagle.
This key technique is suitable for a wide range of uses. It is independent of hostname and port number, so
will work well in situations where there are multiple domains which get the same content, or where users
access based on different port numbers.
A problem can occur with tracking software, where unique ids are inserted into request query strings. Be-
cause each request generates a unique key, there will never be a cache hit. For these situations it is better to
parse the request parameters and overridecalculateKey(javax.servlet.http.HttpServletRequest)
with an implementation that takes account of only the significant ones.

91

18.3 Configuring the cacheName

A cache entry in ehcache.xml should be configured with the name of the filter.
Names can be set using the init-param codecacheName/code, or by sub-classing this class and overriding
the name.

18.4 Concurent Cache Misses

A cache miss will cause the filter chain, upstream of the caching filter to be processed. To avoid threads
requesting the same key to do useless duplicate work, these threads block behind the first thread.
The thead timeout can be set to fail after a certain wait by setting the init-param codeblockingTimeoutMillis/code.
By default threads wait indefinitely. In the event upstream processing never returns, eventually the web
server may get overwhelmed with connections it has not responded to. By setting a timeout, the waiting
threads will only block for the set time, and then throw a@link net.sf.ehcache.constructs.blocking.LockTimeoutException.
Under either scenario an upstream failure will still cause a failure.

18.5 Gzipping

Significant network efficiencies, and page loading speedups, can be gained by gzipping responses.
Whether a response can be gzipped depends on:

• Whether the user agent can accept GZIP encoding. This feature is part of HTTP1.1. If a browser
accepts GZIP encoding it will advertise this by including in its HTTP header: All common browsers
except IE 5.2 on Macintosh are capable of accepting gzip encoding. Most search engine robots do
not accept gzip encoding.

• Whether the user agent has advertised its acceptance of gzip encoding. This is on a per request basis.
If they will accept a gzip response to their request they must include the following in the HTTP
request header:

Accept-Encoding: gzip

Responses are automatically gzipped and stored that way in the cache. For requests which do not
accept gzip encoding the page is retrieved from the cache, ungzipped and returned to the user agent.
The ungzipping is high performance.

18.6 Caching Headers

The SimpleCachingHeadersPageCachingFilter extends SimplePageCachingFilter to provide
the HTTP cache headers: ETag, Last-Modified and Expires. It supports conditional GET.
Because browsers and other HTTP clients have the expiry information returned in the response headers,
they do not even need to request the page again. Even once the local browser copy has expired, the browser
will do a conditional GET.
So why would you ever want to use SimplePageCachingFilter, which does not set these headers? The
answer is that in some caching scenarios you may wish to remove a page before its natural expiry. Consider
a scenario where a web page shows dynamic data. Under ehcache the Element can be removed at any time.
However if a browser is holding expiry information, those browsers will have to wait until the expiry
time before getting updated. The caching in this scenario is more about defraying server load rather than
minimising browser calls.

92

18.7 Init-Params

The following init-params are supported:

• cacheName - the name in ehcache.xml used by the filter.

• blockingTimeoutMillis - the time, in milliseconds, to wait for the filter chain to return with a
response on a cache miss. This is useful to fail fast in the event of an infrastructure failure.

18.8 Reentrance

Care should be taken not to define a filter chain such that the same CachingFilter class is reentered.
The CachingFilter uses the BlockingCache. It blocks until the thread which did a get which results
in a null does a put. If reentry happens a second get happens before the first put. The second get could wait
indefinitely. This situation is monitored and if it happens, an IllegalStateException will be thrown.

18.9 SimplePageFragmentCachingFilter

The SimplePageFragmentCachingFilter does everyting that SimplePageCachingFilter does, except it never
gzips, so the fragments can be combined. There is variant of this filter which sets browser caching headers,
because that is only applicable to the entire page.

18.10 Example web.xml configuration

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_
version="2.5">

<filter>
<filter-name>CachePage1CachingFilter</filter-name>
<filter-class>net.sf.ehcache.constructs.web.filter.SimplePageCachingFilter
</filter-class>
<init-param>

<param-name>suppressStackTraces</param-name>
<param-value>false</param-value>

</init-param>
<init-param>

<param-name>cacheName</param-name>
<param-value>CachePage1CachingFilter</param-value>

</init-param>
</filter>

<filter>
<filter-name>SimplePageFragmentCachingFilter</filter-name>
<filter-class>net.sf.ehcache.constructs.web.filter.SimplePageFragmentCachingFilter
</filter-class>
<init-param>

<param-name>suppressStackTraces</param-name>
<param-value>false</param-value>

</init-param>
<init-param>

93

<param-name>cacheName</param-name>
<param-value>SimplePageFragmentCachingFilter</param-value>

</init-param>
</filter>

<filter>
<filter-name>SimpleCachingHeadersPageCachingFilter</filter-name>
<filter-class>net.sf.ehcache.constructs.web.filter.SimpleCachingHeadersPageCachingFilter
</filter-class>
<init-param>

<param-name>suppressStackTraces</param-name>
<param-value>false</param-value>

</init-param>
<init-param>

<param-name>cacheName</param-name>
<param-value>CachedPage2Cache</param-value>

</init-param>

</filter>

<!-- This is a filter chain. They are executed in the order below. Do not change the order.
<filter-mapping>

<filter-name>CachePage1CachingFilter</filter-name>
<url-pattern>/CachedPage.jsp</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>INCLUDE</dispatcher>
<dispatcher>FORWARD</dispatcher>

</filter-mapping>

<filter-mapping>
<filter-name>SimplePageFragmentCachingFilter</filter-name>
<url-pattern>/include/Footer.jsp</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>SimplePageFragmentCachingFilter</filter-name>
<url-pattern>/fragment/CachedFragment.jsp</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>SimpleCachingHeadersPageCachingFilter</filter-name>
<url-pattern>/CachedPage2.jsp</url-pattern>

</filter-mapping>

94

Chapter 19

An ehcache.xml configuration file,
matching the above would then be:

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../main/config/ehcache.xsd">

<diskStore path="java.io.tmpdir"/>

<defaultCache
maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="5"
timeToLiveSeconds="10"
overflowToDisk="true"
/>

<!-- Page and Page Fragment Caches -->

<cache name="CachePage1CachingFilter"
maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="10000"
timeToLiveSeconds="10000"
overflowToDisk="true">

</cache>

<cache name="CachedPage2Cache"
maxElementsInMemory="10"
eternal="false"
timeToLiveSeconds="3600"
overflowToDisk="true">

</cache>

<cache name="SimplePageFragmentCachingFilter"
maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="10000"
timeToLiveSeconds="10000"

95

overflowToDisk="true">
</cache>

<cache name="SimpleCachingHeadersTimeoutPageCachingFilter"
maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="10000"
timeToLiveSeconds="10000"
overflowToDisk="true">

</cache>

</ehcache>

96

Chapter 20

Distributed Caching with ehcache

Ehcache provides a pluggable distributed caching mechanism. This enables for multiple CacheManagers
and their caches in multiple JVMs to share data with each other.

20.1 Pluggable Mechanisms

Ehcache has a pluggable cache replication scheme which enables the addition of cache replication mecha-
nisms.
The following distribution mechanisms are supported in ehcache 1.5:

• RMI

• JGroups

• JMS

• Terracotta

• Cache Server

Each of the is covered in its own chapter.

20.2 The need for shared cache data

Many production applications are deployed in clusters. If each application maintains its own cache, then
updates made to one cache will not appear in the others. A workaround for web based applications is to use
sticky sessions, so that a user, having established a session on one server, stays on that server for the rest
of the session. A workaround for transaction processing systems using Hibernate is to do a session.refresh
on each persistent object as part of the save. session.refresh explicitly reloads the object from the database,
ignoring any cache values.

20.3 Replicated Caches

One solution is to replicate data between the caches to keep them consistent, or coherent. Typical operations
which Applicable operations include:

97

• put

• update (put which overwrites an existing entry)

• remove

Update supports updateViaCopy or updateViaInvalidate. The latter sends the a remove message out to the
cache cluster, so that other caches remove the Element, thus preserving coherency. It is typically a lower
cost option than a copy.

20.4 Using a Cache Server

Ehcache 1.5 supports the Ehcache Cache Server.
To achieve shared data, all JVMs read to and write from a Cache Server, which runs it in its own JVM.
To achieve redundancy, the Ehcache inside the Cache Server can be set up in its own cluster.
This technique will be expanded upon in Ehcache 1.6.

20.5 Notification Strategies

The best way of notifying of put and update depends on the nature of the cache.
If the Element is not available anywhere else then the Element itself should form the payload of the notifi-
cation. An example is a cached web page. This notification strategy is called copy.
Where the cached data is available in a database, there are two choices. Copy as before, or invalidate the
data. By invalidating the data, the application tied to the other cache instance will be forced to refresh its
cache from the database, preserving cache coherency. Only the Element key needs to be passed over the
network.
Ehcache supports notification through copy and invalidate, selectable per cache.

20.6 Potential Issues with Distributed Caching

20.6.1 Potential for Inconsisent Data

Timing scenarios, race conditions, delivery, reliability constraints and concurrent updates to the same
cached data can cause inconsistency (and thus a lack of coherency) across the cache instances.
This potential exists within the ehcache implementation. These issues are the same as what is seen when
two completely separate systems are sharing a database; a common scenario.
Whether data inconsistency is a problem depends on the data and how it is used. For those times when
it is important, ehcache provides for synchronous delivery of puts and updates via invalidation. These are
discussed below:

Synchronous Delivery

Delivery can be specified to be synchronous or asynchronous. Asynchronous delivery gives faster returns
to operations on the local cache and is usually preferred. Synchronous delivery adds time to the local
operation, however delivery of an update to all peers in the cluster happens before the cache operation
returns.

98

Put and Update via Invalidation

The default is to update other caches by copying the new value to them. If the replicatePutsViaCopy
property is set to false in the replication configuration, puts are made by removing the element in any other
cache peers. If the replicateUpdatesViaCopy property is set to false in the replication configuration, updates
are made by removing the element in any other cache peers.
This forces the applications using the cache peers to return to a canonical source for the data.
A similar effect can be obtained by setting the element TTL to a low value such as a second.
Note that these features impact cache performance and should not be used where the main purpose of a
cache is performance boosting over coherency.

20.6.2 Use of Time To Idle

Time To Idle is isconsistent with distributed caching. Time-to-idle makes some entries live longer on some
nodes than in others because of cache usage patterns. However, the cache entry "last touched" timestamp
is not replicated across the distributed cache.
Do not use Time To Idle with distributed caching, unless you do not care about inconsistent data across
nodes.

99

100

Chapter 21

RMI Distributed Caching

Since version 1.2, Ehcache has provided distributed caching using RMI.
An RMI implementation is desirable because:

• it itself is the default remoting mechanism in Java

• it is mature

• it allows tuning of TCP socket options

• Element keys and values for disk storage must already be Serializable, therefore directly transmit-
table over RMI without the need for conversion to a third format such as XML.

• it can be configured to pass through firewalls

• RMI had improvements added to it with each release of Java, which can then be taken advantage of.

While RMI is a point-to-point protocol, which can generate a lot of network traffic, ehcache manages this
through batching of communications for the asynchronous replicator.
To set up RMI distributed caching you need to configure the CacheManager with:

• a PeerProvider

• a CacheManagerPeerListener
The for each cache that will operate distributed, you then need to add one of the RMI cacheEventLis-
tener types to propagate messages.
You can also optionally configure a cache to bootstrap from other caches in the cluster.

101

21.1 Suitable Element Types

Only Serializable Elements are suitable for replication.
Some operations, such as remove, work off Element keys rather than the full Element itself. In this case
the operation will be replicated provided the key is Serializable, even if the Element is not.

21.2 Configuring the Peer Provider

21.2.1 Peer Discovery

Ehcache has the notion of a group of caches acting as a distributed cache. Each of the caches is a peer to
the others. There is no master cache. How do you know about the other caches that are in your cluster?
This problem can be given the name Peer Discovery.
Ehcache provides two mechanisms for peer discovery, just like a car: manual and automatic.
To use one of the built-in peer discoverymechanisms specify the class attribute of cacheManagerPeerProviderFactory
as net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory in the ehcache.xml
configuration file.

21.2.2 Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish and maintain a multicast group. It features minimal
configuration and automatic addition to and deletion of members from the group. No a priori knowledge
of the servers in the cluster is required. This is recommended as the default option.
Peers send heartbeats to the group once per second. If a peer has not been heard of for 5 seconds it is
dropped from the group. If a new peer starts sending heartbeats it is admitted to the group.
Any cache within the configuration set up as replicated will be made available for discovery by other peers.
To set automatic peer discovery, specify the properties attribute of cacheManagerPeerProviderFactory
as follows:
peerDiscovery=automaticmulticastGroupAddress=multicast address |multicast host namemulticastGroup-
Port=port timeToLive=0-255 (See below in common problems before setting this)

Example

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and sampleCache12.
The configuration required for each server is identical:
Configuration for server1 and server2

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446, timeToLive=32"/>

21.2.3 Manual Peer Discovery

Manual peer configuration requires the IP address and port of each listener to be known. Peers cannot be
added or removed at runtime. Manual peer discovery is recommended where there are technical difficulties
using multicast, such as a router between servers in a cluster that does not propagate multicast datagrams.

102

You can also use it to set up one way replications of data, by having server2 know about server1 but not
vice versa.
To set manual peer discovery, specify the properties attribute of cacheManagerPeerProviderFactory
as follows: peerDiscovery=manual rmiUrls=//server:port/cacheName, ...
The rmiUrls is a list of the cache peers of the server being configured. Do not include the server being
configured in the list.

Example

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and sampleCache12.
Following is the configuration required for each server:
Configuration for server1

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

properties="peerDiscovery=manual,
rmiUrls=//server2:40001/sampleCache11|//server2:40001/sampleCache12"/>

Configuration for server2

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

properties="peerDiscovery=manual,
rmiUrls=//server1:40001/sampleCache11|//server1:40001/sampleCache12"/>

21.3 Configuring the CacheManagerPeerListener

A CacheManagerPeerListener listens for messages from peers to the current CacheManager.
You configure the CacheManagerPeerListener by specifiying a CacheManagerPeerListenerFactory which
is used to create the CacheManagerPeerListener using the plugin mechanism.
The attributes of cacheManagerPeerListenerFactory are:

• class - a fully qualified factory class name * properties - comma separated properties having meaning
only to the factory.
Ehcache comes with a built-in RMI-based distribution system. The listener component is RMI-
CacheManagerPeerListener which is configured using RMICacheManagerPeerListenerFactory. It is
configured as per the following example:

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"

properties="hostName=localhost, port=40001,
socketTimeoutMillis=2000"/>

Valid properties are:

• hostName (optional) - the hostName of the host the listener is running on. Specify where the host is
multihomed and you want to control the interface over which cluster messages are received.

103

The hostname is checked for reachability during CacheManager initialisation.
If the hostName is unreachable, the CacheManager will refuse to start and an CacheException will
be thrown indicating connection was refused.
If unspecified, the hostnamewill use InetAddress.getLocalHost().getHostAddress(),which
corresponds to the default host network interface.
Warning: Explicitly setting this to localhost refers to the local loopback of 127.0.0.1, which is not
network visible and will cause no replications to be received from remote hosts. You should only use
this setting when multiple CacheManagers are on the same machine.

• port (mandatory) - the port the listener listens on.

• socketTimeoutMillis (optional) - the number of seconds client sockets will wait when sending mes-
sages to this listener until they give up. By default this is 2000ms.

21.4 Configuring Cache Replicators

Each cache that will be distributed needs to set a cache event listener which then replicates messages to the
other CacheManager peers. This is done by adding a cacheEventListenerFactory element to each cache’s
configuration.

<!-- Sample cache named sampleCache2. -->
<cache name="sampleCache2"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true, replicateUpdates=true,
replicateUpdatesViaCopy=false, replicateRemovals=true "/>

</cache>

class - use net.sf.ehcache.distribution.RMICacheReplicatorFactory
The factory recognises the following properties:

• replicatePuts=true |false - whether new elements placed in a cache are replicated to others. Defaults
to true.

• replicateUpdates=true |false - whether new elements which override an element already existing with
the same key are replicated. Defaults to true.

• replicateRemovals=true - whether element removals are replicated. Defaults to true.

• replicateAsynchronously=true |false - whether replications are asyncrhonous (true) or synchronous
(false). Defaults to true.

• replicateUpdatesViaCopy=true |false - whether the new elements are copied to other caches (true),
or whether a remove message is sent. Defaults to true.

To reduce typing if you want default behaviour, which is replicate everything in asynchronous mode, you
can leave off the RMICacheReplicatorFactory properties as per the following example:

104

<!-- Sample cache named sampleCache4. All missing RMICacheReplicatorFactory properties
default to true -->

<cache name="sampleCache4"
maxElementsInMemory="10"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="LFU">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>

</cache>

21.5 Configuring Bootstrap from a Cache Peer

When a peer comes up, it will be incoherent with other caches. When the bootstrap completes it will be
partially coherent. Bootstrap gets the list of keys from a random peer, and then loads those in batches
from random peers. If bootstrap fails then the Cache will not start (not like this right now). However if a
distributed cache operation occurs which is then overwritten by bootstrap there is a chance that the cache
could be inconsistent.
Here are some scenarios:
Delete overwritten by boostrap put --- Cache A keys with values: 1, 2, 3, 4, 5
Cache B starts bootstrap
Cache A removes key 2
Cache B removes key 2 and then bootstrap puts it back

Put overwritten by boostrap put --- Cache A keys with values: 1, 2, 3, 4, 5
Cache B starts bootstrap
Cache A updates the value of key 2
Cache B updates the value of key 2 and then bootstrap overwrites it with the old value

The solution is for bootstrap to get a list of keys and write them all before committing transactions.
This could cause synchronous transaction replicates to back up. To solve this problem, commits will be
accepted, but not written to the cache until after bootstrap. Coherency is maintained because the cache is
not available until bootstrap has completed and the transactions have been completed.

21.6 Full Example

Ehcache’s own integration tests provide complete examples of RMI-based replication. The best example
is the integration test for cache replication. You can see it online here: http://ehcache.sourceforge.net/xref-
test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html
The test uses 5 ehcache.xml’s representing 5 CacheManagers set up to distribute using RMI. You can copy
and paste them from: http://ehcache.svn.sourceforge.net/viewvc/ehcache/trunk/core/src/test/resources/distribution/

105

21.7 Common Problems

21.7.1 Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listener will fail to start on Tomcat if the installa-
tion path has spaces in it. See http://archives.java.sun.com/cgi-bin/wa?A2=ind0205&L=rmi-users&P=797
and http://www.ontotext.com/kim/doc/sys-doc/faq-howto-bugs/known-bugs.html.
As the default on Windows is to install Tomcat in "Program Files", this issue will occur by default.

21.7.2 Multicast Blocking

The automatic peer discovery process relies on multicast. Multicast can be blocked by routers. Virtualisa-
tion technologies like Xen and VMWare may be blocking multicast. If so enable it. You may also need to
turn it on in the configuration for your network interface card.
An easy way to tell if your mutlicast is getting through is to use the ehcache remote debugger and watch
for the heartbeat packets to arrive.

21.7.3 Multicast Not Progagating Far Enough or Propagating Too Far

You can control how far the multicast packets propagate by setting the badly misnamed time to live. Using
the multicast IP protocol, the timeToLive value indicates the scope or range in which a packet may be
forwarded. By convention:

0 is restricted to the same host
1 is restricted to the same subnet
32 is restricted to the same site
64 is restricted to the same region
128 is restricted to the same continent
255 is unrestricted

The default value in Java is 1, which propagates to the same subnet. Change the timeToLive property to
restrict or expand propagation.

106

Chapter 22

Distributed Caching using JGroups

As of version 1.5, JGroups can be used as the underlying mechanism for the distributed operations in
ehcache. JGroups offers a very flexible protocol stack, reliable unicast and multicast message transmission.
On the down side JGroups can be complex to configure and some protocol stacks have dependencies on
others.
To set up distributed caching using JGroups you need to configure a PeerProviderFactory of type JGroup-
sCacheManagerPeerProviderFactory which is done globally for a CacheManager For each cache that will
operate distributed, you then need to add a cacheEventListenerFactory of type JGroupsCacheReplicator-
Factory to propagate messages.

22.1 Suitable Element Types

Only Serializable Elements are suitable for replication.
Some operations, such as remove, work off Element keys rather than the full Element itself. In this case
the operation will be replicated provided the key is Serializable, even if the Element is not.

22.2 Peer Discovery

If you use the UDP multicast stack there is no additional configuration. If you use a TCP stack you will
need to specify the initial hosts in the cluster.

22.3 Configuration

There are two things to configure:

• The JGroupsCacheManagerPeerProviderFactory which is done once per CacheManager and there-
fore once per ehcache.xml file.

• The JGroupsCacheReplicatorFactory which is added to each cache’s configuration.

The main configuration happens in the JGroupsCacheManagerPeerProviderFactory connect sub-
property. A connect property is passed directly to the JGroups channel and therefore all the protocol
stacks and options available in JGroups can be set.

107

22.4 Example configuration using UDP Multicast

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and sampleCache12 and
you wish to use UDP multicast as the underlying mechanism.
The configuration for server1 and server2 are identical and will look like this:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;):PING:
MERGE2:FD_SOCK:VERIFY_SUSPECT:pbcast.NAKACK:UNICAST:pbcast.STABLE:FRAG:pbcast.GMS"
propertySeparator="::"
/>

22.5 Example configuration using TCP Unicast

The TCP protocol requires the IP address of all servers to be known. They are configured through the
TCPPING protocol of Jgroups.
Suppose you have 2 servers host1 and host2, then the configuration is:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
properties="connect=TCP(start_port=7800):

TCPPING(initial_hosts=host1[7800],host2[7800];port_range=10;timeout=3000;
num_initial_members=3;up_thread=true;down_thread=true):
VERIFY_SUSPECT(timeout=1500;down_thread=false;up_thread=false):
pbcast.NAKACK(down_thread=true;up_thread=true;gc_lag=100;retransmit_timeout=3000):
pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;shun=false;
print_local_addr=false;down_thread=true;up_thread=true)"

propertySeparator="::" />

22.6 Protocol considerations.

You should read the JGroups documentation to configure the protocols correctly.
See http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html.
If using UDP you should at least configure PING, FD_SOCK (Failure detection), VERIFY_SUSPECT,
pbcast.NAKACK (Message reliability), pbcast.STABLE (message garbage collection).

22.7 Configuring CacheReplicators

Each cache that will be distributed needs to set a cache event listener which then replicates messages to the
other CacheManager peers. This is done by adding a cacheEventListenerFactory element to each cache’s
configuration. The properties are identical to the one used for RMI replication.
The listener factoryMUST be of type JGroupsCacheReplicatorFactory.

<!-- Sample cache named sampleCache2. -->
<cache name="sampleCache2"

maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"

108

timeToLiveSeconds="100"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false, replicateRemovals=true" />

</cache>

The configuration options are explained below:
class - use net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory
The factory recognises the following properties:

• replicatePuts=true |false - whether new elements placed in a cache are replicated to others. Defaults
to true.

• replicateUpdates=true |false - whether new elements which override an element already existing with
the same key are replicated. Defaults to true.

• replicateRemovals=true - whether element removals are replicated. Defaults to true.

• replicateAsynchronously=true |false - whether replications are asyncrhonous (true) or synchronous
(false). Defaults to true.

• replicateUpdatesViaCopy=true |false - whether the new elements are copied to other caches (true),
or whether a remove message is sent. Defaults to true.

• asynchronousReplicationIntervalMillis default 1000ms Time between updates when replication is
asynchroneous

22.8 Complete Sample configuration

A typical complete configuration for one replicated cache configured for UDP will look like:

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../../main/config/ehcache.xsd">

<diskStore path="java.io.tmpdir/one"/>

<cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution.jgroups
.JGroupsCacheManagerPeerProviderFactory"
properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;ip_ttl=32;
mcast_send_buf_size=150000;mcast_recv_buf_size=80000):
PING(timeout=2000;num_initial_members=6):
MERGE2(min_interval=5000;max_interval=10000):
FD_SOCK:VERIFY_SUSPECT(timeout=1500):
pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):
UNICAST(timeout=5000):
pbcast.STABLE(desired_avg_gossip=20000):
FRAG:
pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;
shun=false;print_local_addr=true)"

propertySeparator="::"
/>

<cache name="sampleCacheAsync"

109

maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,

replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />
</cache>

</ehcache>

22.9 Common Problems

If replication using JGroups doesnt’t work the way you have it configured try this configuration which has
been extensively tested:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"/>

<cache name="sampleCacheAsync"
maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />

</cache>

If this fails to replicate, try to get the example programs from JGroups to run:
http://www.jgroups.org/javagroupsnew/docs/manual/html/ch02.html#d0e451
and
http://www.jgroups.org/javagroupsnew/docs/manual/html/ch02.html#ItDoesntWork
Once you have figured out the connection string that works in your network for JGroups, you can directly
paste it in the connect property of JGroupsCacheManagerPeerProviderFactory.

110

Chapter 23

Distributed Caching using JMS

As of version 1.6, JMS can be used as the underlying mechanism for the distributed operations in ehcache
with the jmsreplication module.
JMS, ("Java Message Service") is an industry standard mechanism for interacting with message queues.
Message queues themselves are a very mature piece of infrastructure used in many enterprise software
contexts. Because they are a required part of the Java EE specification, the large enterprise vendors all
provide their own implementations. There are also several open source choices including Open MQ and
Active MQ. Ehcache is integration tested against both of these.
The ehcache jmsreplication module lets organisations with a message queue investment leverage it for
caching.
It provides:

• replication between cache nodes using a replication topic, in accordance with ehcache’s standard
replication mechanism

• pushing of data directly to cache nodes from external topic publishers, in any language. This is
done by sending the data to the replication topic, where it automatically picked up by the cache
subscribers.

• a JMSCacheLoader, which sends cache load requests to a queue. Either an ehcache cluster node, or
an external queue receiver can respond.

23.1 Ehcache Replication and External Publishers

Ehcache replicates using JMS as follows:

• Each cache node subscribes to a predefined topic, configured as the topicBindingName in ehcache.xml.

• Each replicated cache publishes cache Elements to that topic. Replication is configured per cache.

To set up distributed caching using JMS you need to configure a JMSCacheManagerPeerProvider-
Factory which is done globally for a CacheManager.

For each cache that wishing to replicate, you add a JGroupsCacheReplicatorFactory element to the
cache element.

111

23.1.1 Configuration

Message Queue Configuration

Each cluster needs to use a fixed topic name for replication. Set up a topic using the tools in your message
queue. Out of the box, both ActiveMQ and Open MQ support auto creation of destinations, so this step
may be optional.

Ehcache Configuration

Configuration is done in the ehcache.xml.
There are two things to configure:

• The JMSCacheManagerPeerProviderFactory which is done once per CacheManager and therefore
once per ehcache.xml file.

• The JMSCacheReplicatorFactorywhich is added to each cache’s configuration if you want that cache
replicated.
The main configuration happens in the JGroupsCacheManagerPeerProviderFactory connect sub-
property. A connect property is passed directly to the JGroups channel and therefore all the protocol
stacks and options available in JGroups can be set.

Configuring the JMSCacheManagerPeerProviderFactory Following is the configuration instructions
as it appears in the sample ehcache.xml shipped with ehcache:

{Configuring JMS replication}.
===========================

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
properties="..."
propertySeparator=","
/>

The JMS PeerProviderFactory uses JNDI to maintain message queue independence. Refer to the manual
examples using ActiveMQ and Open Message Queue.

112

Valid properties are:
* initialContextFactoryName (mandatory) - the name of the factory used to create the message queue
* providerURL (mandatory) - the JNDI configuration information for the service provider to use.
* topicConnectionFactoryBindingName (mandatory) - the JNDI binding name for the TopicConnectionFactory
* topicBindingName (mandatory) - the JNDI binding name for the topic name
* securityPrincipalName - the JNDI java.naming.security.principal
* securityCredentials - the JNDI java.naming.security.credentials
* urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs
* userName - the user name to use when creating the TopicConnection to the Message Queue
* password - the password to use when creating the TopicConnection to the Message Queue
* acknowledgementMode - the JMS Acknowledgement mode for both publisher and subscriber. The available

AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE and SESSION_TRANSACTED. The default
* listenToTopic - true or false. If false, this cache will send to the JMS topic but will not
* Default is true.

Example Configurations Usage is best illustrated with concrete examples for ActiveMQ and OpenMQ.

Configuring the JMSCacheManagerPeerProviderFactory for Active MQ This configuration works
with Active MQ out of the box.

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,

providerURL=tcp://localhost:61616,
topicConnectionFactoryBindingName=topicConnectionFactory,
topicBindingName=ehcache"

propertySeparator=","
/>

You need to provide your own ActiveMQInitialContextFactory for the initialContextFactoryName.
An example which should work for most purposes is:

public class ExampleActiveMQInitialContextFactory extends ActiveMQInitialContextFactory {

/**
* {@inheritDoc}
*/
@Override
@SuppressWarnings("unchecked")
public Context getInitialContext(Hashtable environment) throws NamingException {

Map<String, Object> data = new ConcurrentHashMap<String, Object>();

String factoryBindingName = (String)environment.get(JMSCacheManagerPeerProviderFactory.TOPI

try {
data.put(factoryBindingName, createConnectionFactory(environment));

} catch (URISyntaxException e) {
throw new NamingException("Error initialisating ConnectionFactory with message

}

String topicBindingName = (String)environment.get(JMSCacheManagerPeerProviderFactory.TOPIC_

data.put(topicBindingName, createTopic(topicBindingName));

113

return createContext(environment, data);
}

}

Configuring the JMSCacheManagerPeerProviderFactory for Open MQ This configuration works
with an out of the box Open MQ.

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,

providerURL=file:///tmp,
topicConnectionFactoryBindingName=MyConnectionFactory,
topicBindingName=ehcache"

propertySeparator=","
/>

To set up the Open MQ file system initial context to work with this example use the following imqobjmgr
commands to create the requires objects in the context.

imqobjmgr add -t tf -l ’MyConnectionFactory’ -j java.naming.provider.url \
=file:///tmp -j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -f
imqobjmgr add -t t -l ’ehcache’ -o ’imqDestinationName=EhcacheTopicDest’ -j java.naming.provider.url\
=file:///tmp -j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -f

Configuring the JMSCacheReplicatorFactory This is the same as configuring any of the cache repli-
cators. The class should be net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory.
See the following example:

<cache name="sampleCacheAsync"
maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
properties="replicateAsynchronously=true,

replicatePuts=true,
replicateUpdates=true,
replicateUpdatesViaCopy=true,
replicateRemovals=true,
asynchronousReplicationIntervalMillis=1000"

propertySeparator=","/>
</cache>

23.1.2 External JMS Publishers

Anything that can publish to a message queue can also add cache entries to ehcache. These are called
non-cache publishers.

114

Required Message Properties

Publishers need to set up to four String properties on each message: cacheName, action, mimeType and
key.

cacheName Property A JMS message property which contains the name of the cache to operate on.
If no cacheName is set the message will be ignored. A warning log message will indicate that the message
has been ignored.

action Property A JMS message property which contains the action to perform on the cache.
Available actions are strings labeled PUT, REMOVE and REMOVE_ALL.
If not set no action is performed. A warning log message will indicate that the message has been ignored.

mimeType Property A JMS message property which contains the mimeType of the message. Applies to
the PUT action. If not set the message is interpreted as follows:
ObjectMessage - if it is an net.sf.ehcache.Element, then it is treated as such and stored in the cache.
For other objects, a new Element is created using the object in the ObjectMessage as the value and the key
property as a key. Because objects are already typed, the mimeType is ignored.
TextMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be specified.
If not specified it is stored as type text/plain.
BytesMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be specified.
If not specified it is stored as type application/octet-stream.
Other message types are not supported.
To send XML use a TextMessage or BytesMessage and set the mimeType to application/xml.It will be
stored in the cache as a value of MimeTypeByteArray.
The REMOVE and REMOVE_ALL actions do not require a mimeType property.

key Property The key in the cache on which to operate on. The key is of type String.
The REMOVE_ALL action does not require a key property.
If an ObjectMessage of type net.sf.ehcache.Element is sent, the key is contained in the element. Any key
set as a property is ignored.
If the key is required but not provided, a warning log message will indicate that the message has been
ignored.

Code Samples

These samples use OpenMQ as the message queue and use it with out of the box defaults. They are heavily
based on Ehcache’s own JMS integration tests. See the test source for more details.
Messages should be sent to the topic that ehcache is listening on. In these samples it is EhcacheTopicDest.
All samples get a Topic Connection using the following method:

private TopicConnection getMQConnection() throws JMSException {
com.sun.messaging.ConnectionFactory factory = new com.sun.messaging.ConnectionFactory();
factory.setProperty(ConnectionConfiguration.imqAddressList, "localhost:7676");
factory.setProperty(ConnectionConfiguration.imqReconnectEnabled, "true");
TopicConnection myConnection = factory.createTopicConnection();

115

return myConnection;
}

PUT a Java Object into an Ehcache JMS Cluster

String payload = "this is an object";
TopicConnection connection = getMQConnection();
connection.start();

TopicSession publisherSession = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

ObjectMessage message = publisherSession.createObjectMessage(payload);
message.setStringProperty(ACTION_PROPERTY, "PUT");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
//don’t set. Should work.
//message.setStringProperty(MIME_TYPE_PROPERTY, null);
//should work. Key should be ignored when sending an element.
message.setStringProperty(KEY_PROPERTY, "1234");

Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);

connection.stop();

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a Java class String
value of "this is an object".

PUT XML into an Ehcache JMS Cluster

TopicConnection connection = getMQConnection();
connection.start();

TopicSession publisherSession = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

String value = "<?xml version=\"1.0\"?>\n" +
"<oldjoke>\n" +
"<burns>Say <quote>goodnight</quote>,\n" +
"Gracie.</burns>\n" +
"<allen><quote>Goodnight, \n" +
"Gracie.</quote></allen>\n" +
"<applause/>\n" +
"</oldjoke>";

TextMessage message = publisherSession.createTextMessage(value);
message.setStringProperty(ACTION_PROPERTY, "PUT");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty(MIME_TYPE_PROPERTY, "application/xml");
message.setStringProperty(KEY_PROPERTY, "1234");

Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);

connection.stop();

116

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a value of type Mime-
TypeByteArray.
On a get from the cache the MimeTypeByteArray will be returned. It is an ehcache value object from
which a mimeType and byte[] can be retrieved. The mimeType will be "application/xml". The byte[] will
contain the XML String encoded in bytes, using the platform’s default charset.

PUT arbitrary bytes into an Ehcache JMS Cluster

byte[] bytes = new byte[]{0x34, (byte) 0xe3, (byte) 0x88};
TopicConnection connection = getMQConnection();
connection.start();

TopicSession publisherSession = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

BytesMessage message = publisherSession.createBytesMessage();
message.writeBytes(bytes);
message.setStringProperty(ACTION_PROPERTY, "PUT");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty(MIME_TYPE_PROPERTY, "application/octet-stream");
message.setStringProperty(KEY_PROPERTY, "1234");

Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" in and a value of type
MimeTypeByteArray.
On a get from the cache the MimeTypeByteArraywill be returned. It is an ehcache value object fromwhich
a mimeType and byte[] can be retrieved. The mimeType will be "application/octet-stream". The byte[] will
contain the original bytes.

REMOVE

TopicConnection connection = getMQConnection();
connection.start();

TopicSession publisherSession = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

ObjectMessage message = publisherSession.createObjectMessage();
message.setStringProperty(ACTION_PROPERTY, "REMOVE");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty(KEY_PROPERTY, "1234");

Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);

Ehcache will remove the Element with key "1234" from cache "sampleCacheAsync" from the cluster.

REMOVE_ALL

TopicConnection connection = getMQConnection();

117

connection.start();

TopicSession publisherSession = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

ObjectMessage message = publisherSession.createObjectMessage();
message.setStringProperty(ACTION_PROPERTY, "REMOVE_ALL");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");

Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);

connection.stop();

Ehcache will remove all Elements from cache "sampleCacheAsync" in the cluster.

23.2 Using the JMSCacheLoader

The JMSCacheLoader is a CacheLoader which loads objects into the cache by sending requests to a JMS
Queue.
The loader places an ObjectMessage of type JMSEventMessage on the getQueue with an Action of type
GET.
It is configured with the following String properties:

• loaderArgument - the defaultLoaderArgument, or the loaderArgument if specified on the load re-
quest. To work with the JMSCacheManagerPeerProvider this should be the name of the cache to
load from. For custom responders, it can be anything which has meaning to the responder.
A queue responder will respond to the request. You can either create your own or use the one built-
into the JMSCacheManagerPeerProviderFactory, which attempts to load the queue from its cache.
The JMSCacheLoader uses JNDI to maintain message queue independence. Refer to the manual for
full configuration examples using ActiveMQ and Open Message Queue.
It is configured as per the following example:

<cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"
properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSCont

providerURL=file:///tmp,
replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=20000
defaultLoaderArgument=/>

Valid properties are:

• initialContextFactoryName (mandatory) - the name of the factory used to create the message queue
initial context. * providerURL (mandatory) - the JNDI configuration information for the service
provider to use. * getQueueConnectionFactoryBindingName (mandatory) - the JNDI binding name
for the QueueConnectionFactory * getQueueBindingName (mandatory) - the JNDI binding name
for the queue name used to do make requests. * defaultLoaderArgument - (optional) - an ap-
plication specific argument. If not supplied as a cache.load() parameter this default value will
be used. The argument is passed in the JMS request as a StringProperty called loaderArgument.

118

* timeoutMillis - time in milliseconds to wait for a reply. * securityPrincipalName - the JNDI
java.naming.security.principal * securityCredentials - the JNDI java.naming.security.credentials *
urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs * userName - the user name to use when
creating the TopicConnection to the Message Queue * password - the password to use when creat-
ing the TopicConnection to the Message Queue * acknowledgementMode - the JMS Acknowledge-
ment mode for both publisher and subscriber. The available choices are AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE and SESSION_TRANSACTED. The default is AUTO_ACKNOWLEDGE.

23.2.1 Example Configuration Using Active MQ

<cache name="sampleCacheNorep"
maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"

properties="replicateAsynchronously=false, replicatePuts=false,
replicateUpdates=false, replicateUpdatesViaCopy=false,
replicateRemovals=false, loaderArgument=sampleCacheNorep"
propertySeparator=","/>

<cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"
properties="initialContextFactoryName=net.sf.ehcache.distribution.jms.TestActiveMQInitialCo

providerURL=tcp://localhost:61616,
replicationTopicConnectionFactoryBindingName=topicConnectionFactory,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=10000"/>

</cache>

23.2.2 Example Configuration Using Open MQ

<cache name="sampleCacheNorep"
maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="100000"
timeToLiveSeconds="100000"
overflowToDisk="false">
<cacheEventListenerFactory class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"

properties="replicateAsynchronously=false, replicatePuts=false,
replicateUpdates=false, replicateUpdatesViaCopy=false,
replicateRemovals=false"

propertySeparator=","/>
<cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"

properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactor
providerURL=file:///tmp,
replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=10000,
userName=test,
password=test"/>

</cache>

119

23.3 Configuring Clients for Message Queue Reliability

Ehcache replication and cache loading is designed to gracefully degrade if the message queue infrastructure
stops. Replicates and loads will fail. But when the message queue comes back, these operations will start
up again.
For this to work, the ConnectionFactory used with the specific message queue needs to be configured
correctly.
For example, with Open MQ, reconnection is configured as follows:

• imqReconnect=’true’ - without this reconnect will not happen

• imqPingInterval=’5’ - Consumers will not reconnect until they notice the connection is down. The
ping interval

• does this. The default is 30. Set it lower if you want the ehcache cluster to reform more quickly.

• Finally, unlimited retry attempts are recommended. This is also the default.
For greater reliability consider using a message queue cluster. Most message queues support cluster-
ing. The cluster configuration is once again placed in the ConnectionFactory configuration.

23.4 Known JMS Issues

23.4.1 Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 where it does not cleanup temporary queues, even
though they have been deleted. That bug appears to be long standing but was though to have been fixed.
See:

• http://www.nabble.com/Memory-Leak-Using-Temporary-Queues-td11218217.html#a11218217

• http://issues.apache.org/activemq/browse/AMQ-1255
The JMSCacheLoader uses temporary reply queues when loading. The Active MQ issue is readily
reproduced in Ehcache integration testing. Accordingly, use of the JMSCacheLoader with ActiveMQ
is not recommended. Open MQ tests fine.

120

Chapter 24

Distributed Caching via Terracotta

Terracotta provides direct integration with ehcache. Both the Terracotta and Ehcache maintainers collabo-
rate to ensure this works seamlessly.
Because of the nature of Terracotta, you start with a non-distributed ehcache configuration.
Rather than repeat the Terracotta documentation, links are provided.

24.1 Features

See http://www.terracotta.org/confluence/display/integrations/EHCache.

24.2 Getting Started

See http://www.terracotta.org/confluence/display/howto/EHCache+Quick+Start.

121

122

Chapter 25

The ehcache constructs package

The constructs package contains applied caching classes which use the core classes to solve everyday
caching problems.

25.1 Acknowledgements

Much of the material here was drawn from Concurrent Programming in Java by Doug Lea. Thanks also to
Doug for answering several questions along the way.

25.2 The purpose of the Constructs package

Doug Lea in his book Concurrent Programming in Java talks about concurrency support constructs. One
meaning of a construct is "an abstract or general idea inferred or derived from specific instances". Just
like patterns emerge from noting the similarities of problems and gradually finding a solution to classes of
them, so to constructs are general solutions to commond problems.
The ehcache constructs package, literally the net.sf.ehcache.constructs package, provides ready to use,
extensible implementations are offered to solve common problems in Java EE and light-weight container
applications.
Why not leave ehcache at the core and let everyone create their own applications? Well, everyone is doing
that. But getting it right can be devilishly hard.

25.3 Caching meets Concurrent Programming

So, why not just use Doug’s library or the one he contributed to in JDK1.5? The ehcache constructs are
around the intersection of concurrency programming and caching. It uses a number of Doug’s classes
copied verbatim into the net.sf.ehcache.concurrent package, as permiited under the license.

25.4 Types of Concurrency Failures

(The following section is based heavily on Chapter 1.3 of Doug Lea’s Concurrent Programming in Java).
There are two often conflicting design goals at play in concurrent programming. They are:

123

• liveness, where something eventually happens within an activity.

• safety, where nothing bad ever happens to an object.

25.4.1 Safety Failures

Failures of safety include:

• Read/Write Conflicts, where one thread is reading from a field and another is writing to it. The value
read depends on who won the race.

• Write/Write Conflicts, where two threads write to the same field. The value on the next read is
impossible to predict.
A cache is similar to a global variable. By its nature it is accessible to multiple threads. Cache
entries, and the locking around them, are often highly contended for.

25.4.2 Liveness Failures

Failures of liveness include:

• Deadlock. This is caused by a circular dependency among locks. The threads involved cannot make
progress.

• Missed Signals. A thread entered the wait state after a notification to wake it up was produced.

• Nested monitor lockouts. A waiting thread holds a lock needed by a thread wishing to wake it up

• Livelock. A continously retried action continously fails.

• Starvation. Some threads never get allocated CPU time.

• Resource Exhaustion. All resourcesof some kind are in use by threads, none of which will give one
up.

• Distributed Failure. A remote machine connected by socket becomes inaccessible.

• Stampede. With notifyAll(), all threads wake up and in a stampede, attempt to make progress.

25.5 The constructs

25.5.1 Blocking Cache

Imagine you have a very busy web site with thousands of concurrent users. Rather than being evenly
distributed in what they do, they tend to gravitate to popular pages. These pages are not static, they have
dynamic data which goes stale in a few minutes. Or imagine you have collections of data which go stale in
a few minutes. In each case the data is extremely expensive to calculate.
Let’s say each request thread asks for the same thing. That is a lot of work. Now, add a cache. Get each
thread to check the cache; if the data is not there, go and get it and put it in the cache. Now, imagine that
there are so many users contending for the same data that in the time it takes the first user to request the
data and put it in the cache, 10 other users have done the same thing. The upstream system, whether a JSP
or velocity page, or interactions with a service layer or database are doing 10 times more work than they
need to.
Enter the BlockingCache.

124

Blocking Cache

It is blocking because all threads requesting the same key wait for the first thread to complete. Once the
first thread has completed the other threads simply obtain the cache entry and return.
The BlockingCache can scale up to very busy systems. Each thread can either wait indefinitely, or you can
specify a timeout using the timeoutMillis constructor argument.

125

25.5.2 SelfPopulatingCache

You want to use the BlockingCache, but the requirement to always release the lock creates gnarly code.
You also want to think about what you are doing without thinking about the caching.
Enter the SelfPopulatingCache. The name SelfPopulatingCache is synonymous with Pull-through cache,
which is a common caching term. SelfPopulatingCache though always is in addition to a BlockingCache.
SelfPopulatingCache uses a CacheEntryFactory, that given a key, knows how to populate the entry.
Note: JCache inspired getWithLoader and getAllWithLoader directly in Ehcache which work with a
CacheLoadermay be used as an alternative to SelfPopulatingCache.

25.5.3 CachingFilter

You want to use the BlockingCache with web pages, but the requirement to always release the lock creates
gnarly code. You also want to think about what you are doing without thinking about the caching.
Enter the CachingFilter, a Servlet 2.3 compliant filter. Why not just do a JSP tag library, like OSCache? The
answer is that you want the caching of your responses to be independent of the rendering technology. The
filter chain is reexcuted every time a RequestDispatcher is involved. This is on every jsp:include and every
Servlet. And you can programmatically add your own. If you have content generated by JSP, Velocity,
XSLT, Servlet output or anything else, it can all be cached by CachingFilter. A separation of concerns.
How do you determine what the key of a page is? The filter has an abstract calculateKey method, so it is
up to you.
You notice a problem and an opportunity. The problem is that the web pages you are caching are huge.
That chews up either a lot of memory (MemoryStore) or a lot of disk space (DiskStore). Also you notive
that these pages take their time going over the Internet. The opportunity is that you notice that all modern
browsers support gzip encoding. A survey of logs reveals that 85% of the time the browser accepts gzip-
ping. (The majority of the 15% that does not is IE behind a proxy). Ok, so gzip the response before caching
it. Ungzipping is fast - so just ungzip for the 15% of the time the browser does not accept gzipping.

CachingFilter Exceptions

Additional exception types have been added to the Caching Filter.

FilterNonReentrantException Thrown when it is detected that a caching filter’s doFilter method is
reentered by the same thread. Reentrant calls will block indefinitely because the first request has not yet
unblocked the cache. Nasty.

AlreadyGzippedException The web package performs gzipping operations. One cause of problems on
web browsers is getting content that is double or triple gzipped. They will either get gobblydeegook or a
blank page. This exception is thrown when a gzip is attempted on already gzipped content.

ResponseHeadersNotModifiableException A gzip encoding header needs to be added for gzipped con-
tent. The HttpServletResponse#setHeader()method is used for that purpose. If the header had already been
set, the new value normally overwrites the previous one. In some cases according to the servlet specifica-
tion, setHeader silently fails. Two scenarios where this happens are:

• The response is committed.

• RequestDispatcher#include method caused the request.

126

25.5.4 SimplePageCachingFilter

What if you just want to get started with the CachingFilter and don’t want to think too hard? Just use
SimplePageCachingFilter which has a calculateKey method already implemented.
It uses httpRequest.getRequestURI()).append(httpRequest.getQueryString() for the key.
This works most of the time. It tends to get less effective when referrals and affiliates are added to the
query, which is the case for a lot of e-commerce sites.
SimplePageCachingFilter is 10 lines of code.

25.5.5 PageFragmentCachingFilter

You notice that an entire page cannot be cached because the data on it vary in staleness. Say, an address
which changes very infrequently, and the price and availability of inventory, which changes quite a lot. Or
you have a portal, with lots of components and with different stalenesses. Or you use the replicated cache
functionality in ehcache and you only want to rebuild the part of the page that got invalidated.
Enter the PageFragmentCachingFilter. It does everyting that SimplePageCachingFilter does, except it never
gzips, so the fragments can be combined.

25.5.6 SimplePageFragmentCachingFilter

What if you just want to get started with the PageFragmentCachingFilter and don’t want to think too
hard? Just use SimplePageFragmentCachingFilter which has a calculateKey method already implemented.
It uses httpRequest.getRequestURI()).append(httpRequest.getQueryString() for the key.
This works most of the time. It tends to get less effective when referrals and affiliates are added to the
query, which is the case for a lot of e-commerce sites.
SimplePageFragmentCachingFilter is 10 lines of code.

25.5.7 AsynchronousCommandExecutor

What happens if your JMS server is down? The usual answer it to have two of them. Unfortunately, not all
JMS servers do a good job of clustering. Plus it takes twice the hardware.
Once a message makes it to a JMS server, they can usually be configured to store the message in a database.
You are pretty safe after that if there is a crash.
Enter AsynchronousCommandExecutor. It lets you create a command for future execution. The command
is cached and is then immediately executed in another thread. Thus the asynchronous bit. If it fails, it
retries on a set interval up to a set number of times. Thus it is fault-tolerant.
Use this where you really don’t want to lose messages or commands that execute against another system.

127

128

Chapter 26

CacheManager Event Listeners

CacheManager event listeners allow implementers to register callback methods that will be executed when
a CacheManager event occurs. Cache listeners implement the CacheManagerEventListener interface.
The events include:

• adding a Cache

• removing a Cache

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the implementer
to safely handle the potential performance and thread safety issues depending onwhat their listener is doing.

26.1 Configuration

One CacheManagerEventListenerFactory and hence one CacheManagerEventListener can be specified per
CacheManager instance.
The factory is configured as below:

<cacheManagerEventListenerFactory class=""
properties=""/>

The entry specifies a CacheManagerEventListenerFactory which will be used to create a CacheManager-
PeerProvider, which is notified when Caches are added or removed from the CacheManager.
The attributes of CacheManagerEventListenerFactory are:

• class - a fully qualified factory class name

• properties - comma separated properties having meaning only to the factory.
Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on what
their listener is doing.
If no class is specified, or there is no cacheManagerEventListenerFactory element, no listener is
created. There is no default.

129

26.2 Implementing a CacheManagerEventListenerFactory andCache-
ManagerEventListener

CacheManagerEventListenerFactory is an abstract factory for creating cache manager listeners. Imple-
menters should provide their own concrete factory extending this abstract factory. It can then be configured
in ehcache.xml.
The factory class needs to be a concrete subclass of the abstract factory CacheManagerEventListenerFac-
tory, which is reproduced below:

/**
* An abstract factory for creating {@link CacheManagerEventListener}s. Implementers should
* provide their own concrete factory extending this factory. It can then be configured in
* ehcache.xml
*
* @author Greg Luck
* @version $Id: cachemanager_event_listeners.apt 735 2008-08-10 23:51:48Z gregluck $
* @see "http://ehcache.sourceforge.net/documentation/cachemanager_event_listeners.html"
*/

public abstract class CacheManagerEventListenerFactory {

/**
* Create a <code>CacheEventListener</code>
*
* @param properties implementation specific properties. These are configured as comma
* separated name value pairs in ehcache.xml. Properties may be null
* @return a constructed CacheManagerEventListener
*/

public abstract CacheManagerEventListener
createCacheManagerEventListener(Properties properties);

}

The factory creates a concrete implementation of CacheManagerEventListener,which is reproduced below:

/**
* Allows implementers to register callback methods that will be executed when a
* <code>CacheManager</code> event occurs.
* The events include:
*
* adding a <code>Cache</code>
* removing a <code>Cache</code>
*
* <p/>
* Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of
* the implementer to safely handle the potential performance and thread safety issues
* depending on what their listener is doing.
* @author Greg Luck
* @version $Id: cachemanager_event_listeners.apt 735 2008-08-10 23:51:48Z gregluck $
* @since 1.2
* @see CacheEventListener
*/

public interface CacheManagerEventListener {

/**
* Called immediately after a cache has been added and activated.
* <p/>

130

* Note that the CacheManager calls this method from a synchronized method. Any attempt to
* call a synchronized method on CacheManager from this method will cause a deadlock.
* <p/>
* Note that activation will also cause a CacheEventListener status change notification
* from {@link net.sf.ehcache.Status#STATUS_UNINITIALISED} to
* {@link net.sf.ehcache.Status#STATUS_ALIVE}. Care should be taken on processing that
* notification because:
*
* the cache will not yet be accessible from the CacheManager.
* the addCaches methods whih cause this notification are synchronized on the
* CacheManager. An attempt to call {@link net.sf.ehcache.CacheManager#getCache(String)}
* will cause a deadlock.
*
* The calling method will block until this method returns.
* <p/>
* @param cacheName the name of the <code>Cache</code> the operation relates to
* @see CacheEventListener
*/

void notifyCacheAdded(String cacheName);

/**
* Called immediately after a cache has been disposed and removed. The calling method will
* block until this method returns.
* <p/>
* Note that the CacheManager calls this method from a synchronized method. Any attempt to
* call a synchronized method on CacheManager from this method will cause a deadlock.
* <p/>
* Note that a {@link CacheEventListener} status changed will also be triggered. Any
* attempt from that notification to access CacheManager will also result in a deadlock.
* @param cacheName the name of the <code>Cache</code> the operation relates to
*/

void notifyCacheRemoved(String cacheName);

}

The implementations need to be placed in the classpath accessible to ehcache. Ehcache uses the Class-
Loader returned by Thread.currentThread().getContextClassLoader() to load classes.

131

132

Chapter 27

Cache Loaders

A CacheLoader is an interface which specifies load and loadAllmethods with a variety of parameters.
CacheLoaders come from JCache, but are a frequently requested feature, so they have been incorporated
into the core Ehcache classes and can be configured in ehcache.xml.
CacheLoaders are invoked in the following Cache methods:

• getWithLoader (synchronous)

• getAllWithLoader (synchronous)

• load (asynchronous)

• loadAll (asynchronous)

They are also invoked in similar (though slightly differently named) JCache methods.
The methods will invoke a CacheLoader if there is no entry for the key or keys requested. By implementing
CacheLoader, an application form of loading can take place. The get... methods follow the pull-through
cache pattern. The load... methods are useful as cache warmers.
CacheLoaders are similar to the CacheEntryFactory used in SelfPopulatingCache. However SelfPopulat-
ingCache is a decorator to ehcache. The CacheLoader functionality is available right in a Cache, Ehcache
or JCache and follows a more industry standard convention.
CacheLoaders may be set either declaratively in the ehcache.xml configuration file or programmatically.
This becomes the default CacheLoader. Some of the methods invoking loaders enable an override Cache-
Loader to be passed in as a parameter.
More than one cacheLoader can be registered, in which case the loaders form a chain which are executed
in order. If a loader returns null, the next in chain is called.

27.1 Declarative Configuration

cacheLoaderFactory - Specifies a CacheLoader, which can be used both asynchronously and synchronously
to load objects into a cache. More than one cacheLoaderFactory element can be added, in which case the
loaders form a chain which are executed in order. If a loader returns null, the next in chain is called.

<cache ...>
<cacheLoaderFactory class="com.example.ExampleCacheLoaderFactory"

133

properties="type=int,startCounter=10"/>
</cache>

27.2 Implementing a CacheLoaderFactory and CacheLoader

CacheLoaderFactory is an abstract factory for creating CacheLoaders. Implementers should provide their
own concrete factory, extending this abstract factory. It can then be configured in ehcache.xml
The factory class needs to be a concrete subclass of the abstract factory class CacheLoaderFactory, which
is reproduced below:

/**
* An abstract factory for creating cache loaders. Implementers should provide their own
* concrete factory extending this factory.
* <p/>
* There is one factory method for JSR107 Cache Loaders and one for Ehcache ones. The Ehcache
* loader is a sub interface of the JSR107 Cache Loader.
* <p/>
* Note that both the JCache and Ehcache APIs also allow the CacheLoader to be set
* programmatically.
* @author Greg Luck
* @version $Id: cache_loaders.apt 860 2008-12-08 07:58:27Z gregluck $
*/

public abstract class CacheLoaderFactory {

/**
* Creates a CacheLoader using the JSR107 creational mechanism.
* This method is called from {@link net.sf.ehcache.jcache.JCacheFactory}
*
* @param environment the same environment passed into
* {@link net.sf.ehcache.jcache.JCacheFactory}.
* This factory can extract any properties it needs from the environment.
* @return a constructed CacheLoader
*/

public abstract net.sf.jsr107cache.CacheLoader createCacheLoader(Map environment);

/**
* Creates a CacheLoader using the Ehcache configuration mechanism at the time
* the associated cache is created.
*
* @param properties implementation specific properties. These are configured as comma
* separated name value pairs in ehcache.xml
* @return a constructed CacheLoader
*/

public abstract net.sf.ehcache.loader.CacheLoader createCacheLoader(Properties properties);

/**
* @param cache the cache this extension should hold a reference to,
* and to whose lifecycle it should be bound.
* @param properties implementation specific properties configured as delimiter
* separated name value pairs in ehcache.xml
* @return a constructed CacheLoader
*/

public abstract CacheLoader createCacheLoader(Ehcache cache, Properties properties);

134

}

The factory creates a concrete implementation of the CacheLoader interface, which is reproduced below.
A CacheLoader is bound to the lifecycle of a cache, so that init() is called during cache initialization,
and dispose() is called on disposal of a cache.

/**
* Extends JCache CacheLoader with load methods that take an argument in addition to a key
* @author Greg Luck
* @version $Id: cache_loaders.apt 860 2008-12-08 07:58:27Z gregluck $
*/

public interface CacheLoader extends net.sf.jsr107cache.CacheLoader {

/**
* Load using both a key and an argument.
* <p/>
* JCache will call through to the load(key) method, rather than this method,
* where the argument is null.
*
* @param key the key to load the object for
* @param argument can be anything that makes sense to the loader
* @return the Object loaded
* @throws CacheException
*/

Object load(Object key, Object argument) throws CacheException;

/**
* Load using both a key and an argument.
* <p/>
* JCache will use the loadAll(key) method where the argument is null.
*
* @param keys the keys to load objects for
* @param argument can be anything that makes sense to the loader
* @return a map of Objects keyed by the collection of keys passed in.
* @throws CacheException
*/

Map loadAll(Collection keys, Object argument) throws CacheException;

/**
* Gets the name of a CacheLoader
*
* @return the name of this CacheLoader
*/

String getName();

/**
* Creates a clone of this extension. This method will only be called by ehcache before a
* cache is initialized.
* <p/>
* Implementations should throw CloneNotSupportedException if they do not support clone
* but that will stop them from being used with defaultCache.
*
* @return a clone
* @throws CloneNotSupportedException if the extension could not be cloned.
*/

public CacheLoader clone(Ehcache cache) throws CloneNotSupportedException;

135

/**
* Notifies providers to initialise themselves.
* <p/>
* This method is called during the Cache’s initialise method after it has changed it’s
* status to alive. Cache operations are legal in this method.
*
* @throws net.sf.ehcache.CacheException
*/

void init();

/**
* Providers may be doing all sorts of exotic things and need to be able to clean up on
* dispose.
* <p/>
* Cache operations are illegal when this method is called. The cache itself is partly
* disposed when this method is called.
*
* @throws net.sf.ehcache.CacheException
*/

void dispose() throws net.sf.ehcache.CacheException;

/**
* @return the status of the extension
*/

public Status getStatus();
}

The implementations need to be placed in the classpath accessible to ehcache.
See the chapter on Classloading for details on how classloading of these classes will be done.

27.3 Programmatic Configuration

The following methods on Cache allow runtime interrogation, registration and unregistration of loaders:

/**
* Register a {@link CacheLoader} with the cache. It will then be tied into the cache lifecycle.
* <p/>
* If the CacheLoader is not initialised, initialise it.
*
* @param cacheLoader A Cache Loader to register
*/

public void registerCacheLoader(CacheLoader cacheLoader) {
registeredCacheLoaders.add(cacheLoader);

}

/**
* Unregister a {@link CacheLoader} with the cache. It will then be detached from the cache
*
* @param cacheLoader A Cache Loader to unregister
*/

public void unregisterCacheLoader(CacheLoader cacheLoader) {
registeredCacheLoaders.remove(cacheLoader);

}

136

/**
* @return the cache loaders as a live list
*/

public List<CacheLoader> getRegisteredCacheLoaders() {
return registeredCacheLoaders;

}

137

138

Chapter 28

Cache Event Listeners

Cache listeners allow implementers to register callback methods that will be executed when a cache event
occurs. Cache listeners implement the CacheEventListener interface.
The events include:

• an Element has been put

• an Element has been updated. Updated means that an Element exists in the Cache with the same key
as the Element being put.

• an Element has been removed

• an Element expires, either because timeToLive or timeToIdle have been reached.

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the implementer
to safely handle the potential performance and thread safety issues depending onwhat their listener is doing.
Listeners are guaranteed to be notified of events in the order in which they occurred.
Elements can be put or removed from a Cache without notifying listeners by using the putQuiet and re-
moveQuiet methods.

28.1 Configuration

Cache event listeners are configured per cache. Each cache can have multiple listeners.
Each listener is configured by adding a cacheManagerEventListenerFactory element as follows:

<cache ...>
<cacheEventListenerFactory class="" properties=""/>
...
</cache>

The entry specifies a CacheManagerEventListenerFactory which is used to create a CachePeerProvider,
which then receives notifications.
The attributes of CacheManagerEventListenerFactory are:

139

• class - a fully qualified factory class name * properties - an optional comma separated properties
having meaning only to the factory.
Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on what
their listener is doing.

28.2 Implementing a CacheEventListenerFactory andCacheEventLis-
tener

CacheEventListenerFactory is an abstract factory for creating cache event listeners. Implementers should
provide their own concrete factory, extending this abstract factory. It can then be configured in ehcache.xml
The factory class needs to be a concrete subclass of the abstract factory class CacheEventListenerFactory,
which is reproduced below:

/**
* An abstract factory for creating listeners. Implementers should provide their own
* concrete factory extending this factory. It can then be configured in ehcache.xml
*
* @author Greg Luck
* @version $Id: cache_event_listeners.apt 735 2008-08-10 23:51:48Z gregluck $
*/

public abstract class CacheEventListenerFactory {

/**
* Create a <code>CacheEventListener</code>
*
* @param properties implementation specific properties. These are configured as comma
* separated name value pairs in ehcache.xml
* @return a constructed CacheEventListener
*/

public abstract CacheEventListener createCacheEventListener(Properties properties);

}

The factory creates a concrete implementation of the CacheEventListener interface, which is reproduced
below:

/**
* Allows implementers to register callback methods that will be executed when a cache event
* occurs.
* The events include:
*
* put Element
* update Element
* remove Element
* an Element expires, either because timeToLive or timeToIdle has been reached.
*
* <p/>
* Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of
* the implementer to safely handle the potential performance and thread safety issues
* depending on what their listener is doing.
* <p/>
* Events are guaranteed to be notified in the order in which they occurred.
* <p/>

140

* Cache also has putQuiet and removeQuiet methods which do not notify listeners.
*
* @author Greg Luck
* @version $Id: cache_event_listeners.apt 735 2008-08-10 23:51:48Z gregluck $
* @see CacheManagerEventListener
* @since 1.2
*/

public interface CacheEventListener extends Cloneable {

/**
* Called immediately after an element has been removed. The remove method will block until
* this method returns.
* <p/>
* Ehcache does not chech for
* <p/>
* As the {@link net.sf.ehcache.Element} has been removed, only what was the key of the
* element is known.
* <p/>
*
* @param cache the cache emitting the notification
* @param element just deleted
*/

void notifyElementRemoved(final Ehcache cache, final Element element) throws CacheException;

/**
* Called immediately after an element has been put into the cache. The
* {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method
* will block until this method returns.
* <p/>
* Implementers may wish to have access to the Element’s fields, including value, so the
* element is provided. Implementers should be careful not to modify the element. The
* effect of any modifications is undefined.
*
* @param cache the cache emitting the notification
* @param element the element which was just put into the cache.
*/

void notifyElementPut(final Ehcache cache, final Element element) throws CacheException;

/**
* Called immediately after an element has been put into the cache and the element already
* existed in the cache. This is thus an update.
* <p/>
* The {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method
* will block until this method returns.
* <p/>
* Implementers may wish to have access to the Element’s fields, including value, so the
* element is provided. Implementers should be careful not to modify the element. The
* effect of any modifications is undefined.
*
* @param cache the cache emitting the notification
* @param element the element which was just put into the cache.
*/

void notifyElementUpdated(final Ehcache cache, final Element element) throws CacheException;

/**
* Called immediately after an element is <i>found</i> to be expired. The
* {@link net.sf.ehcache.Cache#remove(Object)} method will block until this method returns.

141

* <p/>
* As the {@link Element} has been expired, only what was the key of the element is known.
* <p/>
* Elements are checked for expiry in ehcache at the following times:
*
* When a get request is made
* When an element is spooled to the diskStore in accordance with a MemoryStore
* eviction policy
* In the DiskStore when the expiry thread runs, which by default is
* {@link net.sf.ehcache.Cache#DEFAULT_EXPIRY_THREAD_INTERVAL_SECONDS}
*
* If an element is found to be expired, it is deleted and this method is notified.
*
* @param cache the cache emitting the notification
* @param element the element that has just expired
* <p/>
* Deadlock Warning: expiry will often come from the <code>DiskStore</code>
* expiry thread. It holds a lock to the DiskStorea the time the
* notification is sent. If the implementation of this method calls into a
* synchronized <code>Cache</code> method and that subsequently calls into
* DiskStore a deadlock will result. Accordingly implementers of this method
* should not call back into Cache.
*/

void notifyElementExpired(final Ehcache cache, final Element element);

/**
* Give the replicator a chance to cleanup and free resources when no longer needed
*/

void dispose();

/**
* Creates a clone of this listener. This method will only be called by ehcache before a
* cache is initialized.
* <p/>
* This may not be possible for listeners after they have been initialized. Implementations
* should throw CloneNotSupportedException if they do not support clone.
* @return a clone
* @throws CloneNotSupportedException if the listener could not be cloned.
*/

public Object clone() throws CloneNotSupportedException;

}

The implementations need to be placed in the classpath accessible to ehcache.
See the chapter on Classloading for details on how classloading of these classes will be done.

142

Chapter 29

Cache Exception Handlers

By default, most cache operations will propagate a runtime CacheException on failure. An interceptor,
using a dynamic proxy, may be configured so that a CacheExceptionHandler can be configured to intercept
Exceptions. Errors are not intercepted.
Caches with ExceptionHandling configured are of type Ehcache. To get the exception handling behaviour
theymust be referenced using CacheManager.getEhcache(), not CacheManager.getCache(), which
returns the underlying undecorated cache.
CacheExceptionHandlers may be set either declaratively in the ehcache.xml configuration file or program-
matically.

29.1 Declarative Configuration

Cache event listeners are configured per cache. Each cache can have at most one exception handler.
An exception handler is configured by adding a cacheExceptionHandlerFactory element as shown in the
following example:

<cache ...>
<cacheExceptionHandlerFactory

class="net.sf.ehcache.exceptionhandler.CountingExceptionHandlerFactory"
properties="logLevel=FINE"/>

</cache>

29.2 Implementing a CacheExceptionHandlerFactory andCacheEx-
ceptionHandler

CacheExceptionHandlerFactory is an abstract factory for creating cache exception handlers. Implementers
should provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml
The factory class needs to be a concrete subclass of the abstract factory class CacheExceptionHandlerFac-
tory, which is reproduced below:

/**
* An abstract factory for creating <code>CacheExceptionHandler</code>s at configuration

143

* time, in ehcache.xml.
* <p/>
* Extend to create a concrete factory
*
* @author Greg Luck
* @version $Id: cache_exception_handlers.apt 735 2008-08-10 23:51:48Z gregluck $
*/

public abstract class CacheExceptionHandlerFactory {

/**
* Create an <code>CacheExceptionHandler</code>
*
* @param properties implementation specific properties. These are configured as comma
* separated name value pairs in ehcache.xml
* @return a constructed CacheExceptionHandler
*/

public abstract CacheExceptionHandler createExceptionHandler(Properties properties);

}

The factory creates a concrete implementation of the CacheExceptionHandler interface, which is repro-
duced below:

/**
* A handler which may be registered with an Ehcache, to handle exception on Cache operations.
* <p/>
* Handlers may be registered at configuration time in ehcache.xml, using a
* CacheExceptionHandlerFactory, or * set at runtime (a strategy).
* <p/>
* If an exception handler is registered, the default behaviour of throwing the exception
* will not occur. The handler * method <code>onException</code> will be called. Of course, if
* the handler decides to throw the exception, it will * propagate up through the call stack.
* If the handler does not, it won’t.
* <p/>
* Some common Exceptions thrown, and which therefore should be considered when implementing
* this class are listed below:
*
* {@link IllegalStateException} if the cache is not
* {@link net.sf.ehcache.Status#STATUS_ALIVE}
* {@link IllegalArgumentException} if an attempt is made to put a null
* element into a cache
* {@link net.sf.ehcache.distribution.RemoteCacheException} if an issue occurs
* in remote synchronous replication
*
*
*
*
* @author Greg Luck
* @version $Id: cache_exception_handlers.apt 735 2008-08-10 23:51:48Z gregluck $
*/

public interface CacheExceptionHandler {

/**
* Called if an Exception occurs in a Cache method. This method is not called
* if an <code>Error</code> occurs.
*

144

* @param ehcache the cache in which the Exception occurred
* @param key the key used in the operation, or null if the operation does not use a
* key or the key was null
* @param exception the exception caught
*/

void onException(Ehcache ehcache, Object key, Exception exception);
}

The implementations need to be placed in the classpath accessible to ehcache.
See the chapter on Classloading for details on how classloading of these classes will be done.

29.3 Programmatic Configuration

The following example shows how to add exception handling to a cache then adding the cache back into
cache manager so that all clients obtain the cache handling decoration.

CacheManager cacheManager = ...
Ehcache cache = cacheManger.getCache("exampleCache");
ExceptionHandler handler = new ExampleExceptionHandler(...);
cache.setCacheLoader(handler);
Ehcache proxiedCache = ExceptionHandlingDynamicCacheProxy.createProxy(cache);
cacheManager.replaceCacheWithDecoratedCache(cache, proxiedCache);

145

146

Chapter 30

Cache Extensions

CacheExtensions are a general purpose mechanism to allow generic extensions to a Cache.
CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the lifecycle methods.
CacheExtensions are created using the CacheExtensionFactorywhich has a codecreateCacheCacheExtension()/code
method which takes as a parameter a Cache and properties. It can thus call back into any public method on
Cache, including, of course, the load methods.
CacheExtensions are suitable for timing services, where you want to create a timer to perform cache oper-
ations. The other way of adding Cache behaviour is to decorate a cache.
See @link net.sf.ehcache.constructs.blocking.BlockingCache for an example of how to do this.
Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things such as reg-
istering a CacheEventListener or even a CacheManagerEventListener, all from within a CacheExtension,
creating more opportunities for customisation.

30.1 Declarative Configuration

Cache extension are configured per cache. Each cache can have zero or more.
A CacheExtension is configured by adding a cacheExceptionHandlerFactory element as shown in the fol-
lowing example:

<cache ...>
<cacheExtensionFactory class="com.example.FileWatchingCacheRefresherExtensionFactory"

properties="refreshIntervalMillis=18000, loaderTimeout=3000,
flushPeriod=whatever, someOtherProperty=someValue ..."/>

</cache>

30.2 Implementing a CacheExtensionFactory and CacheExtension

CacheExtensionFactory is an abstract factory for creating cache extension. Implementers should provide
their own concrete factory, extending this abstract factory. It can then be configured in ehcache.xml
The factory class needs to be a concrete subclass of the abstract factory class CacheExtensionFactory,
which is reproduced below:

147

/**
* An abstract factory for creating <code>CacheExtension</code>s. Implementers should
* provide their own * concrete factory extending this factory. It can then be configured
* in ehcache.xml.
*
* @author Greg Luck
* @version $Id: cache_extensions.apt 735 2008-08-10 23:51:48Z gregluck $
*/

public abstract class CacheExtensionFactory {

/**
* @param cache the cache this extension should hold a reference to, and to whose
* lifecycle it should be bound.
* @param properties implementation specific properties configured as delimiter separated
* name value pairs in ehcache.xml
*/

public abstract CacheExtension createCacheExtension(Ehcache cache, Properties properties);

}

The factory creates a concrete implementation of the CacheExtension interface, which is reproduced below:

/**
* This is a general purpose mechanism to allow generic extensions to a Cache.
* <p/>
* CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the
* lifecycle methods.
* <p/>
* CacheExtensions are created using the CacheExtensionFactory which has a
* <code>createCacheCacheExtension()</code> method which takes as a parameter a Cache and
* properties. It can thus call back into any public method on Cache, including, of course,
* the load methods.
* <p/>
* CacheExtensions are suitable for timing services, where you want to create a timer to
* perform cache operations. The other way of adding Cache behaviour is to decorate a cache.
* See {@link net.sf.ehcache.constructs.blocking.BlockingCache} for an example of how to do
* this.
* <p/>
* Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things
* such as registering a CacheEventListener or even a CacheManagerEventListener, all from
* within a CacheExtension, creating more opportunities for customisation.
*
* @author Greg Luck
* @version $Id: cache_extensions.apt 735 2008-08-10 23:51:48Z gregluck $
*/

public interface CacheExtension {

/**
* Notifies providers to initialise themselves.
* <p/>
* This method is called during the Cache’s initialise method after it has changed it’s
* status to alive. Cache operations are legal in this method.
*
* @throws CacheException
*/

void init();

148

/**
* Providers may be doing all sorts of exotic things and need to be able to clean up on
* dispose.
* <p/>
* Cache operations are illegal when this method is called. The cache itself is partly
* disposed when this method is called.
*
* @throws CacheException
*/

void dispose() throws CacheException;

/**
* Creates a clone of this extension. This method will only be called by ehcache before a
* cache is initialized.
* <p/>
* Implementations should throw CloneNotSupportedException if they do not support clone
* but that will stop them from being used with defaultCache.
*
* @return a clone
* @throws CloneNotSupportedException if the extension could not be cloned.
*/

public CacheExtension clone(Ehcache cache) throws CloneNotSupportedException;

/**
* @return the status of the extension
*/

public Status getStatus();
}

The implementations need to be placed in the classpath accessible to ehcache.
See the chapter on Classloading for details on how classloading of these classes will be done.

30.3 Programmatic Configuration

Cache Extensions may also be programmatically added to a Cache as shown.

TestCacheExtension testCacheExtension = new TestCacheExtension(cache, ...);
testCacheExtension.init();
cache.registerCacheExtension(testCacheExtension);

149

150

Chapter 31

Cache Server

31.1 Introduction

Ehcache now comes with a Cache Server, available as a WAR for most web containers, or as a standalone
server. The Cache Server has two APIs: RESTful resource oriented, and SOAP. Both support clients in any
programming language.
(A Note on terminology: Leonard Richardson and Sam Ruby have done a great job of clarifying the
different Web Services architectures and distinguishing them from each other. We use their taxonomy in
describing web services. See http://www.oreilly.com/catalog/9780596529260/.)

31.2 RESTful Web Services

Roy Fielding coined the acronym REST, denoting Representational State Transfer, in his PhD thesis.
The ehcache implementation strictly follows the RESTful resource-oriented architecture style.
Specifically:

• The HTTP methods GET, HEAD, PUT/POST and DELETE are used to specify the method of the
operation. The URI does not contain method information.

• The scoping information, used to identify the resource to perform the method on, is contained in the
URI path.

• The RESTful Web Service is described by and exposes a WADL (Web Application Description
Language) file. It contains the URIs you can call, and what data to pass and get back. Use the
OPTIONS method to return the WADL.
Roy is on the JSR311 expert group. JSR311 and Jersey, the reference implementation, are used to
deliver RESTful web services in ehcache server.

31.2.1 RESTFul Web Services API

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically has been
configured in ehcache.xml or an IoC container. Multiple CacheManagers are not supported.
Resources are identified using a URI template. The value in parentheses should be substituted with a literal
to specify a resource.
Response codes and response headers strictly follow HTTP conventions.

151

31.2.2 CacheManager Resource Operations

OPTIONS /{cache}}

Retrieves the WADL for describing the available CacheManager operations.

GET /

Lists the Caches in the CacheManager.

31.2.3 Cache Resource Operations

OPTIONS /{cache}}

Retrieves the WADL describing the available Cache operations.

HEAD /{cache}}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body returned.

GET /{cache}

Gets a cache representation. This includes useful metadata such as the configuration and cache statistics.

PUT /{cache}

Creates a Cache using the defaultCache configuration.

DELETE / {cache}

Deletes the Cache.

31.2.4 Element Resource Operations

OPTIONS /{cache}}

Retrieves the WADL describing the available Element operations.

HEAD /{cache}/{element}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body returned.

GET /{cache}/{element}

Gets the element value.

HEAD /{cache}/{element}

Gets the element’s metadata.

152

PUT /{cache}/{element}

Puts an element into the Cache.
The time to live of new Elements defaults to that for the cache. This may be overridden by setting the
HTTP request header ehcacheTimeToLiveSeconds. Values of 0 to 2147483647 are accepted. A value
of 0 means eternal.

DELETE / {cache}/{element}

Deletes the element from the cache.
The resource representation for all elements is *. DELETE/{cache}/* will call <<<cache.removeAll().

31.2.5 Resource Representations

We deal with resource representations rather than resources themselves.

Element Resource Representations

When Elements are PUT into the cache, a MIME Type should be set in the request header. The MIME
Type is preserved for later use.
The new MimeTypeByteArray is used to store the byte[] and the MimeType in the value field of
Element.
Some common MIME Types which are expected to be used by clients are:

text/plain Plain text
text/xml Extensible Markup Language. Defined in RFC 3023
application/json JavaScript Object Notation JSON. Defined in RFC 4627
application/x-java-serialized-object A serialized Java object

Because ehcache is a distributed Java cache, in some configurations the Cache server may contain Java
objects that arrived at the Cache server via distributed replication. In this case no MIME Type will be set
and the Element will be examined to determine its MIME Type.
Because anything that can be PUT into the cache server must be Serializable, it can also be distributed in a
cache cluster i.e. it will be Serializable.

31.2.6 RESTful Code Samples

These are RESTful code samples in multiple languages.

Curl Code Samples

These samples use the popular curl command line utility.

OPTIONS This example shows how calling OPTIONS causes ehcache server to respond with theWADL
for that resource

curl --request OPTIONS http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

153

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
<resources base="http://localhost:8080/ehcache/rest/">
<resource path="sampleCache2/2">
<method name="HEAD"><response><representation mediaType="

...
</resource>
</resources>
</application>

HEAD

curl --head http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.5
Server: GlassFish/v3
Last-Modified: Sun, 27 Jul 2008 08:08:49 GMT
ETag: "1217146129490"
Content-Type: text/plain; charset=iso-8859-1
Content-Length: 157
Date: Sun, 27 Jul 2008 08:17:09 GMT

PUT

echo "Hello World" | curl -S -T - http://localhost:8080/ehcache/rest/sampleCache2/3

The server will put Hello World into sampleCache2 using key 3.

GET

curl http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>

Ruby Code Samples

GET

require ’rubygems’
require ’open-uri’
require ’rexml/document’

response = open(’http://localhost:8080/ehcache/rest/sampleCache2/2’)
xml = response.read
puts xml

154

The server responds with:

<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>
</oldjoke>

Python Code Samples

GET

import urllib2

f = urllib2.urlopen(’http://localhost:8080/ehcache/rest/sampleCache2/2’)
print f.read()

The server responds with:

<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>
</oldjoke>

Java Code Samples

Create and Get a Cache and Entry

package samples;

import java.io.InputStream;
import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;

/**
* A simple example Java client which uses the built-in java.net.URLConnection.
*
* @author BryantR
* @author Greg Luck
*/

public class ExampleJavaClient {

private static String TABLE_COLUMN_BASE =
"http://localhost:8080/ehcache/rest/tableColumn";

private static String TABLE_COLUMN_ELEMENT =
"http://localhost:8080/ehcache/rest/tableColumn/1";

/**

155

* Creates a new instance of EHCacheREST
*/

public ExampleJavaClient() {
}

public static void main(String[] args) {
URL url;
HttpURLConnection connection = null;
InputStream is = null;
OutputStream os = null;
int result = 0;
try {

//create cache
URL u = new URL(TABLE_COLUMN_BASE);
HttpURLConnection urlConnection = (HttpURLConnection) u.openConnection();
urlConnection.setRequestMethod("PUT");

int status = urlConnection.getResponseCode();
System.out.println("Status: " + status);
urlConnection.disconnect();

//get cache
url = new URL(TABLE_COLUMN_BASE);
connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod("GET");
connection.connect();
is = connection.getInputStream();
byte[] response1 = new byte[4096];
result = is.read(response1);
while (result != -1) {

System.out.write(response1, 0, result);
result = is.read(response1);

}
if (is != null) try {

is.close();
} catch (Exception ignore) {
}
System.out.println("reading cache: " + connection.getResponseCode()

+ " " + connection.getResponseMessage());
if (connection != null) connection.disconnect();

//create entry
url = new URL(TABLE_COLUMN_ELEMENT);
connection = (HttpURLConnection) url.openConnection();
connection.setRequestProperty("Content-Type", "text/plain");
connection.setDoOutput(true);
connection.setRequestMethod("PUT");
connection.connect();
String sampleData = "ehcache is way cool!!!";
byte[] sampleBytes = sampleData.getBytes();
os = connection.getOutputStream();
os.write(sampleBytes, 0, sampleBytes.length);
os.flush();
System.out.println("result=" + result);
System.out.println("creating entry: " + connection.getResponseCode()

+ " " + connection.getResponseMessage());
if (connection != null) connection.disconnect();

156

//get entry
url = new URL(TABLE_COLUMN_ELEMENT);
connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod("GET");
connection.connect();
is = connection.getInputStream();
byte[] response2 = new byte[4096];
result = is.read(response2);
while (result != -1) {

System.out.write(response2, 0, result);
result = is.read(response2);

}
if (is != null) try {

is.close();
} catch (Exception ignore) {
}
System.out.println("reading entry: " + connection.getResponseCode()

+ " " + connection.getResponseMessage());
if (connection != null) connection.disconnect();

} catch (Exception e) {
e.printStackTrace();

} finally {
if (os != null) try {

os.close();
} catch (Exception ignore) {
}
if (is != null) try {

is.close();
} catch (Exception ignore) {
}
if (connection != null) connection.disconnect();

}
}

}

Scala Code Samples

GET

import java.net.URL
import scala.io.Source.fromInputStream

object ExampleScalaGet extends Application {
val url = new URL("http://localhost:8080/ehcache/rest/sampleCache2/2")
fromInputStream(url.openStream).getLines.foreach(print)

}

Run it with:

scala -e ExampleScalaGet

The program outputs:

<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>

157

<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>

PHP Code Samples

GET

<?php

$ch = curl_init();

curl_setopt ($ch, CURLOPT_URL, "http://localhost:8080/ehcache/rest/sampleCache2/3");
curl_setopt ($ch, CURLOPT_HEADER, 0);

curl_exec ($ch);

curl_close ($ch);
?>

The server responds with:

Hello Ingo

PUT

<?php
$url = "http://localhost:8080/ehcache/rest/sampleCache2/3";
$localfile = "localfile.txt";

$fp = fopen ($localfile, "r");
$ch = curl_init();
curl_setopt($ch, CURLOPT_VERBOSE, 1);
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_PUT, 1);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_INFILE, $fp);
curl_setopt($ch, CURLOPT_INFILESIZE, filesize($localfile));

$http_result = curl_exec($ch);
$error = curl_error($ch);
$http_code = curl_getinfo($ch ,CURLINFO_HTTP_CODE);

curl_close($ch);
fclose($fp);

print $http_code;
print "

$http_result";
if ($error) {

print "

$error";
}

?>

The server responds with:

158

* About to connect() to localhost port 8080 (#0)
* Trying ::1... * connected
* Connected to localhost (::1) port 8080 (#0)
> PUT /ehcache/rest/sampleCache2/3 HTTP/1.1
Host: localhost:8080
Accept: */*
Content-Length: 11
Expect: 100-continue

< HTTP/1.1 100 Continue
< HTTP/1.1 201 Created
< Location: http://localhost:8080/ehcache/rest/sampleCache2/3
< Content-Length: 0
< Server: Jetty(6.1.10)
<
* Connection #0 to host localhost left intact
* Closing connection #0

31.3 CreatingMassive Caches with Load Balancers and Partitioning

The RESTful Ehcache Server is designed to achieve massive scaling using data partitioning - all from a
RESTful interface. The largest ehcache single instances run at around 20GB in memory. The largest disk
stores run at 100Gb each. Add nodes together, with cache data partitioned across them, to get larger sizes.
50 nodes at 20GB gets you to 1 Terabyte.
Two deployment choices need to be made:

• where is partitoning performed, and

• is redundancy required?

These choices can be mixed and matched with a number of different deployment topologies.

31.3.1 Non-redundant, Scalable with client hash-based routing

This topology is the simplest. It does not use a load balancer. Each node is accessed directly by the cache
client using REST. No redundancy is provided.
The client can be implemented in any language because it is simply a HTTP client.
It must work out a partitioning scheme. Simple key hashing, as used by memcached, is sufficient.

159

Here is a Java code sample:

String[] cacheservers = new String[]{"cacheserver0.company.com", "cacheserver1.company.com",
"cacheserver2.company.com", "cacheserver3.company.com", "cacheserver4.company.com",
"cacheserver5.company.com"};

Object key = "123231";
int hash = Math.abs(key.hashCode());
int cacheserverIndex = hash % cacheservers.length;
String cacheserver = cacheservers[cacheserverIndex];

31.3.2 Redundant, Scalable with client hash-based routing

Redundancy is added as shown in the above diagram by: Replacing each node with a cluster of two nodes.
One of the existing distributed caching options in ehcache is used to form the cluster. Options in ehcache
1.5 are RMI and JGroups-based clusters. Ehcache-1.6 will add JMS as a further option. Put each ehcache
cluster behind VIPs on a load balancer.

31.3.3 Redundant, Scalable with load balancer hash-based routing

Many content-switching load balancers support URI routing using some form of regular expressions.
So, you could optionally skip the client-side hashing to achieve partitioning in the load balancer itself.
For example:

160

/ehcache/rest/sampleCache1/[a-h]* => cluster1
/ehcache/rest/sampleCache1/[i-z]* => cluster2

Things get much more sophisticated with F5 load balancers, which let you create iRules in the TCL lan-
guage. So rather than regular expression URI routing, you could implement key hashing-based URI rout-
ing. Remember in Ehcache’s RESTful server, the key forms the last part of the URI. e.g. In the URI
http://cacheserver.company.com/ehcache/rest/sampleCache1/3432 , 3432 is the key.
You hash using the last part of the URI.
See http://devcentral.f5.com/Default.aspx?tabid=63&PageID=153&ArticleID=135&articleType=ArticleView
for how to implment a URI hashing iRule on F5 load balancers.

31.4 W3C (SOAP) Web Services

The W3C (http://www.w3.org/ is a standards body that defines Web Services as

The World Wide Web is more and more used for application to application communication.
The programmatic interfaces made available are referred to as Web services.

They provide a set of recommendations for achieving this. See http://www.w3.org/2002/ws/.
An interoperability organisation, WS-I http://www.ws-i.org/, seeks to achieve interoperabilty between
W3C Web Services. The W3C specifications for SOAP and WSDL are required to meet the WS-I def-
inition.
Ehcache is using Glassfish’s libraries to provide it’s W3C web services. The project known as Metro
follows the WS-I definition.
Finally, OASIS (http://oasis-open.org), defines a Web Services Security specification for SOAP: WS-
Security. The current version is 1.1. It provides three main security mechanisms: ability to send security
tokens as part of a message, message integrity, and message confidentiality.
Ehcache’s W3C Web Services support the stricter WS-I definition and use the SOAP and WSDL specfica-
tions.
Specifically:

• The method of operation is in the entity-body of the SOAP envelope and a HTTP header. POST is
always used as the HTTP method.

• The scoping information, used to identify the resource to perform the method on, is contained in
the SOAP entity-body. The URI path is always the same for a given Web Service - it is the service
"endpoint".

• The Web Service is described by and exposes a WSDL (Web Services Description Language) file. It
contains the methods, their arguments and what data types are used.

• The WS-Security SOAP extensions are supported

31.4.1 W3CWeb Services API

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically has been
configured in ehcache.xml or an IoC container. Multiple CacheManagers are not supported.
The API definition is as follows:

• WSDL - EhcacheWebServiceEndpointService.wsdl

• Types - EhcacheWebServiceEndpointService_schema1.xsd

161

31.4.2 Security

By default no security is configured. Because it is simply a Servlet 2.5 web application, it can be secured
in all the usual ways by configuration in the web.xml.
In addition the cache server supports the use of XWSS 3.0 to secure theWeb Service. See https://xwss.dev.java.net/.
All required libraries are packaged in the war for XWSS 3.0.
A sample, commented out server_security_config.xml is provided in the WEB-INF directory. XWSS au-
tomatically looks for this configuration file.
A simple example, based on an XWSS example, net.sf.ehcache.server.soap.SecurityEnvironmentHandler,
which looks for a password in a System property for a given username is included. This is not recommended
for production use but is handy when you are getting started with XWSS.
To use XWSS:
Add configuration in accordance with XWSS to the server_security_config.xml file. Create a class which
implements the CallbackHandler interface and provide its fully qualified path in the SecurityEnvironmentHandler
element.
The integration test EhcacheWebServiceEndpoint test shows how to use the XWSS client side. On the
client side, configuration must be provided in a file called client_security_config.xml must be in
the root of the classpath.
To add client credentials into the SOAP request do:

cacheService = new EhcacheWebServiceEndpointService().getEhcacheWebServiceEndpointPort();
//add security credentials
((BindingProvider)cacheService).getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
((BindingProvider)cacheService).getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
String result = cacheService.ping();

31.5 Requirements

31.5.1 Java

Java 5 or 6

31.5.2 Web Container (WAR packaged version only)

The standalone server comes with its own embedded Glassfish web container.
The web container must support the Servlet 2.5 specification.
The following web container configuration have been tested:

• Glassfish V2/V3

• Tomcat 6

• Jetty 6

31.6 Downloading

The server is available as follows:

162

31.6.1 Sourceforge

Download here.
There are two tarball archives in tar.gz format:

• ehcache-server - this contains the WAR file which must be deployed in your own web container.

• ehcache-standalone-server - this contains a complete standalone directory structure with an embed-
ded Glassfish V3 web container together with shell scripts for starting and stopping.

31.6.2 Maven

The Ehcache Server is in the central Maven repository packaged as type war. Use the following Maven
pom snippet:

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-server</artifactId>
<version>enter_version_here</version>
<type>war</type>

</dependency>

It is also available as a jaronly version, which makes it easier to embed. This version excludes all META-
INF and WEB-INF configuration files, and also excludes the ehcache.xml. You need to provide these in
your maven project.

<dependency>
<groupId>net.sf.ehcache</groupId>
<artifactId>ehcache-server</artifactId>
<version>enter_version_here</version>
<type>jar</type>
<classifier>jaronly</classifier>

</dependency>

31.7 Installation

31.7.1 Installing the WAR

Use yourWeb Container’s instructions to install the WAR or include theWAR in your project with Maven’s
war plugin.
Web Container specific configuration is provided in the WAR as follows:

• sun-web.xml - Glassfish V2/V3 configuration

• jetty-web.xml - Jetty V5/V6 configuration
Tomcat V6 passes all integration tests. It does not require a specific configuration.

31.7.2 Configuring the Web Application

Expand the WAR.
Edit the web.xml.

163

Disabling the RESTful Web Service

Comment out the RESTful web service section.

Disabling the SOAPWeb Service

Comment out the RESTful web service section.

Configuring Caches

The ehcache.xml configuration file is located in WEB-INF/classes/ehcache.xml.
Follow the instructions in this config file, or the core ehcache instructions to configure.

SOAPWeb Service Security

31.8 Installing the Standalone Server

The WAR also comes packaged with a standalone server, based on Glassfish V3 Embedded.
The quick start is:

• Untar the download

• bin/start.sh to start. By default it will listen on port 8080, with JMX listening on port 8081, will have
both RESTful and SOAP web services enabled, and will use a sample Ehcache configuration from
the WAR module.

• bin/stop.sh to stop

31.8.1 Configuring the Standalone Server

Configuration is by editing the war/web.xml file as per the instructions for the WAR packaging.

31.8.2 Starting and Stopping the Standalone Server

Using Commons Daemon jsvc

jsvc creates a daemon which returns once the service is started. jsvc works on all common Unix-based
operating systems including Linux, Solaris and Mac OS X.
It creates a pid file in the pid directory.
This is a Unix shell script that starts the server as a daemon.
To use jsvc you must install the native binary jsvc from the Apache Commons Daemon project. The source
for this is distributed in the bin directory as jsvc.tar.gz. Untar it and follow the instructions for building it
or download a binary from the Commons Daemon project.
Convenience shell scripts are provided as follows:
start - daemon_start.sh
stop - daemon_stop.sh
jsvc is designed to integrate with Unix System 5 initialization scripts. (/etc/rc.d)
You can also send Unix signals to it. Meaningful ones for the Ehcache Standalone Server are:

164

No Meaning
1 HUP
2 INT
9 KILL
15 TERM

Executable jar

The server is also packaged as an executable jar for developer conveniencewhich will work on all operating
systems.
A convenience shell script is provided as follows:
start - startup.sh
From the bin directory you can also invoke the following command directly:

unix - java -jar ../lib/ehcache-standalone-server-0.7.jar 8080 ../war
windows - java -jar ..\lib\ehcache-standalone-server-0.7.jar 8080 ..\war

31.9 Monitoring

The CacheServer registers Ehcache MBeans with the platform MBeanServer.
Remote monitoring of the MBeanServer is the responsibility of the Web Container or Application Server
vendor.
For example, some instructions for Tomcat are here: https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX
See your Web Container documentation for how to do this for your web container.

31.9.1 Remotely Monitoring the Standalone Server with JMX

The standalone server automatically exposes the MBeanServer on a port 1 higher than the HTTP listening
port.
To connect with JConsole simply fire up JConsole, enter the host in the Remote field and portIn the above
example that is

192.168.1.108:8686

Then click Connect.
To see the ehcache MBeans, click on the Mbeans tab and expand the net.sf.ehcache tree node.
You will see something like the following.

165

CacheStatistics MBeans in JConsole

Of course, from there you can hook the Cache Server up to your monitoring tool of choice. See the chapter
on JMX Management and Monitoring for more information.

166

Chapter 32

Hibernate Caching

Note these instructions are for Hibernate 3.1. Go to Guide for Version 1.1 for older instructions on how to
use Hibernate 2.1.
Ehcache easily integrates with the Hibernate Object/Relational persistence and query service. Gavin King,
the maintainer of Hibernate, is also a committer to the ehcache project. This ensures ehcache will remain
a first class cache for Hibernate.
Since Hibernate 2.1, ehcache has been the default cache, for Hibernate.
The net.sf.ehcache.hibernate package provides classes integrating ehcache with Hibernate. Hibernate is an
application of ehcache. Ehcache is also widely used a general-purpose Java cache.
To use ehcache with Hibernate do the following:

• Ensure ehcache is enabled in the Hibernate configuration.

• Add the cache element to the Hibernate mapping file, either manually, or via hibernatedoclet for each
Domain Object you wish to cache.

• Add the cache element to the Hibernate mapping file, either manually, or via hibernatedoclet for each
Domain Object collection you wish to cache.

• Add the cache element to the Hibernate mapping file, either manually, or via hibernatedoclet for each
Hibernate query you wish to cache.

• Create a cache element in ehcache.xml

Each of these steps is illustrated using a fictional Country Domain Object.
For more about cache configuration in Hibernate see the Hibernate documentation. Parts of this chapter
are drawn from Hibernate documentation and source code comments.
They are reproduced here for convenience in using ehcache.

32.1 Setting ehcache as the cache provider

32.1.1 Using one of the two ehcache providers from the ehcache project

To ensure ehcache is enabled, verify that the hibernate.cache.provider_class property is set to one of the
following in the Hibernate configuration file, either hibernate.cfg.xml or hibernate.properties. The format
given is for hibernate.cfg.xml.

167

net.sf.ehcache.hibernate.EhCacheProvider

for instance creation, or

net.sf.ehcache.hibernate.SingletonEhCacheProvider

to force Hibernate to use a singleton of Ehcache CacheManager.

32.1.2 Using multiple Hibernate instances

Each instance of Hibernate will need it’s own instance of ehcache’s CacheManager.
To do this use the following configuration, which a unique configurationResourceName per Hibernate
instance.

hibernate.cache.provider_class=net.sf.ehcache.hibernate.EhCacheProvider
net.sf.ehcache.configurationResourceName=/name_of_ehcache.xml

The meaning of the properties is as follows:
hibernate.cache.provider_class - The fully qualified class name of the cache provider
net.sf.ehcache.configurationResourceName - The name of a configuration resource to use.
The resource is searched for in the root of the classpath. It is needed to support multiple CacheManagers
in the same VM. It tells Hibernate which configuration to use. An example might be "ehcache-2.xml".

32.1.3 Using the Hibernate ehcache provider

To use the one from the Hibernate project:

hibernate.cache.provider_class=org.hibernate.cache.EhCacheProvider
hibernate.cache.provider_configuration_file_resource_path=/name_of_configuration_resource

32.1.4 Programmatic setting of the Hibernate Cache Provider

The provider can also be set programmatically in Hibernate using Configuration.setProperty("hibernate.cache.provider_class",
"net.sf.ehcache.hibernate.EhCacheProvider").

32.2 Hibernate Mapping Files

In Hibernate, each domain object requires a mapping file.
For example to enable cache entries for the domain object com.somecompany.someproject.domain.Country
there would be a mapping file something like the following:

<hibernate-mapping>

<class

168

name="com.somecompany.someproject.domain.Country"
table="ut_Countries"
dynamic-update="false"
dynamic-insert="false"

>
...
</hibernate-mapping>

To enable caching, add the following element.

<cache usage="read-write|nonstrict-read-write|read-only" />

e.g.

<cache usage="read-write" />

32.2.1 read-write

Caches data that is sometimes updated while maintaining the semantics of "read committed" isolation
level. If the database is set to "repeatable read", this concurrency strategy almost maintains the semantics.
Repeatable read isolation is compromised in the case of concurrent writes.
This is an "asynchronous" concurrency strategy.

32.2.2 nonstrict-read-write

Caches data that is sometimes updated without ever locking the cache. If concurrent access to an item is
possible, this concurrency strategy makes no guarantee that the item returned from the cache is the latest
version available in the database. Configure your cache timeout accordingly! This is an "asynchronous"
concurrency strategy.
This policy is the fastest. It does not use synchronized methods whereas read-write and read-only both do.

32.2.3 read-only

Caches data that is never updated.

32.3 Hibernate Doclet

Hibernate Doclet, part of the XDoclet project, can be used to generate Hibernate mapping files frommarkup
in JavaDoc comments.
Following is an example of a Class level JavaDoc which configures a read-write cache for the Country
Domain Object:

/**
* A Country Domain Object
*

169

* @hibernate.class table="COUNTRY"
* @hibernate.cache usage="read-write"
*/
public class Country implements Serializable
{

...
}

The @hibernate.cache usage tag should be set to one of read-write, nonstrict-read-write and read-only.

32.4 Configuration with ehcache.xml

Because ehcache.xml has a defaultCache, caches will always be created when required by Hibernate. How-
ever more control can be exerted by specifying a configuration per cache, based on its name.
In particular, because Hibernate caches are populated from databases, there is potential for them to get
very large. This can be controlled by capping their maxElementsInMemory and specifying whether to
overflowToDisk beyond that.
Hibernate uses a specific convention for the naming of caches of Domain Objects, Collections, and Queries.

32.4.1 Domain Objects

Hibernate creates caches named after the fully qualified name of Domain Objects.
So, for example to create a cache for com.somecompany.someproject.domain.Country create a cache con-
figuration entry similar to the following in ehcache.xml.

<cache
name="com.somecompany.someproject.domain.Country"
maxElementsInMemory="10000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

32.4.2 Hibernate

CacheConcurrencyStrategy read-write, nonstrict-read-write and read-only policies apply to Domain Ob-
jects.

32.4.3 Collections

Hibernate creates collection caches named after the fully qualified name of the Domain Object followed by
"." followed by the collection field name.
For example, a Country domain object has a set of advancedSearchFacilities. The Hibernate doclet for the
accessor looks like:

/**
* Returns the advanced search facilities that should appear for this country.
* @hibernate.set cascade="all" inverse="true"
* @hibernate.collection-key column="COUNTRY_ID"

170

* @hibernate.collection-one-to-many class="com.wotif.jaguar.domain.AdvancedSearchFacility"
* @hibernate.cache usage="read-write"
*/

public Set getAdvancedSearchFacilities() {
return advancedSearchFacilities;

}

You need an additional cache configured for the set. The ehcache.xml configuration looks like:

<cache name="com.somecompany.someproject.domain.Country"
maxElementsInMemory="50"
eternal="false"
timeToLiveSeconds="600"
overflowToDisk="true"

/>
<cache

name="com.somecompany.someproject.Country.advancedSearchFacilities"
maxElementsInMemory="450"
eternal="false"
timeToLiveSeconds="600"
overflowToDisk="true"

/>

32.4.4 Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only policies apply to Domain Object collections.

32.4.5 Queries

Hibernate allows the caching of query results using two caches.
"net.sf.hibernate.cache.StandardQueryCache"and "net.sf.hibernate.cache.UpdateTimestampsCache" in ver-
sions 2.1 to 3.1 and "org.hibernate.cache.StandardQueryCache"and "org.hibernate.cache.UpdateTimestampsCache"
in version 3.2. are always used.

32.4.6 StandardQueryCache

This cache is used if you use a query cache without setting a name. A typical ehcache.xml configuration
is:

<cache
name="org.hibernate.cache.StandardQueryCache"
maxElementsInMemory="5"
eternal="false"
timeToLiveSeconds="120"
overflowToDisk="true"/>

32.4.7 UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It is important that the cache timeout
of the underlying cache implementation be set to a higher value than the timeouts of any of the query
caches. In fact, it is recommend that the the underlying cache not be configured for expiry at all.
A typical ehcache.xml configuration is:

171

<cache
name="org.hibernate.cache.UpdateTimestampsCache"
maxElementsInMemory="5000"
eternal="true"
overflowToDisk="true"/>

32.4.8 Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using Query.setCacheRegion(String
name). The name of the cache in ehcache.xml is then the name given in that method. The name can be
whatever you want, but by convention you should use "query." followed by a descriptive name.
E.g.

<cache name="query.AdministrativeAreasPerCountry"
maxElementsInMemory="5"
eternal="false"
timeToLiveSeconds="86400"
overflowToDisk="true"/>

32.4.9 Using Query Caches

For example, let’s say we have a common query running against the Country Domain.
Code to use a query cache follows:

public List getStreetTypes(final Country country) throws HibernateException {
final Session session = createSession();
try {

final Query query = session.createQuery(

"select st.id, st.name"
+ " from StreetType st "
+ " where st.country.id = :countryId "
+ " order by st.sortOrder desc, st.name");
query.setLong("countryId", country.getId().longValue());
query.setCacheable(true);
query.setCacheRegion("query.StreetTypes");
return query.list();

} finally {
session.close();

}
}

The query.setCacheable(true) line caches the query.
The query.setCacheRegion("query.StreetTypes") line sets the name of the Query Cache.

32.4.10 Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-only policies apply to Domain Objects. Cache policies
are not configurable for query cache. They act like a non-locking read only cache.

172

32.5 Hibernate Caching Performance Tips

To get the most out of ehcache with Hibernate, Hibernate’s use of it’s in-process cache is important to
understand.

32.5.1 In-Process Cache

From Hibernate’s point of view, Ehcache is an in-process cache. Cached objects are accessible across
different sessions. They are common to the Java process.

32.5.2 Object Id

Hibernate identifies cached objects via an object id. This is normally the primary key of a database row.

32.5.3 Session.load

Session.load will always try to use the cache.

32.5.4 Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use the cache for any
associated objects. Session.find does however cause the cache to be populated.
Query.find works in exactly the same way.
Use these where the chance of getting a cache hit is low.

32.5.5 Session.iterate and Query.iterate

Session.iterate always uses the cache for the primary object and any associated objects.
Query.iterate works in exactly the same way.
Use these where the chance of getting a cache hit is high.

173

174

Chapter 33

JSR107 (JCACHE) Support

33.1 JSR107 Implementation

Ehcache provides a preview implementation of JSR107 via the net.sf.cache.jcache package.
WARNING: JSR107 is still being drafted with the ehcache maintainer as Co Spec Lead. This package will
continue to change until JSR107 is finalised. No attempt will be made to maintain backward compatiblity
between versions of the package. It is therefore recommended to use Ehcache’s proprietary API directly.

33.2 Using JCACHE

33.2.1 Creating JCaches

JCaches can be created in two ways:

• as an ehcache decorator

• from JCache’s CacheManager

Creating a JCache using an ehcache decorator

manager in the following sample is an net.sf.ehcache.CacheManager

net.sf.jsr107cache.Cache cache = new JCache(manager.getCache("sampleCacheNoIdle"), null);

Creating a JCache from an existing Cache in Ehcache’s CacheManager

This is the recommended way of using JCache. Caches can be configured in ehcache.xml and wrapped as
JCaches with the getJCache method of CacheManager.
manager in the following sample is an net.sf.ehcache.CacheManager

net.sf.jsr107cache.Cache cache = manager.getJCache("sampleCacheNoIdle");

Adding a JCache to Ehcache’s CacheManager

manager in the following sample is an net.sf.ehcache.CacheManager

175

Ehcache ehcache = new net.sf.ehcache.Cache(...);
net.sf.jsr107cache.Cache cache = new JCache(ehcache);
manager.addJCache(cache);

Creating a JCache using the JCache CacheManager

Warning: The JCache CacheManager is unworkable and will very likely be dropped in the final JCache as
a Class. It will likely be replaced with a CacheManager interface.
The JCache CacheManager only works as a singleton. You obtain it with getInstance
The CacheManager uses a CacheFactory to create Caches. The CacheFactory is specified using the Service
Provider Interface mechanism introduced in JDK1.3.
The factory is specified in the META-INF/services/net.sf.jsr107cache.CacheFactory resource
file. This would normally be packaged in a jar. The default value for the ehcache implementation is
net.sf.ehcache.jcache.JCacheFactory

The configuration for a cache is assembled as a map of properties. Valid properties can be found in the
JavaDoc for the JCacheFactory.createCache() method.
See the following full example.

CacheManager singletonManager = CacheManager.getInstance();
CacheFactory cacheFactory = singletonManager.getCacheFactory();
assertNotNull(cacheFactory);

Map config = new HashMap();
config.put("name", "test");
config.put("maxElementsInMemory", "10");
config.put("memoryStoreEvictionPolicy", "LFU");
config.put("overflowToDisk", "true");
config.put("eternal", "false");
config.put("timeToLiveSeconds", "5");
config.put("timeToIdleSeconds", "5");
config.put("diskPersistent", "false");
config.put("diskExpiryThreadIntervalSeconds", "120");

Cache cache = cacheFactory.createCache(config);
singletonManager.registerCache("test", cache);

33.2.2 Getting a JCache

Once a cache is registered in CacheManager, you get it from there.
The following example shows how to get a Cache.

manager = CacheManager.getInstance();
Ehcache ehcache = new net.sf.ehcache.Cache("UseCache", 10,
MemoryStoreEvictionPolicy.LFU,
false, null, false, 10, 10, false, 60, null);
manager.registerCache("test", new JCache(ehcache, null));
Cache cache = manager.getCache("test");

33.2.3 Using a JCache

The JavaDoc is the best place to learn how to use a JCache.

176

The main point to remember is that JCache implements Map and that is the best way to think about it.
JCache also has some interesting asynchronous methods such as load and loadAll which can be used to
preload the JCache.

33.3 Problems and Limitations in the early draft of JSR107

If you are used to the richer API that ehcache provides, you need to be aware of some problems and
limitations in the draft specification.
You can generally work around these by getting the Ehcache backing cache. You can then access the extra
features available in ehcache.
Of course the biggest limitation is that JSR107 (as of Augut 2007) is a long way from final.

/**
* Gets the backing Ehcache
*/

public Ehcache getBackingCache() {
return cache;

}

The following is both a critique of JCache and notes on the Ehcache implementation. As a member of the
JSR107 Expert Group these notes are also intended to be used to improve the specification.

33.3.1 net.sf.jsr107cache.CacheManager

CacheManager does not have the following features:

• shutdown the CacheManager - there is no way to free resources or persist. Implementations may
utilise a shutdown hook, but that does not work for application server redeployments, where a shut-
down listener must be used.

• List caches in the CacheManager. There is no way to iterate over, or get a list of caches.

• remove caches from the CacheManager - once its there it is there until JVM shutdown. This does
not work well for dynamic creation, destruction and recreation of caches.

• CacheManager does not provide a standard way to configure caches. A Map can be populated with
properties and passed to the factory, but there is no way a configuration file can be configured. This
should be standardised so that declarative cache configuration, rather than programmatic, can be
achieved.

33.3.2 net.sf.jsr107cache.CacheFactory

A property is specified in the resource services/net.sf.jsr107cache.CacheFactory for a CacheFactory.
The factory then resolves the CacheManager which must be a singleton.
A singleton CacheManager works in simple scenarios. But there are many where you want multiple Cache-
Managers in an application. Ehcache supports both singleton creation semantics and instances and defines
the way both can coexist.
The singleton CacheManager is a limitation of the specification.
(Alternatives: Some form of annotation and injection scheme)
Pending a final JSR107 implementation, the ehcache configuration mechanism is used to create JCaches
from ehcache.xml config.

177

33.3.3 net.sf.jsr107cache.Cache

• The spec is silent on whether a Cache can be used in the absence of a CacheManager. Requiring a
CacheManager makes a central place where concerns affecting all caches can be managed, not just a
way of looking them up. For example, configuration for persistence and distribution.

• Cache does not have a lifecycle. There is no startup and no shutdown. There is no way, other than a
shutdown hook, to free resources or perform persistence operations. Once again this will not work
for redeployment of applications in an app server.

• There is no mechanism for creating a new cache from a default configuration such as a public
void registerCache(String cacheName) on CacheManager. This feature is considered in-
dispensable by frameworks such as Hibernate.

• Cache does not have a getName()method. A cache has a name; that is how it is retrieved from the
CacheManager. But it does not know its own name. This forces API users to keep track of the name
themselves for reporting exceptions and log messages.

• Cache does not support setting a TTL override on a put. e.g. put(Object key, Object value,
long timeToLive). This is a useful feature.

• The spec is silent on whether the cache accepts null keys and elements. Ehcache allows all imple-
mentations. i.e.

cache.put(null, null);
assertNull(cache.get(null));
cache.put(null, "value");
assertEquals("value", cache.get(null));
cache.put("key", null);
assertEquals(null, cache.get("key"));

null is effectively a valid key. However because null id not an instance of Serializable null-
keyed entries will be limited to in-process memory.

• The load(Object key), loadAll(Collection keys) and getAll(Collection collection)
methods specify in the javadoc that they should be asynchronous. Now, most load methods work off
a database or some other relatively slow resource (otherwise there would be no need to have a cache
in the first place).
To avoid running out of threads, these load requests need to be queued and use a finite number of
threads. The ehcache implementation does that. However, due to the lack of lifecycle management,
there is no immediate way to free resources such as thread pools.

• The load method ignores a request if the element is already loaded in for that key.

• get and getAll are inconsistent. getAll throws CacheException, but get does not. They both
should.

/**
* Returns a collection view of the values contained in this map. The
* collection is backed by the map, so changes to the map are reflected in
* the collection, and vice-versa. If the map is modified while an
* iteration over the collection is in progress (except through the
* iterator’s own <tt>remove</tt> operation), the results of the
* iteration are undefined. The collection supports element removal,
* which removes the corresponding mapping from the map, via the
* <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
* <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt> operations.

178

* It does not support the add or <tt>addAll</tt> operations.
* <p/>
*
* @return a collection view of the values contained in this map.
*/

public Collection values() {

It is not practical or desirable to support this contract. Ehcache has multiple maps for storage of
elements so there is no single backing map. Allowing changes to propagate from a change in the
collection maps would break the public interface of the cache and introduce subtle threading issues.
The ehcache implementation returns a new collection which is not connected to internal structures
in ehcache.

33.3.4 net.sf.jsr107cache.CacheEntry

• getHits() returns int. It should return long because production cache systems have entries hit more
than Integer.MAX_VALUE times.
Once you get to Integer.MAX_VALUE the counter rolls over. See the following test:

@Test public void testIntOverflow() {
long value = Integer.MAX_VALUE;
value += Integer.MAX_VALUE;
value += 5;
LOG.log(Level.INFO, "" + value);
int valueAsInt = (int) value;
LOG.log(Level.INFO, "" + valueAsInt);
assertEquals(3, valueAsInt);

}

• getCost() requirs the CacheEntry to knowwhere it is. If it is in a DiskStore then its cost of retrieval
could be higher than if it is in heap memory. Ehcache elements do not have this concept, and it is not
implemented. i.e. getCost always returns 0. Also, if it is in the DiskStore, when you retrieve it is in
then in the MemoryStore and its retrieval cost is a lot lower. I do not see the point of this method.

• getLastUpdateTime() is the time the last "update was made". JCACHE does not support updates,
only puts

33.3.5 net.sf.jsr107cache.CacheStatistics

• getObjectCount() is a strange name. How about getSize()? If a cache entry is an object graph each
entry will have more than one "object" in it. But the cache size is what is really meant, so why not
call it that?

• Once again getCacheHits and getCacheMisses should be longs.

public interface CacheStatistics {

public static final int STATISTICS_ACCURACY_NONE = 0;
public static final int STATISTICS_ACCURACY_BEST_EFFORT = 1;
public static final int STATISTICS_ACCURACY_GUARANTEED = 2;

public int getStatisticsAccuracy();

179

public int getObjectCount();

public int getCacheHits();

public int getCacheMisses();

public void clearStatistics();

• There is a getStatisticsAccuracy() method but not a corresponding setStatisticsAccuracy
method on Cache, so that you can alter the accuracy of the Statistics returned.
Ehcache supports this behaviour.

• There is no method to estimate memory use of a cache. Ehcache serializes each Element to a byte[]
one at a time and adds the serialized sizes up. Not perfect but better than nothing and works on older
JDKs.

• CacheStatistics is obtained using cache.getCacheStatistics() It then has getters for values.
In this way it feels like a value object. The ehcache implementation is Serializable so that it can act
as a DTO. However it also has a clearStatistics() method. This method clear counters on the Cache.
Clearly CacheStatistics must hold a reference to Cache to enable this to happen.
But what if you are really using it as a value object and have serialized it? The ehcache implementa-
tion marks the Cache reference as transient. If clearStatistics() is called when the cache reference
is no longer there, an IllegalStateException is thrown.
A much better solution would be to move clearStatistics() to Cache.

33.3.6 net.sf.jsr107cache.CacheListener

/**
* Interface describing various events that can happen as elements are added to
* or removed from a cache
*/

public interface CacheListener {
/** Triggered when a cache mapping is created due to the cache loader being consulted
public void onLoad(Object key);

/** Triggered when a cache mapping is created due to calling Cache.put() */
public void onPut(Object key);

/** Triggered when a cache mapping is removed due to eviction */
public void onEvict(Object key);

/** Triggered when a cache mapping is removed due to calling Cache.remove() */
public void onRemove(Object key);

public void onClear();
}

• Listeners often need not just the key, but the cache Entry itself. This listener interface is extremely
limiting.

• There is no onUpdate notification method. These are mapped to JCACHE’s onPut notification.

• There is no onExpired notification method. These are mapped to JCACHE’s onEvict notification.

180

33.3.7 net.sf.jsr107cache.CacheLoader

• JCache can store null values against a key. In this case, on JCache#get or getAll should an im-
plementation attempt to load these values again? They might have been null in the system the Cach-
eLoader loads from, but now aren’t. The ehcache implementation will still return nulls, which is
probably the correct behaviour. This point should be clarified.

33.4 Other Areas

33.4.1 JMX

JSR107 is silent on JMX which has been included in the JDK since 1.5.

181

182

Chapter 34

Glassfish HowTo & FAQ

The maintainer uses Ehcache in production with Glassfish. This chapter provides a Glassfish HOWTO.

34.1 Versions

Ehcache is used in production with Glassfish V1 and V2.

34.2 HowTo

34.2.1 HowTo Get A Sample Application using Ehcache packaged and Deployed
to Glassfish

Ehcache comes with a sample web application which is used to test the page caching. The page caching
is the only area that is sensitive to the Application Server. For Hibernate and general caching, it is only
dependent on your Java version.
From a checkout of ehcache run the following from the core directory:
You need:

• a Glassfish installation.

• a GLASSFISH_HOME environment variable defined.

• $GLASSFISH_HOME/bin added to your PATH
Do the following:

To package and deploy to domain1:
ant deploy-default-web-app-glassfish

Start domain1:
asadmin start-domain domain1

Stop domain1:
asadmin stop-domain domain1

Overwrite the config with our own which changes the port to 9080:
ant glassfish-configuration

183

Start domain1:
asadmin start-domain domain1

You can then run the web tests in the web package or point your browser at http://localhost:9080.
See for a quickstart to Glassfish.

34.2.2 How to get around the EJB Container restrictions on thread creation

When ehcache is running in the EJB Container, for example for Hibernate caching, it is in technical breach
of the EJB rules. Some app servers let you override this restriction.
I am not exactly sure how this in done in Glassfish. For a number of reasons we run Glassfish without the
Security Manager, and we do not have any issues.
In domain.xml ensure that the following is not included.

<jvm-options>-Djava.security.manager</jvm-options>

34.2.3 How To Enable Read Behind Page Caching in Glassfish

The read behind page caching feature requires that HTTP1.1 keepalives are turned off.
To do this in Glassfish:

Not sure if this is possible in Glassfish. Not in the documentation

34.3 Glassfish FAQ

34.3.1 Ehcache page caching versions below Ehcache 1.3 get an IllegalStateExcep-
tion in Glassfish.

This issue was fixed in Ehcache 1.3.

34.3.2 I get a Could not ungzip. Heartbeat will not be working. Not in GZIP format

reported from PayloadUtil exception when using ehcache with my Glassfish
cluster. Why?

Ehcache and Glassfish clustering have nothing to do with each other. The error is caused because ehcache
has received a multicast message from the Glassfish cluster. Ensure that ehcache clustering has its own
unique multicast address different to Glassfish.

184

Chapter 35

Google App Engine HowTo

35.1 Why?

• Speed - Ehcache cache operations take a fewµs, versusaround60msforGoogle′sprovidedclient−
servercache, memcacheg.

• Cost - Because it uses way less resources, it is also cheaper.

• Object Storage - Ehcache in-process cache works with Objects that are not Serializable.

35.2 Compatibility

Ehcache is compatible and works with Google App Engine.
Google App Engine provides a constrained runtime which restricts networking, threading and file system
access.

35.3 Limitations

All features of Ehcache can be used except for the DiskStore and replication. Having said that, there are
workarounds for these limitations. See the Recipes section below.
As of June 2009, Google App Engine appears to be limited to a heap size of 100MB. (See http://gregluck.com/blog/archives/2009/0
for the evidence of this).

35.4 Versions

Version 1.6 of Ehcache is compatible with Google App Engine. 1.6.0-rc1 is not. Use a snapshot or the
released version (which will be available soon).
Older versions will not work.

35.5 Configuring ehcache.xml

Make sure the following elements are commented out:

185

• diskStore path="java.io.tmpdir"/

• cacheManagerPeerProviderFactory class= ../

• cacheManagerPeerListenerFactory class= ../
Within each cache element, ensure that:

• overFlowToDisk=false or overFlowToDisk is omitted

• diskPersistent=false or diskPersistent is omitted

• no replicators are added

• there is no bootstrapCacheLoaderFactory
Copy and past this one to get started.

<?xml version="1.0" encoding="UTF-8"?>

<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ehcache.xsd" >

<cacheManagerEventListenerFactory class="" properties=""/>

<defaultCache
maxElementsInMemory="10000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="false"
diskPersistent="false"
memoryStoreEvictionPolicy="LRU"
/>

<!--Example sample cache-->
<cache name="sampleCache1"

maxElementsInMemory="10000"
maxElementsOnDisk="1000"
eternal="false"
timeToIdleSeconds="300"
timeToLiveSeconds="600"
memoryStoreEvictionPolicy="LFU"
/>

</ehcache>

35.6 Recipes

35.6.1 Setting up Ehcache as a local cache in front of memcacheg

The idea here is that your caches are set up in a cache hierarchy. Ehcache sits in front and memcacheg
behind. Combining the two lets you elegantly work around limitations imposed by Googe App Engine.
You get the benefits of the µsspeedofEhcachetogetherwiththeumlimitedsizeofmemcached.

Ehcache contains the hooks to easily do this.
To update memcached, use a CacheEventListener.
To search against memcacheg on a local cache miss, use cache.getWithLoader() together with a
CacheLoader for memcacheg.

186

35.6.2 Using memcacheg in place of a DiskStore

In the CacheEventListener, ensure that when notifyElementEvicted() is called, which it will be
when a put exceeds the MemoryStore’s capacity, that the key and value are put into memcacheg.

35.6.3 Distributed Caching

Configure all notifications in CacheEventListener to proxy throught to memcacheg.
Any work done by one node can then be shared by all others, with the benefit of local caching of frequently
used data.

35.6.4 Dynamic Web Content Caching

Google App Engine provides acceleration for files declared static in appengine-web.xml.
e.g.

<static-files>
<include path="/**" />
<exclude path="/data/**" />

</static-files>

You can get acceleration for dynamic files using Ehcache’s caching filters as you usually would.
See the Web Caching chapter.

35.7 Google App Engine FAQ

35.7.1 I get an error java.lang.NoClassDefFoundError: java.rmi.server.UID is a

restricted class

You are using a version of Ehcache prior to 1.6.

187

188

Chapter 36

Tomcat Issues and Best Practices

Ehcache is probably used most commonly with Tomcat. This chapter documents some known issues with
Tomcat and recommended practices.
Ehcache’s own caching and gzip filter integration tests run against Tomcat 5.5 and Tomcat 6. Tomcat will
continue to be tested against ehcache. Accordingly Tomcat is tier one for ehcache.

36.1 Tomcat Known Issues

Because Tomcat is so widely used, over time a list of known issues has been compiled. These issues and
their solutions are listed below.

36.1.1 If I restart/reload a web application in Tomcat that has a CacheManager
that is part of a cluster, the CacheManager is unable to rejoin the cluster.
If I set logging for net.sf.ehcache.distribution to FINE I see the following
exception: "FINE: Unable to lookup remote cache peer for Removing
from peer list. Cause was: error unmarshalling return; nested exception is:
java.io.EOFException.

The Tomcat and RMI classloaders do not get along that well. Move ehcache.jar to $TOMCAT_HOME/common/lib.
This fixes the problem. This issue happens with anything that uses RMI, not just ehcache.

36.1.2 In development, there appear to be classloadermemory leak as I continually
redeploy my web application.

There are lots of causes of memory leaks on redeploy. Moving ehcache and backport-util-concurrent out
of the WAR and into $TOMCAT/common/lib fixes this leak.

36.1.3 I get net.sf.ehcache.CacheException: Problem starting listener for RMI-
CachePeer ... java.rmi.UnmarshalException: error unmarshalling argu-
ments; nested exception is: java.net.MalformedURLException: no proto-
col: Files/Apache. What is going on?

This issue occurs to any RMI listener started on Tomcat whenever Tomcat has spaces in its installation
path.

189

It is is a JDK bug which can be worked around in Tomcat.
See http://archives.java.sun.com/cgi-bin/wa?A2=ind0205&L=rmi-users&P=797and http://www.ontotext.com/kim/doc/sys-
doc/faq-howto-bugs/known-bugs.html.
The workaround is to remove the spaces in your tomcat installation path.

36.1.4 Multiple Host Entries in Tomcat’s server.xml stops replication from occur-
ring

The presence of multipleHost entries in Tomcat’s server.xml prevents replication from occuring. The issue
is with adding multiple hosts on a single Tomcat connector. If one of the hosts is localhost and another
starts with v, then the caching between machines when hitting localhost stops working correctly.
The workaround is to use a single Host entry or to make sure they don’t start with "v".
Why this issue occurs is presently unknown, but is Tomcat specific.

190

Chapter 37

Building from Source

37.1 Building an ehcache distribution from source

To build Ehcache from source:

1. Check the source out from the subversion repository.

2. Ensure you have a valid JAVA_HOME and ANT_HOME configured with binaries for both in your
PATH

3. From within the ehcache/core directory, type ant

37.2 Running Tests for Ehcache

To run the test suite for Ehcache:

1. Check the source out from the subversion repository.

2. Ensure you have a valid JAVA_HOME and ANT_HOME configured with binaries for both in your
PATH

3. The integration tests rely on a standard Tomcat to be installed. Define TOMCAT_HOME to point to
a Tomcat 5 or 6 installation.

4. From within the ehcache/core directory, type mvn test

5. If some performance tests fail, add a -D net.sf.ehcache.speedAdjustmentFactor=xSystem
property to your command line, where x is howmany times yourmachine is slower than the reference
machine. Try setting it to 5 for a start.

37.3 Deploying Maven Artifacts

Ehcache has a repository and snapshot repository at SourceForge in the web directory.
http://ehcache.sf.net/repository
http://ehcache.sf.net/snapshotrepository
The repository is synced with the Maven Central Repository.
To deploy:

191

mvn deploy

This will fail because SourceForge has disabled ssh exec. You need to create missing directories manually
using sftp access sftp gregluck,ehcache@web.sourceforge.net

37.4 Building the Site

(These instructions are for project maintainers)
You need the following unix utilities installed:

• Maven 2.0.7

• latex or tetex

• ghostscript

• pdftk

• aptconvert

• netpbm
You also need a yDoc license.
With all that, build the site as below:

mvn clean site

Unfortunately, sourceforge scp is broken, since they removed the ability for ssh to execute shell
commands.
The site needs to be deployed from the target/site directory using:
rsync -v -r * gregluck,ehcache@web.sourceforge.net:/home/groups/e/eh/ehcache/htdocs

37.5 Deploying a release

37.5.1 Maven Release

mvn deploy

37.5.2 Sourceforge Release

mvn assembly:assembly

then manually upload to SourceForge
sftp gregluck@frs.sourceforge.net

and complete the file release process

192

Chapter 38

Frequently Asked Questions

38.1 Does ehcache run on JDK1.3?

Yes. It runs on JDK1.3, 1.4 and 5. The restriction for JDK1.3 is that you must either use the precompiled
ehcache.jar or build it using JDK1.4 with a target of 1.3. This is because ehcache makes use of some
JDK1.4 features but substitutes alternatives at runtime if it does not find those features.

38.2 Can you use more than one instance of ehcache in a single VM?

As of ehcache-1.2, yes. Create your CacheManager using new CacheManager(...) and keep hold of the
reference. The singleton approach accessible with the getInstance(...) method is still available too. Re-
member that ehcache can supports hundreds of caches within one CacheManager. You would use separate
CacheManagers where you want quite different configurations.
The Hibernate EhCacheProvider has also been updated to support this behaviour.

38.3 Can you use ehcache with Hibernate and outside of Hibernate
at the same time?

Yes. You use 1 instance of ehcache and 1 ehcache.xml. You configure your caches with Hibernate names
for use by Hibernate. You can have other caches which you interact with directly outside of Hibernate.
That is how I use ehcache in the original project it was developed in. For Hibernate we have about 80
Domain Object caches, 10 StandardQueryCaches, 15 Domain Object Collection caches.
We have around 5 general caches we interact with directly using BlockingCacheManager. We have 15
general caches we interact with directly using SelfPopulatingCacheManager. You can use one of those or
you can just use CacheManager directly.
I have updated the documentation extensively over the last few days. Check it out and let me know if
you have any questions. See the tests for example code on using the caches directly. Look at CacheMan-
agerTest, CacheTest and SelfPopulatingCacheTest.

193

38.4 What happens when maxElementsInMemory is reached? Are
the oldest items are expired when new ones come in?

When the maximum number of elements in memory is reached, the least recently used ("LRU") element is
removed. Used in this case means inserted with a put or accessed with a get.
If the overflowToDisk cache attribute is false, the LRU Element is discarded. If true, it is transferred
asynchronously to the DiskStore.

38.5 Is it thread safe to modify Element values after retrieval from a
Cache?

Remember that a value in a cache element is globally accessible from multiple threads. It is inherently not
thread safe to modify the value. It is safer to retrieve a value, delete the cache element and then reinsert the
value.
The UpdatingCacheEntryFactory does work by modifying the contents of values in place in the cache. This
is outside of the core of ehcache and is targeted at high performance CacheEntryFactories for SelfPopulat-
ingCaches.

38.6 Can non-Serializable objects be stored in a cache?

As of ehcache-1.2, they can be stored in caches with MemoryStores.
Elements attempted to be replicated or overflowed to disk will be removed and a warning logged if not
Serializable.

38.7 Why is there an expiry thread for the DiskStore but not for the
MemoryStore?

Because the memory store has a fixed maximum number of elements, it will have a maximummemory use
equal to the number of elements * the average size. When an element is added beyond the maximum size,
the LRU element gets pushed into the DiskStore.
While we could have an expiry thread to expire elements periodically, it is far more efficient to only check
when we need to. The tradeoff is higher average memory use.
The expiry thread keeps the disk store clean. There is hopefully less contention for the DiskStore’s locks
because commonly used values are in the MemoryStore. We mount our DiskStore on Linux using RAMFS
so it is using OS memory. While we have more of this than the 2GB 32 bit process size limit it is still an
expensive resource. The DiskStore thread keeps it under control.
If you are concerned about cpu utilisation and locking in the DiskStore, you can set the diskExpiryThread-
IntervalSeconds to a high number - say 1 day. Or you can effectively turn it off by setting the diskExpiry-
ThreadIntervalSeconds to a very large value.

38.8 What elements are mandatory in ehcache.xml?

The documentation has been updated with comprehensive coverage of the schema for ehcache and all
elements and attributes, including whether they are mandatory. See the Declarative Configuration chapter.

194

38.9 Can I use ehcache as a memory cache only?

Yes. Just set the overflowToDisk attribute of cache to false.

38.10 Can I use ehcache as a disk cache only?

Yes. Set the maxElementsInMemory attribute of cache to 0.
This is strongly not recommended however. The minimum recommended value is 1. Performance is as
much as 10 times higher when to one rather than 0. If not set to at least 1 a warning will be issued at Cache
creation time.

38.11 Where is the source code? The source code is distributed in
the root directory of the download.

It is called ehcache-x.x.zip. It is also available from SourceForge online or through SVN.

38.12 How do you get statistics on an Element without affecting them?

Use the Cache.getQuiet() method. It returns an Element without updating statistics.

38.13 How do you get WebSphere to work with ehcache?

It has been reported that IBM Websphere 5.1 running on IBM JDK1.4 requires commons-collection.jar in
its classpath even though ehcache will not use it for JDK1.4 and JDK5. (This is for versions of ehcache
lower than 1.6)

38.14 Do you need to call CacheManager.getInstance().shutdown()
when you finish with ehcache?

Yes, it is recommended. If the JVM keeps running after you stop using ehcache, you should call Cache-
Manager.getInstance().shutdown() so that the threads are stopped and cache memory released back to the
JVM. Calling shutdown also insures that your persistent disk stores get written to disk in a consistent state
and will be usable the next time they are used.
If the CacheManager does not get shutdown it should not be a problem. There is a shutdown hook which
calls the shutdown on JVM exit. This is explained in the documentation here.

38.15 Can you use ehcache after a CacheManager.shutdown()?

Yes. When you call CacheManager.shutdown() is sets the singleton in CacheManager to null. If you try an
use a cache after this you will get a CacheException.
You need to call CacheManager.create(). It will create a brand new one good to go. Internally the Cache-
Manager singleton gets set to the new one. So you can create and shutdown as many times as you like.
There is a test which expliciyly confirms this behaviour. See CacheManagerTest#testCreateShutdownCreate()

195

38.16 I have created a new cache and its status is STATUS_UNINITIALISED.
How do I initialise it?

You need to add a newly created cache to a CacheManager before it gets intialised. Use code like the
following:

CacheManager manager = CacheManager.create();
Cache myCache = new Cache("testDiskOnly", 0, true, false, 5, 2);
manager.addCache(myCache);

38.17 Is there a simple way to disable ehcache when testing?

Yes. There is a System Property based method of disabling ehcache. If disabled no elements will be added
to a cache. Set the property "net.sf.ehcache.disabled=true" to disable ehcache.
This can easily be done using -Dnet.sf.ehcache.disabled=true> in the command line.

38.18 How do I dynamically change Cache attributes at runtime?

You can’t but you can achieve the same result as follows:
Cache cache = new Cache("test2", 1, true, true, 0, 0, true, 120, ...); cacheManager.addCache(cache);
See the JavaDoc for the full parameters, also reproduced here:
Having created the new cache, get a list of keys using cache.getKeys, then get each one and put it in the
new cache. None of this will use much memory because the new cache element have values that reference
the same data as the original cache. Then use cacheManager.removeCache("oldcachename") to remove the
original cache.

38.19 I get net.sf.ehcache.distribution.RemoteCacheException: Er-
ror doing put to remote peer. Message was: Error unmarshal-
ing return header; nested exception is: java.net.SocketTimeoutException:
Read timed out. What does this mean.

It typically means you need to increase your socketTimeoutMillis. This is the amount of time a sender
should wait for the call to the remote peer to complete. How long it takes depends on the network and the
size of the Elements being replicated.
The configuration that controls this is the socketTimeoutMillis setting in cacheManagerPeerListenerFac-
tory. 120000 seems to work well for most scenarios.

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"
properties="hostName=fully_qualified_hostname_or_ip,

port=40001,
socketTimeoutMillis=120000"/>

196

38.20 Should I use this directive when doing distributed caching?
cacheManagerEventListenerFactory class="" properties=""/

No. It is unrelated. It is for listening to changes in your local CacheManager.

38.21 What is the minimum config to get distributed caching going?

The minimum configuration you need to get distributed caching going is:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic,

multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446"/>

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>

and then at least one cache declaration with

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>>>>

in it. An example cache is:

<cache name="sampleDistributedCache1"
maxElementsInMemory="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>

</cache>

Each server in the cluster can have the same config.

38.22 How can I see if distributed caching is working?

You should see the listener port open on each server.
You can use the distributed debug tool to see what is going on. (See).

38.23 Why can’t I run multiple applications using ehcache on one
machine?

Because of an RMI bug, in JDKs before JDK1.5 such as JDK1.4.2, ehcache is limited to one CacheManager
operating in distributed mode per virtual machine. (The bug limits the number of RMI registries to one

197

per virtual machine). Because this is the expected deployment configuration, however, there should be
no practical effect. The tell tail error is java.rmi.server.ExportException: internal error:
ObjID already in use

On JDK1.5 and higher it is possible to have multiple CacheManagers per VM each participating in the
same or different clusters. Indeed the replication tests do this with 5 CacheManagers on the same VM all
run from JUnit.

38.24 How many threads does ehcache use, and how much memory
does that consume?

The amount of memory consumed per thread is determined by the Stack Size. This is set using -Xss. The
amount varies by OS. It is 512KB for Linux. I tend to override the default and set it to 100kb.
The threads are created per cache as follows:

• DiskStore expiry thread - if DiskStore is used

• DiskStore spool thread - if DiskStore is used

• Replication thread - if asynchronous replication is configured.

If you are not doing any of the above, no extra threads are created

38.25 I am using Tomcat 5, 5.5 or 6 and I am having a problem.
What can I do?

Tomcat is such a common deployment option for applications using ehcache that there is a chapter on
known issues and recommended practices.
See the Using Ehcache with Tomcat chapter. (http://ehcache.sourceforge.net/documentation/tomcat.html)

38.26 I am using Java 6 and getting a java.lang.VerifyError on the
Backport Concurrent classes. Why?

The backport-concurrent library is used in ehcache to provide java.util.concurrency facilities for Java 4 -
Java 6. Use either the Java 4 version which is compatible with Java 4-6 or use the version for your JDK.

38.27 How do I get a memory only cache to persist to disk between
VM restarts?

While disk persistence between restarts is a feature of the DiskStore only, you can get the same behaviour
for a memory only cache by setting up a cache with maxElementsInMemory set to Integer.MAX_VALUE,
2147483647, overflowToDisk set to true and diskPersistent set to true.

198

38.28 I get a javax.servlet.ServletException: Could not initialise servlet
filter when using SimplePageCachingFilter. Why?

If you use this default implementation, the cache name is called "SimplePageCachingFilter". You need to
define a cache with that name in ehcache.xml. If you override CachingFilter you are required to set your
own cache name.

38.29 I see, in my application’s log:

WARN CacheManager ... Creating a new instance of CacheManager using the diskStorePath
"C:\temp\tempcache" which is already used by an existing CacheManager.

This means, that for some reason, your application is trying to create a second or more instance of Ehcache’s
CacheManager with the same configuration. Ehcache is automatically resolving the Disk path conflict,
which works fine.
To eliminate the warning:

• Use a separate configuration per instance

• If you onlywant one instance use the singleton creationmethods i.e CacheManager.getInstance().
In Hibernate there is a special provider for this called net.sf.ehcache.hibernate.SingletonEhCacheProvider.
See the Hibernate page for details.

38.30 How do I add a CacheReplicator to a cache that already ex-
ists? The cache event listening works but it does not get plumbed
into the peering mechanism.

The current API does not have a CacheManager event for cache configuration change. You can however
make it work by calling the notifyCacheAdded event.

getCache().getCacheManager().getCacheManagerEventListenerRegistry().notifyC
acheAdded("cacheName");

38.31 I am using the RemoteDebugger to monitor cluster messages
but all I see is "Cache size: 0"

If you see nothing happening, but cache operations should be going through, enable trace (LOG4J) or finest
(JDK) level logging on codenet.sf.ehcache.distribution/code in the logging configuration being used by the
debugger. A large volume of log messages will appear. The normal problem is that the CacheManager has
not joined the cluster. Look for the list of cache peers.
Finally, the debugger in ehcache-1.5 has been improved to provide far more information on the caches that
are replicated and events which are occurring.

199

38.32 With distributed replication on Ubuntu or Debian, I see the
following warning,

WARN [Replication Thread] RMIAsynchronousCacheReplicator.flushReplicationQueue(324)
| Unable to send message to remote peer.
Message was: Connection refused to host: 127.0.0.1; nested exception is:

java.net.ConnectException: Connection refused

java.rmi.ConnectException: Connection refused to host: 127.0.0.1; nested exception is:

java.net.ConnectException: Connection refused

This is caused by a 2008 change to the Ubuntu/Debian linux default network configuration.
Essentially, this java call: InetAddress.getLocalHost(); always returns the loopback address, which
is 127.0.0.1. Why? Because in these recent distros, a system call of $ hostname always returns an address
mapped onto the loopback device. Which causes ehcache’s RMI Peer creation logic to always assign the
loopback address, which causes the error you are seeing.
All you need to do is crack open the network config and make sure that the hostname of the machine returns
a valid network address accessible by other peers on the network.

38.33 I see log messages about SoftReferences. What are these about
and how do I stop getting the messages?

Ehcache uses SoftReferences with asynchronous RMI based replication, so that replicating caches do not
run out of memory if the network is interrupted. Elements scheduled for replication will be collected
instead. If this is happening, you will see warning messages from the replicator. It is also possible that a
SoftReference can be reclaimed during the sending in which case you will see a debug level message in the
receiving CachePeer.
Some things you can do to fix them:

• Set -Xms equal to -Xms. SoftReferences are also reclaimed in preference to increasing the heap size,
which is a problem when an application is warming up.

• Set the -Xmx to a high enough value so that SoftReferences do not get reclaimed.
Having done the above, SoftReferences will then only be reclaimed if there is some interruption to
replication and the message queue gets dangerously high.

38.34 My Hibernate Query caches entries are replicating but the
other caches in the cluster are not using them.

This is a Hibernate 3 bug. See http://opensource.atlassian.com/projects/hibernate/browse/HHH-3392 for
tracking. It is fixed in 3.3.0.CR2 which was released in July 2008.

38.35 Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 where it does not cleanup temporary queues, even
though they have been deleted. That bug appears to be long standing but was though to have been fixed.

200

See:

• http://www.nabble.com/Memory-Leak-Using-Temporary-Queues-td11218217.html#a11218217

• http://issues.apache.org/activemq/browse/AMQ-1255
The JMSCacheLoader uses temporary reply queues when loading. The Active MQ issue is readily
reproduced in Ehcache integration testing. Accordingly, use of the JMSCacheLoader with ActiveMQ
is not recommended. Open MQ tests fine.

38.36 Is Ehcache compatible with Google App Engine?

Version 1.6 is compatible. See the Google App Engine Howto

201

202

Chapter 39

About the ehcache name and logo

Adam Murdoch (an all round top Java coder) came up with the name in a moment of inspiration while we
were stuck on the SourceForge project create page. Ehcache is a palindrome. We thought the name was
wicked cool.

The logo is similarly symmetrical, and is evocative of the diagram symbol for a doubly-linked list. The
JDK1.4 LinkedHashMap, and Apache’s LRUMap are a HashMap with a doubly-linked list running through
all of its entries. These structures lie at the heart of ehcache.

203

Index

A
About the ehcache name and logo 16, 203
action . 115
Active MQ . 113
Adam Murdoch . 16, 203
Adding and Removing Caches Programmatically64
Amdahl’s Law . 19
Apache 2.0 license . 35
AsynchronousCommandExecutor 127
Automatic Peer Discovery 102

B
Blocking Cache .124
Blocking Cache to avoid duplicate processing for

concurrent operations 33
BlockingCache . 86
Bootstrapping from Peers . 32
Browse the JUnit Tests . 68
Building an ehcache distribution from source . . 191
Building from Source . 191
Building the Site . 192

C
Cache Configuration . 43
Cache Decorators . 85
Cache Event Listeners . 139
Cache event listeners . 30
Cache Eviction Algorithms 61
Cache Exception Handlers 143
Cache Exception Handlers may be plugged in . . . 30
Cache Extensions . 147
Cache Extensions may be plugged in 30
Cache Loaders . 133
Cache Loaders may be plugged in 30
Cache Server . 32, 151
Cache Usage Patterns .42
Cacheable Commands . 33
CacheExceptionHandlerFactory 143
CacheExtensionFactory. .147
CacheLoaderFactory . 134
CacheManager .38
CacheManager Event Listeners 129
CacheManager listeners . 30
CacheManagerEventListener 130
CacheManagerEventListenerFactory 130

cacheName .115
CachingFilter . 126
Code Samples . 63, 115
comes as a WAR or as a complete server 33
Configuration .139
Conservative Commit policy 35
Copy Or Invalidate Replication 31
CPU bound Applications . 18
Creating a new cache from defaults 67
Creating a new cache with custom parameters . . . 67
Creating Massive Caches . 159

D
Deadlock . 124
DELETE . 152, 153
Disk Persistence on demand 66
DiskStore . 57
DiskStore Eviction Algorithms 62
Distributed . 29
Distributed Caching . 31
Distributed Caching via Terracotta 121
Distributed Failure . 124

E
Ehcache . 40
ehcache constructs . 123
ehcache.xsd . 43
Element . 41
Eviction . 61
Expiry Strategy . 56
Extensible . 32
External JMS Publishers . 114

F
Fast .27
Features . 25
FIFO . 62
FINE . 71
First In First Out . 62
Flush to disk on demand . 30
Full implementation of JSR107 JCACHE API . . 29
Full public information on the history of every bug

35
Fully documented . 35

G

204

Garbage Collection .75
General Purpose Caching . 23
generic extensions to a Cache 147
GET . 152
Glassfish FAQ . 184
Google App Engine . 185
Google App Engine FAQ . 187

H
Hibernate . 167
Hibernate 2.1 . 167
Hibernate 3.1 . 167
Hibernate Caching . 167
Hibernate Doclet .169
Hibernate Mapping Files . 168
High Quality . 34
High Test Coverage . 34
http://oasis-open.org . 161
http://www.w3.org/ . 161
http://www.w3.org/2002/ws/ 161
http://www.ws-i.org/ . 161

I
I/O bound Applications . 18
Implementing a CacheEventListenerFactory . . . 140
Instance Mode . 38

J
j.u.l . 71
Java EE and Applied Caching 33
Java EE Gzipping Servlet Filter33
Java Requirements . 69
Java Util Logging . 71
JConsole Example . 80
JDK1.3 . 193
JGroups .107
JMS . 111
jmsreplication module . 111
JMX . 77
JMX Enabled . 31
JMX Management and Monitoring77
JMX Remoting . 78
JMX Tutorial . 80
JSR107 (JCACHE) Support 175
JSR107 Implementation . 175

K
key . 115
Key Ehcache Concepts . 37
Known JMS Issues . 120

L
Least Recently Used . 56, 61
Less Frequently Used . 56, 62
LFU . 56, 62

Listeners may be plugged in29
Livelock . 124
Liveness Failures . 124
Load Balancers . 159
Load, Limit and Performance System Tests 34
Loading of ehcache.xml resources 82
Locality of Reference. .17
Logging . 71
LRU . 56, 61

M
Management Service . 78
Manual Peer Discovery . 102
Maven . 192
Maven Release . 192
maxElementsInMemory . 61
maxElementsOnDisk . 61
MBeans . 78
MBeanServerConnection . 78
Memory Store . 55
MemoryStore Eviction Algorithms.61
Message Queue Reliability120
mimeType .115
Minimal dependencies . 28
Missed Signals . 124
Mixed Singleton and Instance Mode 39
Multiple CacheManagers per virtual machine . . . 28

N
Nested monitor lockouts . 124
net.sf.ehcache.disabled . 55
net.sf.ehcache.use.classic.lru 55

O
Obtaining a reference to a Cache 65
Obtaining Cache Sizes . 66
Obtaining Statistics of Cache Hits and Misses . . . 67
Open MQ . 114
Open Source Licensing . 35
overflowToDisk is false and diskPersistent 60

P
PageFragmentCachingFilter127
Peer Discovery . 31, 102, 107
Peer Discovery, Replicators and Listeners may be

plugged in .29
Performance Considerations.83
performance tests fail .191
Performing CRUD operations 65
Persistence . 58
Persistent disk store which stores data between VM

restarts . 30
Plugin class loading . 81
Production tested . 34

205

Programmatic setting of the Hibernate Cache Provider
168

Provides LRU, LFU and FIFO cache eviction poli-
cies . 29

Provides Memory and Disk stores 29
Provides Memory and Disk stores for scalabilty into

gigabytes .28
PUT . 152, 153

R
Registering CacheStatistics in an MBeanServer . 68
Reliable Delivery . 31
Remote Network debugging andmonitoring for Dis-

tributed Caches . 73
replaceCacheWithDecoratedCache 85
Resource Exhaustion . 124
Responsiveness to serious bugs 35
RESTful cache server . 32
RMI Distributed Caching . 101
Running Tests for Ehcache 191

S
Safety Failures .124
Scalable to hundreds of caches 28
SelfPopulating Cache for pull through caching of

expensive operations 33
SelfPopulatingCache .87, 126
Setting ehcache as the cache provider 167
SEVERE . 71
Shutdown the CacheManager65
Shutting Down Ehcache . 89
Simple . 28
SimplePageCachingFilter 91, 127
SimplePageFragmentCachingFilter 93, 127
Singleton Mode . 38
Singleton versus Instance . 64
Small foot print . 28
SOAP cache server . 32
Sourceforge Release. .192
Specific Concurrency Testing.34
Spooling . 56
Stampede . 124
Starvation . 124
Support cache-wide or Element-based expiry poli-

cies . 29
Support for replication via RMI or JGroups 31
Supported MemoryStore Eviction Algorithms . . . 61
Supports Object or Serializable caching 28
Synchronous Or Asynchronous Replication 31

T
TCP Unicast .108
TCPPING protocol .108
The Long Tail . 17

Transparent Replication. .31
Trusted by Popular Frameworks 35
Tuned for high concurrent load on large multi-cpu

servers . 28

U
UDP Multicast .108
Using Caches . 65
Using JCACHE . 175
Using the CacheManager . 63
Using the Hibernate ehcache provider 168
Using the JMSCacheLoader118

W
WADL . 32, 151
WARN. 71
Ways of loading Cache Configuration 64
Web Caching . 91
Works with Google App Engine 34
Works with Hibernate . 33
WS-Security . 161
WSDL . 161

206

