
1. Preface

1.1. Preface

This is a book about Ehcache, a widely used open source Java cache. Ehcache has grown in size
and scope since it was introduced in October 2003. As people used it they often noticed it was
missing a feature they wanted. Over time, the features that were repeatedly asked for, and make
sense for a Cache, have been added.

Ehcache is now used for Hibernate caching, data access object caching, security credential
caching, web caching, SOAP and RESTful server caching, application persistence and distributed
caching.

In August 2009, Ehcache was acquired by Terracotta, Inc. and has been continously enhanced
since then.

1.1.1. Version

This book is for Ehcache version 2.2.1.

1.1.2. Audience

The intended audience for this book is developers who use ehcache. It should be able to be used
to start from scratch, get up and running quickly, and also be useful for the more complex options.

Ehcache is about performance and load reduction of underlying resources. Another natural
audience is performance specialists.

It is also intended for application and enterprise architects. Some of the features of ehcache, such
as distributed caching and Java EE caching, are alternatives to be considered along with other
ways of solving those problems. This book discusses the trade-offs in Ehcache's approach to help
make a decision about appropriateness of use.

1.1.3. Acknowledgements

Ehcache has had many contributions in the form of forum discussions, feature requests, bug
reports, patches and code commits.

-

-

-

Rather than try and list the many hundreds of people who have contributed to Ehcache in some
way it is better to link to the web site where contributions are acknowledged in the following ways:

Bug reports and features requests appear in the changes report here:

Patch contributors generally end up with an author tag in the source they contributed to.

Team members appear on the team list page here:

2. Introduction

2.1. Introduction

Ehcache is a cache library. Before getting into ehcache, it is worth stepping back and thinking
about caching generally.

2.1.1. About Caches

Wiktionary defines a cache as A store of things that will be required in future, and can be retrieved
rapidly . That is the nub of it.

In computer science terms, a cache is a collection of temporary data which either duplicates data
located elsewhere or is the result of a computation. Once in the cache, the data can be repeatedly
accessed inexpensively.

2.1.2. Why caching works

2.1.2.1. Locality of Reference

While Ehcache concerns itself with Java objects, caching is used throughout computing, from
CPU caches to the DNS system. Why? Because many computer systems exhibit locality of
reference . Data that is near other data or has just been used is more likely to be used again.

2.1.2.2. The Long Tail

Chris Anderson, of Wired Magazine, coined the term The Long Tail to refer to Ecommerce
systems. The idea that a small number of items may make up the bulk of sales, a small number of
blogs might get the most hits and so on. While there is a small list of popular items, there is a long
tail of less popular ones.

The Long Tail is itself a vernacular term for a Power Law probability distribution. They don't just
appear in ecommerce, but throughout nature. One form of a Power Law distribution is the Pareto
distribution, commonly know as the 80:20 rule.

-

-

-

This phenomenon is useful for caching. If 20% of objects are used 80% of the time and a way can
be found to reduce the cost of obtaining that 20%, then the system performance will improve.

2.1.3. Will an Application Benefit from Caching?

The short answer is that it often does, due to the effects noted above.

The medium answer is that it often depends on whether it is CPU bound or I/O bound. If an
application is I/O bound then then the time taken to complete a computation depends principally
on the rate at which data can be obtained. If it is CPU bound, then the time taken principally
depends on the speed of the CPU and main memory.

While the focus for caching is on improving performance, it it also worth realizing that it reduces
load. The time it takes something to complete is usually related to the expense of it. So, caching
often reduces load on scarce resources.

2.1.3.1. Speeding up CPU bound Applications

CPU bound applications are often sped up by:

improving algorithm performance

parallelizing the computations across multiple CPUs (SMP) or multiple machines (Clusters).

upgrading the CPU speed. The role of caching, if there is one, is to temporarily store

computations that may be reused again. An example from Ehcache would be large web pages

that have a high rendering cost. Another caching of authentication status, where authentication

requires cryptographic transforms.

2.1.3.2. Speeding up I/O bound Applications

Many applications are I/O bound, either by disk or network operations. In the case of databases
they can be limited by both.

There is no Moore's law for hard disks. A 10,000 RPM disk was fast 10 years ago and is still fast.

-

-

-

-

-

-

-

-

Hard disks are speeding up by using their own caching of blocks into memory.

Network operations can be bound by a number of factors:

time to set up and tear down connections

latency, or the minimum round trip time

throughput limits

marshalling and unmarhshalling overhead The caching of data can often help a lot with I/O

bound applications. Some examples of Ehcache uses are:

Data Access Object caching for Hibernate

Web page caching, for pages generated from databases.

2.1.3.3. Increased Application Scalability

The flip side of increased performance is increased scalability. Say you have a database which
can do 100 expensive queries per second. After that it backs up and if connections are added to it
it slowly dies.

In this case, caching may be able to reduce the workload required. If caching can cause 90 of that
100 to be cache hits and not even get to the database, then the database can scale 10 times
higher than otherwise.

2.1.4. How much will an application speed up with
Caching?

2.1.4.1. The short answer

The short answer is that it depends on a multitude of factors being:

how many times a cached piece of data can and is reused by the application

the proportion of the response time that is alleviated by caching In applications that are I/O

bound, which is most business applications, most of the response time is getting data from a

database. Therefore the speed up mostly depends on how much reuse a piece of data gets. In

a system where each piece of data is used just once, it is zero. In a system where data is

reused a lot, the speed up is large.

The long answer, unfortunately, is complicated and mathematical. It is considered next.

2.1.4.2. Applying Amdahl's Law

-

-

Amdahl's law, after Gene Amdahl, is used to find the system speed up from a speed up in part of
the system.

 1 / ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl's law to common situations. In the interests of
simplicity, we assume:

a single server

a system with a single thing in it, which when cached, gets 100% cache hits and lives forever.

2.1.4.2.1. Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1000 times faster from cache than from a
database.

A typical Hibernate query will return a list of IDs from the database, and then attempt to load each.
If Session.iterate() is used Hibernate goes back to the database to load each object.

Imagine a scenario where we execute a query against the database which returns a hundred IDs
and then load each one.

The query takes 20% of the time and the roundtrip loading takes the rest (80%). The database
query itself is 75% of the time that the operation takes. The proportion being sped up is thus 60%
(75% * 80%).

The expected system speedup is thus:

 1 / ((1 - .6) + .6 / 1000)

 = 1 / (.4 + .006)

 = 2.5 times system speedup

2.1.4.2.2. Web Page Caching

An observed speed up from caching a web page is 1000 times. Ehcache can retrieve a page from
its SimplePageCachingFilter in a few ms.

Because the web page is the end result of a computation, it has a proportion of 100%.

The expected system speedup is thus:

 1 / ((1 - 1) + 1 / 1000)

 = 1 / (0 + .001)

 = 1000 times system speedup

2.1.4.2.3. Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liveness requirements vary in different parts
of the page. Here the SimplePageFragmentCachingFilter can be used.

Let's say we have a 1000 fold improvement on a page fragment that taking 40% of the page
render time.

The expected system speedup is thus:

 1 / ((1 - .4) + .4 / 1000)

 = 1 / (6 + .004)

 = 1.6 times system speedup

2.1.4.3. Cache Efficiency

In real life cache entrie do not live forever. Some examples that come close are "static" web pages
or fragments of same, like page footers, and in the database realm, reference data, such as the
currencies in the world.

Factors which affect the efficiency of a cache are:

liveness
 how live the data needs to be. The less live the more it can be cached
proportion of data cached
 what proportion of the data can fit into the resource limits of the machine. For 32 bit
Java systems, there was a hard limit of 2GB of address space. While now relaxed, garbage
collection issues make it harder to go a lot large. Various eviction algorithms are used to evict
excess entries.
Shape of the usage distribution
 If only 300 out of 3000 entries can be cached, but the Pareto distribution applies, it may

be that 80% of the time, those 300 will be the ones requested. This drives up the average request
lifespan.
Read/Write ratio
 The proportion of times data is read compared with how often it is written. Things such
as the number of rooms left in a hotel will be written to quite a lot. However the details of a room
sold are immutable once created so have a maximum write of 1 with a potentially large number of
reads. Ehcache keeps these statistics for each Cache and each element, so they can be
measured directly rather than estimated.

2.1.4.4. Cluster Efficiency

Also in real life, we generally do not find a single server?

Assume a round robin load balancer where each hit goes to the next server.

The cache has one entry which has a variable lifespan of requests, say caused by a time to live.
The following table shows how that lifespan can affect hits and misses.

 Server 1 Server 2 Server 3 Server 4

 M M M M
 H H H H
 H H H H
 H H H H
 H H H H

The cache hit ratios for the system as a whole are as follows:

 Entry
 Lifespan Hit Ratio Hit Ratio Hit Ratio Hit Ratio
 in Hits 1 Server 2 Servers 3 Servers 4 Servers

 2 1/2 0/2 0/2 0/2
 4 3/4 2/4 1/4 0/4
 10 9/10 8/10 7/10 6/10
 20 19/20 18/20 17/20 16/10
 50 49/50 48/50 47/20 46/50

The efficiency of a cluster of standalone caches is generally:

 (Lifespan in requests - Number of Standalone Caches) / Lifespan in requests

Where the lifespan is large relative to the number of standalone caches, cache efficiency is not
much affected.

However when the lifespan is short, cache efficiency is dramatically affected.

(To solve this problem, Ehcache supports distributed caching, where an entry put in a local cache
is also propagated to other servers in the cluster.)

2.1.4.5. A cache version of Amdahl's law

From the above we now have:

 1 / ((1 - Proportion Sped Up * effective cache efficiency) +
 (Proportion Sped Up * effective cache efficiency)/ Speed up)

effective cache efficiency = cache efficiency * cluster efficiency

2.1.4.6. Web Page example

Applying this to the earlier web page cache example where we have cache efficiency of 35% and
average request lifespan of 10 requests and two servers:

 cache efficiency = .35

 cluster efficiency = .(10 - 1) / 10
 = .9

 effective cache efficiency = .35 * .9
 = .315

 1 / ((1 - 1 * .315) + 1 * .315 / 1000)

 = 1 / (.685 + .000315)

 = 1.45 times system speedup

What if, instead the cache efficiency is 70%; a doubling of efficiency. We keep to two servers.

 cache efficiency = .70

 cluster efficiency = .(10 - 1) / 10
 = .9

 effective cache efficiency = .70 * .9
 = .63

 1 / ((1 - 1 * .63) + 1 * .63 / 1000)

 = 1 / (.37 + .00063)

 = 2.69 times system speedup

What if, instead the cache efficiency is 90%; a doubling of efficiency. We keep to two servers.

 cache efficiency = .90

 cluster efficiency = .(10 - 1) / 10
 = .9

 effective cache efficiency = .9 * .9
 = .81

 1 / ((1 - 1 * .81) + 1 * .81 / 1000)

 = 1 / (.19 + .00081)

 = 5.24 times system speedup

Why is the reduction so dramatic? Because Amdahl's law is most sensitive to the proportion of the
system that is sped up.

-

-

-

-

-

-

-

-

-

-

-

-

-

3. Getting Started

3.1. Getting Started

Firstly, if you have not downloaded Ehcache, you can download it here .

Ehcache can be used directly. It can also be used with the popular Hibernate Object/Relational
tool. Finally, it can be used for Java EE Servlet Caching.

This quick guide gets you started on each of these. The rest of the documentation can be
explored for a deeper understanding.

3.1.1. General Purpose Caching

Make sure you are using a supported Java version.

Place the Ehcache jar into your classpath.

Ensure that any libraries required to satisfy dependencies are also in the classpath.

Configure ehcache.xml and place it in your classpath.

Optionally, configure an appropriate logging level. See the Code Samples chapter for more

information on direct interaction with ehcache.

3.1.2. Hibernate

Perform the same steps as for General Purpose Caching .

Create caches in ehcache.xml. See the Hibernate Caching chapter for more information.

3.1.3. Distributed Caching

Ehcache supports distributed caching with two lines of configuration.

Download the ehcache-distribution package .

Add ehcache-core jar to your classpath

Add ehcache-terracotta jar to your classpath

Add a 'terracotta' element to your 'cache' stanza(s) in ehcache.xml

Add a 'terracottaConfig' element to your 'ehcache' stanza in ehcache.xml.

See the Distributed Caching With Terracotta chapter for more information.

http://www.terracotta.org/dl/ehcache-oss-sign-up
./dependencies.html#java
./dependencies.html
./logging.html
./samples.html
#Getting_Started_General_Purpose_Caching
./hibernate.html
http://www.terracotta.org/dl/ehcache-oss-sign-up
./distributed_caching_with_terracotta.html

-

-

-

-

-

-

-

-

-

-

-

3.1.4. Java EE Servlet Caching

Perform the same steps as for General Purpose Caching .

Configure a cache for your web page in ehcache.xml.

To cache an entire web page, either use SimplePageCachingFilter or create your own subclass

of CachingFilter

To cache a jsp:Include or anything callable from a RequestDispatcher, either use

SimplePageFragmentCachingFilter or create a subclass of PageFragmentCachingFilter.

Configure the web.xml. Declare the filters created above and create filter mapping associating

the filter with a URL. See the Web Caching chapter for more information.

3.1.5. RESTful and SOAP Caching with the Cache Server

Download the ehcache-standalone-server from

https://sourceforge.net/projects/ehcache/files/ehcache-server .

cd to the bin directory

Type startup.sh to start the server with the log in the foreground. By default it will listen on port

8080, will have both RESTful and SOAP web services enabled, and will use a sample Ehcache

configuration from the WAR module.

See the code samples in the Cache Server chapter. You can use Java or any other

programming language to the use the Cache Server. See the Cache Server chapter for more

information.

3.1.6. JCache style caching

Ehcache contains an early draft implementation of JCache contained in the net.sf.ehcache.jcache
package.

See the JSR107 chapter for usage.

3.1.7. Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using Ehcache without even realising it. The first steps in getting more
control over what is happening are:

discover the cache names used by the framework

create your own ehcache.xml with settings for the caches and place it in the application

classpath.

#Getting_Started_General_Purpose_Caching
./web_caching.html
https://sourceforge.net/projects/ehcache/files/ehcache-server
./cache_server.html#RESTful_Code_Samples
./cache_server.html
./jsr107.html

4. Features

4.1. Features

4.1.1. Fast and Light Weight

4.1.1.1. Fast

Over the years, various performance tests have shown Ehcache to be one of the fastest Java
caches. Ehcache's threading is designed for large, high concurrency systems.

Extensive performance tests in the test suite keep ehcache's performance consistent between
releases.

As an example, some guys have created a java cache test tool called
cache4j_perfomance_tester.

The results for ehcache-1.1 and ehcache-1.2 follow.

 ehcache-1.1

 [java] ---
 [java] java.version=1.4.2_09
 [java] java.vm.name=Java HotSpot(TM) Client VM
 [java] java.vm.version=1.4.2-54
 [java] java.vm.info=mixed mode
 [java] java.vm.vendor="Apple Computer, Inc."
 [java] os.name=Mac OS X
 [java] os.version=10.4.5
 [java] os.arch=ppc
 [java] ---
 [java] This test can take about 5-10 minutes. Please wait ...
 [java] ---
 [java] |GetPutRemoveT |GetPutRemove |Get |
 [java] ---

 [java] cache4j 0.4 |9240 |9116 |5556 |
 [java] oscache 2.2 |33577 |30803 |8350 |
 [java] Ehcache 1.1 |7697 |6145 |3395 |
 [java] jcs 1.2.7.0 |8966 |9455 |4072 |
 [java] ---

 ehcache-1.2
 [java] ---
 [java] java.version=1.4.2_09
 [java] java.vm.name=Java HotSpot(TM) Client VM
 [java] java.vm.version=1.4.2-54
 [java] java.vm.info=mixed mode
 [java] java.vm.vendor="Apple Computer, Inc."
 [java] os.name=Mac OS X
 [java] os.version=10.4.5
 [java] os.arch=ppc
 [java] ---
 [java] This test can take about 5-10 minutes. Please wait ...
 [java] ---
 [java] |GetPutRemoveT |GetPutRemove |Get |
 [java] ---
 [java] cache4j 0.4 |9410 |9053 |5865 |
 [java] oscache 2.2 |28076 |30833 |8031 |
 [java] Ehcache 1.2 |8753 |7072 |3479 |
 [java] jcs 1.2.7.0 |8806 |9522 |4097 |
 [java] ---

4.1.1.2. Simple

Many users of Ehcache hardly know they are using it. Sensible defaults require no initial
configuration.

The API is very simple and easy to use, making it possible to get up and running in minutes. See
the Code Samples for details.

4.1.1.3. Small foot print

Ehcache 1.2 is 110KB making it convenient to package.

4.1.1.4. Minimal dependencies

The only dependency for core use is the JCACHE API.

4.1.2. Scalable

4.1.2.1. Provides Memory and Disk stores for scalabilty into
gigabytes

The largest Ehcache installations use memory and disk stores in the gigabyte range. Ehcache is
tuned for these large sizes.

4.1.2.2. Scalable to hundreds of caches

The largest Ehcache installations use hundreds of caches.

4.1.2.3. Tuned for high concurrent load on large multi-cpu
servers

./samples.html

There is a tension between thread safety and performance. Ehcache's threading started off
coarse-grained, but has increasingly made use of ideas from Doug Lea to achieve greater
performance. Over the years there have been a number of scalability bottlenecks identified and
fixed.

4.1.2.4. Multiple CacheManagers per virtual machine

Ehcache 1.2 introduced multiple CacheManagers per virtual machine. This enables completely
difference ehcache.xml configurations to be applied.

4.1.2.5. Scalable to hundreds of nodes with Terracotta

By adding Terracotta, Ehcache can scale to any use case. See more details about Terracotta
caching at Distributed Caching With Terracotta .

4.1.3. Flexible

4.1.3.1. Supports Object or Serializable caching

As of ehcache-1.2 there is an API for Objects in addition to the one for Serializable. Non-
serializable Objects can use all parts of Ehcache except for DiskStore and replication. If an
attempt is made to persist or replicate them they are discarded and a WARNING level log
message emitted.

The APIs are identical except for the return methods from Element. Two new methods on
Element: getObjectValue and getKeyValue are the only API differences between the Serializable
and Object APIs. This makes it very easy to start with caching Objects and then change your
Objects to Seralizable to participate in the extra features when needed. Also a large number of
Java classes are simply not Serializable.

4.1.3.2. Support cache-wide or Element-based expiry policies

Time to lives and time to idles are settable per cache. In addition, from ehcache-1.2.1, overrides to
these can be set per Element.

./documentation/distributed_caching_with_terracotta.html

4.1.3.3. Provides LRU, LFU and FIFO cache eviction policies

Ehcache 1.2 introduced Less Frequently Used and First In First Out caching eviction policies.
These round out the eviction policies.

4.1.3.4. Provides Memory and Disk stores

Ehcache, like most of the cache solutions, provides high performance memory and disk stores.

4.1.3.5. Dynamic, Runtime Configuration of Caches

The time-to-live, time-to-idle, maximum in-memory and on-disk capacities can be tuned at runtime
simply by mutating the cache's configuration object.

4.1.4. Standards Based

4.1.4.1. Full implementation of JSR107 JCACHE API

Ehcache offers the the most complete implementation of the JSR107 JCACHE to date.

Because JCACHE has not yet been released the JCACHE API that Ehcache implements has
been released as net.sf.jsr107cache.

Implementers can code to the JCACHE API which will create portability to other caching solutions
in the future.

The maintainer of ehcache, Greg Luck, is on the expert committee for JSR107.

4.1.5. Extensible

4.1.5.1. Listeners may be plugged in

Ehcache 1.2 provides CacheManagerEventListener and CacheEventListener interfaces.
Implementations can be plugged in and configured in ehcache.xml.

4.1.5.2. Peer Discovery, Replicators and Listeners may be
plugged in

Distributed caching, introduced in Ehcache 1.2 involves many choices and tradeoffs. The Ehcache
team believe that one size will not fit all.

Implementers can use built-in mechanisms or write their own. A plugin development guide is
included for this purpose.

4.1.5.3. Cache Extensions may be plugged in

Create your own Cache Extensions, which hold a reference to a cache and are bound to its
lifecycle.

4.1.5.4. Cache Loaders may be plugged in

Create your own Cache Loaders, which are general purpose asynchronous methods for loading
data into caches, or use them in pull-through configuration.

4.1.5.5. Cache Exception Handlers may be plugged in

Create an Exception Handler which is invoked if any Exception occurs on a cache operation.

4.1.6. Application Persistence

4.1.6.1. Persistent disk store which stores data between VM
restarts

With Ehcache 1.1 in 2004, Ehcache was the first open source Java cache to introduce persistent
storage of cache data on disk on shutdown. The cached data is then accessible the next time the

-

-

-

-

-

-

-

-

-

-

application runs.

4.1.6.2. Flush to disk on demand

With Ehcache 1.2, the flushing of entries to disk can be executed with a cache.flush() method
whenever required, making it easier to use ehcache

4.1.7. Listeners

4.1.7.1. CacheManager listeners

Register Cache Manager listeners through the CacheManagerEventListener interface with the
following event methods:

notifyCacheAdded()

notifyCacheRemoved()

4.1.7.2. Cache event listeners

Register Cache Event Listeners through the CacheEventListener interfaces, which provides a lot
of flexibility for post-processing of cache events. The methods are:

notifyElementRemoved

notifyElementPut

notifyElementUpdated

notifyElementExpired

4.1.8. JMX Enabled

Ehcache is JMX enabled. You can monitor and manage the following MBeans:

CacheManager

Cache

CacheConfiguration

CacheStatistics

See the net.sf.ehcache.management package.

See http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html for an online

http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html

-

-

-

-

-

-

tutorial.

4.1.9. Distributed Caching

Since Ehcache 1.2 full support has been available for high performance distributed caching that is
flexible and extensible.

Included options for distributed caching are:

Clustered caching via Terracotta: two lines of configuration is all that is required to setup and

use Ehcache with Terracotta. Cache discovery is automatic, and many options exist for tuning

the cache behavior and performance for your use case.

Replicated caching via RMI, JGroups, or JMS: Cache discovery is implemented via multicast or

manual configuration. Updates are delivered either asynchronously or synchronously via

custom RMI connections.

Custom: a comprehensive plugin mechanism provides support for custom discovery and

replication implementations. See the Distributed Caching documentation for more feature

details.

4.1.9.1. Clustered Caching with Terracotta

Simple yet powerful clustered caching. Just two lines of configuration is all that is required. For
more information see Distributed Caching With Terracotta .

4.1.9.2. Replicated Caching via RMI, JGroups, or JMS

No programming changes are required to make use of replication. Only configuration in
ehcache.xml.

Available replication options are:

Ehcache 1.6+ supports replication via RMI, JGroups, and JMS

Synchronous or asynchronous replication, per cache, as appropriate.

Copy or invalidate, per cache, as appropriate.

4.1.9.3. Reliable Delivery

The built-in delivery mechanism uses RMI with custom sockets over TCP, not UDP.

./documentation/distributed_caching.html
./documentation/distributed_caching_with_terracotta.html

-

-

4.1.9.4. Peer Discovery

Peer discovery may be either manually configured or automatic, using multicast. Multicast is
simple, and adds and removes peers automatically. Manual configuration gives fine control and is
useful for situations where multicast is blocked.

4.1.9.5. Extensible

Distributed caching, introduced in Ehcache 1.2 involves many choices and tradeoffs. The Ehcache
team believe that one size will not fit all.

Implementers can use built-in mechanisms (such as Terracotta, RMI, Jgroups, or JMS) or write
their own. A plugin development guide is included for this purpose.

4.1.9.6. Bootstrapping from Peers

Distributed caches enter and leave the cluster at different times. Caches can be configured to
bootstrap themselves from the cluster when they are first initialized.

An abstract factory, BootstrapCacheLoaderFactory has been defined along with an interface
BootstrapCacheLoader along with an RMI based default implementation.

4.1.10. Cache Server

Ehcache now comes with a Cache Server, available as a WAR for most web containers, or as a
standalone server. The Cache Server has two apis: RESTful resource oriented, and SOAP. Both
support clients in any programming language.

4.1.10.1. RESTful cache server

The Ehcache implementation strictly follows the RESTful resource-oriented architecture style.

Specifically:

The HTTP methods GET, HEAD, PUT/POST and DELETE are used to specify the method of

the operation. The URI does not contain method information.

The scoping information, used to identify the resource to perform the method on, is contained in

the URI path.

-

-

-

The RESTful Web Service is described by and exposes a WADL (Web Application Description

Language) file. It contains the URIs you can call, and what data to pass and get back. Use the

OPTIONS method to return the WADL. For performance, HTTP/1.1 caching features are fully

supported such as Last-Modified, ETag and so on. Ehcache responsds correctly to HEAD and

conditional GET requests.

4.1.10.2. SOAP cache server

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically
has been configured in ehcache.xml or an IoC container. Multiple CacheManagers are not
supported.

The API definition is as follows:

WSDL - EhcacheWebServiceEndpointService.wsdl

Types - EhcacheWebServiceEndpointService_schema1.xsd

4.1.10.3. comes as a WAR or as a complete server

The standalone server comes with its own embedded Glassfish web container.

It also comes packaged as a WAR for deployment to any Servlet 2.5 web container. Glassfish
V2/3, Tomcat 6 and Jetty 6 have been tested.

4.1.11. Java EE and Applied Caching

High quality implementations for common caching scenarios and patterns.

4.1.11.1. Blocking Cache to avoid duplicate processing for
concurrent operations

A cache which blocks subsequent threads until the first read thread populates a cache entry.

4.1.11.2. SelfPopulating Cache for pull through caching of
expensive operations

http://ehcache.org/wsdl/EhcacheWebServiceEndpointService.wsdl
http://ehcache.org/wsdl/EhcacheWebServiceEndpointService_schema1.xsd

-

-

-

-

SelfPopulatingCache - a read-through cache. A cache that populates elements as they are
requested without requiring the caller to know how the entries are populated. It also enables
refreshes of cache entries without blocking reads on the same entries.

4.1.11.3. Java EE Gzipping Servlet Filter

CachingFilter - an abstract, extensible caching filter.

SimplePageCachingFilter A high performance Java EE servlet filter that caches pages based

on the request URI and Query String. It also gzips the pages and delivers them to browsers

either gzipped or ungzipped depending on the HTTP request headers. Use to cache entire

Servlet pages, whether from JSP, velocity, or any other rendering technology. Tested with

Orion and Tomcat.

SimplePageFragmentCachingFilter A high performance Java EE filter that caches page

fragments based on the request URI and Query String. Use with Servlet request dispatchers to

cache parts of pages, whether from JSP, velocity, or any other rendering technology. Can be

used from JSPs using jsp:include. Tested with Orion and Tomcat.

Works with Servlet 2.3 and Servlet 2.4 specifications.

4.1.11.4. Cacheable Commands

This is the trusty old command pattern with a twist: asynchronous behaviour, fault tolerance and
caching. Creates a command, caches it and then attempts to execute it.

4.1.11.5. Works with Hibernate

Tested with Hibernate2.1.8 and Hibernate3.1.3, which can utilise all of the new features except for
Object API and multiple session factories each using a different Ehcache CacheManager.

A new net.sf.ehcache.hibernate.EhCacheProvider makes those additional features available to
Hibernate-3.1.3. A version of the new provider should make it into the Hibernate3.2 release.

4.1.11.6. Works with Google App Engine

Ehcache-1.6 is compatible with Google App Engine.

See the Google App Engine HowTo .

./documentation/googleappengine.html

-

-

-

-

4.1.11.7. Transactional support through JTA

Ehcache-2.0 has support for JTA, making it a fully XA compliant resource participating in the
transaction, two-phase commit and recovery.

See the complete JTA documentation .

4.1.12. High Quality

4.1.12.1. High Test Coverage

The Ehcache team believe that the first and most important quality measure is a well designed
and comprehensive test suite.

Ehcache has a relatively high 86% test coverage of source code. This has edged higher over
time. Clover enforces the test coverage. Most of the missing 14% is logging and exception paths.

4.1.12.2. Automated Load, Limit and Performance System Tests

The Ehcache JUnit test suite contains some long-running system tests which place high load on
different Ehcache subsystems to the point of failure and then are back off to just below that point.
The same is done with limits such as the amount of Elements that can fit in a given heap size. The
same is also done with performance testing of each subsystem and the whole together. The same
is also done with network tests for cache replication.

The tests serve a number of purposes:

establishing well understood metrics and limits

preventing regressions

reproducing any reported issues in production

Allowing the design principle of graceful degradation to be achieved. For example, the

asynchronous cache replicator uses SoftReferences for queued messages, so that the

messages will be reclaimed before before an OutOfMemoryError occurs, thus favouring

stability over replication.

4.1.12.3. Specific Concurrency Testing

./documentation/jta.html

-

-

-

Ehcache also has concurrency testing, which typically uses 50 concurrent threads hammering a
piece of code. The test suites are also run on multi-core or multi-cpu machines so that
concurrency is real rather than simulated. Additionally, every concurrency related issue that has
ever been anticipated or resulted in a bug report has a unit test which prevents the condition from
recurring. There are no reported issues that have not been reproduced in a unit test.

Concurrency unit tests are somewhat difficult to write, and are often overlooked. The team
considers these tests a major factor in ehcache's quality.

4.1.12.4. Production tested

Ehcache came about in the first place because of production issues with another open source
cache.

Final release versions of Ehcache have been production tested on a very busy e-commerce site,
supporting thousands of concurrent users, gigabyte size caches on large multi-cpu machines. It
has been the experience of the team that most threading issues do not surface until this type of
load has been applied. Once an issue has been identified and investigated a concurrency unit test
can then be crafted.

4.1.12.5. Fully documented

A core belief held by the project team is that a project needs good documentation to be useful.

In ehcache, this is manifested by:

comprehensive written documentation

Complete, meaningful JavaDoc for every package, class and public and protected method.

Checkstyle rules enforce this level of documentation.

an up-to-date FAQ

4.1.12.6. Trusted by Popular Frameworks

Ehcache is used extensively. See the Who is Using? page, or browse Google.

4.1.12.7. Conservative Commit policy

./documentation/index.html
./documentation/faq.html
./who_is_using.html

Projects like Linux maintain their quality through a restricted change process, whereby changes
are submitted as patches, then reviewed by the maintainer and included, or modified. Ehcache
follows the same process.

4.1.12.8. Full public information on the history of every bug

Through the JIRA bug tracker , the full history of all bugs are shown, including current status. We

take this for granted in an open source project, as this is typically a feature that all open source

projects have, but this transparency makes it possible to gauge the quality and riskiness of a

library, something not usually possible in commercial products.

4.1.12.9. Responsiveness to serious bugs

The Ehcache team is serious about quality. If one user is having a problem, it probably means
others are too, or will have. The Ehcache team use Ehcache themselves in production. Every
effort will be made to provide fixes for serious production problems as soon as possible. These will
be committed to trunk. From there an affected user can apply the fix to their own branch.

4.1.13. Open Source Licensing

4.1.13.1. Apache 2.0 license

Ehcache's original Apache1.1 copyright and licensing was reviewed and approved by the Apache
Software Foundation, making Ehcache suitable for use in Apache projects. ehcache-1.2 is
released under the updated Apache 2.0 license.

The Apache license is also friendly one, making it safe and easy to include Ehcache in other open
source projects or commercial products.

https://jira.terracotta.org/jira/browse/EHC

-

-

-

-

5. Concepts

5.1. Key Ehcache Concepts

5.1.1. Definitions

cache-hit : When a data element is requested of the cache and the element exists for the given

key, it is referrred to as a cache hit (or simply 'hit').

cache-miss : When a data element is requested of the cache and the element does not exist for

the given key, it is referred to as a cache miss (or simply 'miss').

system-of-record : The core premise of caching assumes that there is a source of truth for the

data. This is often referred to as a system-of-record (SOR) . The cache acts as a local copy of

data retrieved from or stored to the system-of-record.

SOR : See system-of-record .

5.1.2. Key Ehcache Classes

Ehcache consists of a CacheManager , which manages caches. Caches contain elements, which
are essentially name value pairs. Caches are physically implemented either in-memory, or on
disk.

5.1.2.1. CacheManager

The CacheManager comprises Caches which in turn comprise Elements.

Creation of, access to and removal of caches is controlled by the CacheManager .

5.1.2.1.1. CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

http://en.wikipedia.org/wiki/System_of_record
#Key_Concepts_system-of-record

5.1.2.1.1.1. Singleton Mode

Ehcache-1.1 supported only one CacheManager instance which was a singleton. CacheManager
can still be used in this way using the static factory methods.

5.1.2.1.1.2. Instance Mode

From ehcache-1.2, CacheManager has constructors which mirror the various static create
methods. This enables multiple CacheManagers to be created and used concurrently. Each
CacheManager requires its own configuration.

If the Caches under management use only the MemoryStore, there are no special considerations.
If Caches use the DiskStore, the diskStore path specified in each CacheManager configuration
should be unique. When a new CacheManager is created, a check is made that there are no other
CacheManagers using the same diskStore path. If there are, a CacheException is thrown. If a
CacheManager is part of a cluster, there will also be listener ports which must be unique.

5.1.2.1.1.3. Mixed Singleton and Instance Mode

If an application creates instances of CacheManager using a constructor, and also calls a static
create method, there will exist a singleton instance of CacheManager which will be returned each
time the create method is called together with any other instances created via constructor. The
two types will coexist peacefully.

5.1.2.2. Ehcache

All caches implement the Ehcache interface. A cache has a name and attributes. Each cache
contains Elements.

A Cache in Ehcache is analogous to a cache region in other caching systems.

Cache elements are stored in the MemoryStore . Optionally they also overflow to a DiskStore .

5.1.2.3. Element

An element is an atomic entry in a cache. It has a key, a value and a record of accesses.
Elements are put into and removed from caches. They can also expire and be removed by the

-

-

-

-

-

Cache, depending on the Cache settings.

As of ehcache-1.2 there is an API for Objects in addition to the one for Serializable. Non-
serializable Objects can use all parts of Ehcache except for DiskStore and replication. If an
attempt is made to persist or replicate them they are discarded without error and with a DEBUG
level log message.

The APIs are identical except for the return methods from Element. Two new methods on
Element: getObjectValue and getKeyValue are the only API differences between the Serializable
and Object APIs. This makes it very easy to start with caching Objects and then change your
Objects to Seralizable to participate in the extra features when needed. Also a large number of
Java classes are simply not Serializable.

5.1.3. Cache Usage Patterns

There are several common access patterns when using a cache. Ehcache supports the following
patterns:

cache-aside (or direct manipulation)

cache-as-sor (a combination of read-through and write-through or write-behind patterns)

read-through

write-through

write-behind (or write-back) []

5.1.3.1. cache-aside

Here, application code uses the cache directly.

This means that application code which accesses the system-of-record (SOR) should consult the

cache first, and if the cache contains the data, then return the data directly from the cache,

bypassing the SOR.

Otherwise, the application code must fetch the data from the system-of-record, store the data in
the cache, and then return it.

When data is written, the cache must be updated with the system-of-record.

This results in code that often looks like the following pseudo-code:

 public class MyDataAccessClass
 {
 private final Ehcache cache;

#Key_Concepts_system-of-record

 public MyDataAccessClass(Ehcache cache)
 {
 this.cache = cache;
 }

 /* read some data, check cache first, otherwise read from sor */
 public V readSomeData(K key)
 {
 Element element;
 if ((element = cache.get(key)) != null) {
 return element.getValue();
 }

 // note here you should decide whether your cache
 // will cache 'nulls' or not
 if (value = readDataFromDataStore(key)) != null) {
 cache.put(new Element(key, value));
 }

 return value;
 }

 /* write some data, write to sor, then update cache */
 public void writeSomeData(K key, V value)
 {
 writeDataToDataStore(key, value);
 cache.put(new Element(key, value);
 }
 }

-

-

-

-

-

-

5.1.3.2. cache-as-sor

The cache-as-sor pattern implies using the cache as though it were the primary system-of-record

(SOR). The pattern delegates SOR reading and writing activies to the cache, so that application

code is absolved of this responsibility.

To implement the cache-as-sor pattern, use a combination of the following read and write
patterns:

read-through

write-through or write-behind

Advantages of using the cache-as-sor pattern are:

less cluttered application code (improved maintainability)

easily choose between write-through or write-behind strategies on a per-cache basis (use only

configuration)

allow the cache to solve the "thundering-herd" problem

Disadvantages are:

less directly visible code-path

5.1.3.3. read-through

The read-through pattern mimics the structure of the cache-aside pattern when reading data. The
difference is that you must implement the CacheEntryFactory interface to instruct the cache how
to read objects on a cache miss, and you must wrap the Ehcache instance with an instance of
SelfPopulatingCache .

Compare the appearance of the read-through pattern code to the code provided in the cache-
aside pattern. (The full example is provided at the end of this document that includes a read-
through and write-through implementation).

5.1.3.4. write-through

The write-through pattern mimics the structure of the cache-aside pattern when writing data. The
difference is that you must implement the CacheWriter interface and configure the cache for write-
through or write-behind.

A write-through cache writes data to the system-of-record in the same thread of execution,
therefore in the common scenario of using a database transaction in context of the thread, the
write to the database is covered by the transaction in scope.

#Key_Concepts_system-of-record

More details (including configuration settings) can be found in the User Guide chapter on Write-

through and Write-behind Caching .

5.1.3.5. write-behind

The write-behind pattern changes the timing of the write to the system-of-record. Rather than
writing to the System of Record in the same thread of execution, write-behind queues the data for
write at a later time.

The consequences of the change from write-through to write-behind are that the data write using
write-behind will occur outside of the scope of the transaction.

This often-times means that a new transaction must be created to commit the data to the system-
of-record that is separate from the main transaction.

More details (including configuration settings) can be found in the User Guide chapter on Write-

through and Write-behind Caching .

5.1.3.6. cache-as-sor example

 public class MyDataAccessClass
 {
 private final Ehcache cache;

 public MyDataAccessClass(Ehcache cache)
 {
 cache.registerCacheWriter(new MyCacheWriter());
 this.cache = new SelfPopulatingCache(cache);
 }

 /* read some data - notice the cache is treated as an SOR.
 * the application code simply assumes the key will always be available
 */
 public V readSomeData(K key)
 {
 return cache.get(key);
 }

 /* write some data - notice the cache is treated as an SOR, it is
 * the cache's responsibility to write the data to the SOR.

./write_through_caching.html
./write_through_caching.html
./write_through_caching.html
./write_through_caching.html

 */
 public void writeSomeData(K key, V value)
 {
 cache.put(new Element(key, value);
 }

 /**
 * Implement the CacheEntryFactory that allows the cache to provide
 * the read-through strategy
 */
 private class MyCacheEntryFactory implements CacheEntryFactory
 {
 public Object createEntry(Object key) throws Exception
 {
 return readDataFromDataStore(key);
 }
 }

 /**
 * Implement the CacheWriter interface which allows the cache to provide
 * the write-through or write-behind strategy.
 */
 private class MyCacheWriter implements CacheWriter
 public CacheWriter clone(Ehcache cache) throws CloneNotSupportedException;
 {
 throw new CloneNotSupportedException();
 }

 public void init() { }
 void dispose() throws CacheException { }

 void write(Element element) throws CacheException;
 {
 writeDataToDataStore(element.getKey(), element.getValue());
 }

 void writeAll(Collection<Element> elements) throws CacheException
 {
 for (Element element : elements) {
 write(element);
 }
 }

 void delete(CacheEntry entry) throws CacheException
 {
 deleteDataFromDataStore(element.getKey());

 }

 void deleteAll(Collection<CacheEntry> entries) throws CacheException
 {
 for (Element element : elements) {
 delete(element);
 }
 }
 }
 }

5.1.3.7. Copy Cache

A Copy Cache can have two behaviors: it can copy Element instances it returns, when
copyOnRead is true and copy elements it stores, when copyOnWrite to true.

A copy on read cache can be useful when you can't let multiple threads access the same Element
instance (and the value it holds) concurrently. For example, where the programming model
doesn't allow it, or you want to isolate changes done concurrently from each other.

Copy on write also lets you determine exactly what goes in the cache and when. i.e. when the
value that will be in the cache will be in state it was when it actually was put in cache. All
mutations to the value, or the element, after the put operation will not be reflected in the cache .

A concrete example of a copy cache is a Cache configured for XA . It will always be configured
copyOnRead and copyOnWrite to provide proper transaction isolation and clear transaction
boundaries (the state the objects are in at commit time is the state making it into the cache).

By default, the copy operation will be performed using standard Java object serialization. We do
recognize though that for some applications this might not be good (or fast) enough. You can
configure your own CopyStrategy which will be used to perform these copy operations. For
example, you could easily implement use cloning rather than Serialization.

More information on configuration can be found here: copyOnRead and copyOnWrite cache

configuration .

./configuration.html
./configuration.html

-

-

-

-

-

-

-

-

-

6. Configuration

6.1. Cache Configuration

Caches can be configured in Ehcache either declaratively, in xml, or by creating them
programmatically and specifying their parameters in the constructor.

While both approaches are fully supported it is generally a good idea to separate the cache
configuration from runtime use. There are also these benefits:

It is easy if you have all of your configuration in one place. Caches consume memory, and disk

space. They need to be carefully tuned. You can see the total effect in a configuration file. You

could do this code, but it would not as visible.

Cache configuration can be changed at deployment time.

Configuration errors can be checked for at start-up, rather than causing a runtime error.

This chapter covers XML declarative configuration.

Ehcache is redistributed by lots of projects. They may or may not provide a sample Ehcache XML
configuration file. If one is not provided, download Ehcache from http://ehcache.org . It, and the

ehcache.xsd is provided in the distibution.

6.1.1. Dynamically Changing Cache Configuration

new_in_2 After a Cache has been started its configuration is not generally changeable. However,
since Ehcache 2.0, certain aspects of cache configuration can modified dynamically at runtime,
namely:

timeToLive

timeToIdle

maxElementsInMemory

maxElementsOnDisk

memory store eviciton policy

CacheEventListeners can be added and removed dynamically This example shows how to

dynamically modify the cache configuration of an already running cache:

 Cache cache = manager.getCache("sampleCache");
 CacheConfiguration config = cache.getCacheConfiguration();
 config.setTimeToIdleSeconds(60);

http://ehcache.org

 config.setTimeToLiveSeconds(120);
 config.setMaxElementsInMemory(10000);
 config.setMaxElementsOnDisk(1000000);

Dynamic cache configurations can also be frozen to prevent future changes:

 Cache cache = manager.getCache("sampleCache");
 cache.disableDynamicFeatures();

6.1.2. copyOnRead and copyOnWrite cache configuration

A cache can be configured to copy the data, rather than return reference to it on get or put. This is
configured using the copyOnRead and copyOnWrite attributes of cache and defaultCache
elements in your configuration or programmatically as follows:

 CacheConfiguration config = new CacheConfiguration("copyCache",
1000).copyOnRead(true).copyOnWrite(true);
 Cache copyCache = new Cache(config);

The default configuration will be false for both options.

In order to copy elements on put()-like and/or get()-like operations, a CopyStrategy is being used.
The default implementation uses serialization to copy elements. You can provide your own
implementation of net.sf.ehcache.store.compound.CopyStrategy like this:

 <cache name="copyCache"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="5"
 timeToLiveSeconds="10"
 overflowToDisk="false"
 copyOnRead="true"
 copyOnWrite="true">
 <copyStrategy class="com.company.ehcache.MyCopyStrategy"/>
 </cache>

Per cache, a single instance of your CopyStrategy will be use, hence your implementation of
CopyStrategy.copy(T): T has to be thread-safe.

6.1.3. Special System Properties

6.1.3.1. net.sf.ehcache.disabled

Setting this System Property to true disables caching in ehcache. If disabled no elements will be
added to a cache. i.e. puts are silently discarded.

e.g. java -Dnet.sf.ehcache.disabled=true in the Java command line.

6.1.3.2. net.sf.ehcache.use.classic.lru

Set this System property to true to use the older LruMemoryStore implementation when LRU is
selected as the eviction policy.

This is provided for ease of migration.

e.g. java -Dnet.sf.ehcache.use.classic.lru=true in the Java command line.

6.1.4. ehcache.xsd

Ehcache configuration files must be comply with the Ehcache XML schema, ehcache.xsd.

It can be downloaded from http://ehcache.org/ehcache.xsd .

6.1.5. ehcache-failsafe.xml

If the CacheManager default constructor or factory method is called, Ehcache looks for a file
called ehcache.xml in the top level of the classpath. Failing that it looks for ehcache-failsafe.xml in
the classpath. ehcache-failsafe.xml is packaged in the Ehcache jar and should always be found.

ehcache-failsafe.xml provides an extremely simple default configuration to enable users to get
started before they create their own ehcache.xml.

If it used Ehcache will emit a warning, reminding the user to set up a proper configuration.

The meaning of the elements and attributes are explained in the section on ehcache.xml.

 <ehcache>
 <diskStore path="java.io.tmpdir"/>

http://ehcache.org/ehcache.xsd

 <defaultCache
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="true"
 maxElementsOnDisk="10000000"
 diskPersistent="false"
 diskExpiryThreadIntervalSeconds="120"
 memoryStoreEvictionPolicy="LRU"
 />
 </ehcache>

6.1.6. Update Checker

The update checker is used to see if you have the latest version of Ehcache. It is also used to get
non-identifying feedback on the OS architectures using Ehcache.

To disable the check, do one of the following:

6.1.6.1. By System Property

 -Dnet.sf.ehcache.skipUpdateCheck=true

6.1.6.2. By Configuration

The outer ehcache element takes an updateCheck attribute, which is set to false as in the
following example.

 -->
 <ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
 updateCheck="false" monitoring="autodetect"
 dynamicConfig="true">

6.1.7. ehcache.xml and other configuration files

Prior to ehcache-1.6, Ehcache only supported ASCII ehcache.xml configuration files. Since
ehcache-1.6, UTF8 is supported, so that configuration can use Unicode. As UTF8 is backwardly
compatible with ASCII, no conversion is necessary.

If the CacheManager default constructor or factory method is called, Ehcache looks for a file
called ehcache.xml in the top level of the classpath.

The non-default creation methods allow a configuration file to be specified which can be called
anything.

One XML configuration is required for each CacheManager that is created. It is an error to use the
same configuration, because things like directory paths and listener ports will conflict. Ehcache will
attempt to resolve conflicts and will emit a warning reminding the user to configure a separate

configuration for multiple CacheManagers with conflicting settings.

The sample ehcache.xml is included in the Ehcache distribution. It contains full commentary
required to configure each element. Further information can be found in specific chapters in the
Guide.

It can also be downloaded from http://ehcache.org/ehcache.xml .

http://ehcache.org/ehcache.xml

7. Cache Eviction Algorithms

7.1. Cache Eviction Algorithms

A cache eviction algorithm is a way of deciding which Element to evict when the cache is full.

In Ehcache the MemoryStore has a fixed limited size set by maxElementsInMemory (unless the

maxElementsInMemory is 0, in which case the capacity is unlimited). When the store gets full,

elements are evicted. The eviction algorithms in Ehcache determines which elements is evicted.

The default is LRU.

What happens on eviction depends on the cache configuration. If a DiskStore is configured, the
evicted element will overflow to disk, otherwise it will be removed.

The DiskStore size by default is unbounded. But a maximum size can be set using the

maxElementsOnDisk cache attribute. If the DiskStore is full, then adding an element will cause

one to be evicted. The DiskStore eviction algorithm is not configurable. It uses LFU.

7.1.1. Provided MemoryStore Eviction Algorithms

The idea here is, given a limit on the number of items to cache, how to choose the thing to evict
that gives the best result.

In 1966 Laszlo Belady showed that the most efficient caching algorithm would be to always
discard the information that will not be needed for the longest time in the future. This it a
theoretical result that is unimplementable without domain knowledge. The Least Recently Used
("LRU") algorithm is often used as a proxy. It works pretty well because of the locality of reference
phenonemon. As a result, LRU is the default eviction algorithm in Ehcache, as it is in most
caches.

Ehcache users may sometimes have a good domain knowledge. Accordingly, Ehcache provides
three eviction algorithms to choose from for the MemoryStore .

7.1.1.1. Less Recently Used (LRU)

This is the default.

The eldest element, is the Least Recently Used (LRU). The last used timestamp is updated when
an element is put into the cache or an element is retrieved from the cache with a get call.

It takes a random sample of the Elements and evicts the smallest. Using the sample size of 15
elements, empirical testing shows that an Element in the lowest quartile of use is evicted 99% of
the time.

If probabilistic eviction does not suit your application, a true Least Recently Used deterministic

algorithm is available by setting java -Dnet.sf.ehcache.use.classic.lru=true .

7.1.1.2. Less Frequently Used (LFU)

For each get call on the element the number of hits is updated. When a put call is made for a new
element (and assuming that the max limit is reached) the element with least number of hits, the
Less Frequently Used element, is evicted.

If cache element use follows a pareto distribution, this algorithm may give better results than LRU.

LFU is an algorithm unique to Ehcache. It takes a random sample of the Elements and evicts the
smallest. Using the sample size of 15 elements, empirical testing shows that an Element in the
lowest quartile of use is evicted 99% of the time.

7.1.1.3. First In First Out (FIFO)

Elements are evicted in the same order as they come in. When a put call is made for a new
element (and assuming that the max limit is reached for the memory store) the element that was
placed first (First-In) in the store is the candidate for eviction (First-Out).

This algorithm is used if the use of an element makes it less likely to be used in the future. An
example here would be an authentication cache.

It takes a random sample of the Elements and evicts the smallest. Using the sample size of 15
elements, empirical testing shows that an Element in the lowest quartile of use is evicted 99% of
the time.

7.1.2. Plugging in your own Eviction Algorithm

Ehcache 1.6 and higher allows you to plugin in your own eviction algorithm. You can utilise any
Element metadata which makes possible some very interesting approaches. For example, evict
an Element if it has been hit more than 10 times.

 /**
 * Sets the eviction policy strategy. The Cache will use a policy at startup. There
 * are three policies which can be configured: LRU, LFU and FIFO. However many other
 * policies are possible. That the policy has access to the whole element enables policies
 * based on the key, value, metadata, statistics, or a combination of any of the above.
 * It is safe to change the policy of a store at any time. The new policy takes effect
 * immediately.
 *
 * @param policy the new policy
 */
 public void setMemoryStoreEvictionPolicy(Policy policy) {
 memoryStore.setEvictionPolicy(policy);
 }

A Policy must implement the following interface:

 public interface Policy {

 /**
 * @return the name of the Policy. Inbuilt examples are LRU, LFU and FIFO.
 */
 String getName();

 /**
 * Finds the best eviction candidate based on the sampled elements. What distuingishes
 * this approach from the classic data structures approach is that an Element contains
 * metadata (e.g. usage statistics) which can be used for making policy decisions,
 * while generic data structures do not. It is expected that implementations will take
 * advantage of that metadata.
 *
 * @param sampledElements this should be a random subset of the population
 * @param justAdded we probably never want to select the element just added.
 * It is provided so that it can be ignored if selected. May be null.
 * @return the selected Element
 */
 Element selectedBasedOnPolicy(Element[] sampledElements, Element justAdded);

 /**
 * Compares the desirableness for eviction of two elements
 *
 * @param element1 the element to compare against
 * @param element2 the element to compare
 * @return true if the second element is preferable for eviction to the first element

 * under ths policy
 */
 boolean compare(Element element1, Element element2);
 }

7.1.3. DiskStore Eviction Algorithms

The DiskStore uses the Less Frequently Used algorithm to evict an element when it is full.

-

-

-

-

-

-

-

8. Storage Options

8.1. Storage Options

Ehcache has three stores:

a MemoryStore

an OffHeapStore (BigMemory, Enterprise Ehcache only) and

a DiskStore

8.1.1. Memory Store

The MemoryStore is always enabled. It is not directly manipulated, but is a component of every
cache.

Suitable Element Types All Elements are suitable for placement in the MemoryStore. It has the

following characteristics:

Safety Thread safe for use by multiple concurrent threads. Tested for memory leaks.

See MemoryCacheTest#testMemoryLeak. This test passes for Ehcache but exploits a

number of memory leaks in JCS. JCS will give an OutOfMemory error with a default 64M

in 10 seconds.

Backed By JDK LinkedHashMap The MemoryStore for JDK1.4 and JDK 5 it is backed by

an extended LinkedHashMap . This provides a combined linked list and a hash map, and

is ideally suited for caching. Using this standard Java class simplifies the implementation

of the memory cache. It directly supports obtaining the least recently used element.

Fast The memory store, being all in memory, is the fastest caching option.

8.1.1.1. Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in terms of the number of elements, at
configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an existing
element is either deleted, if overflowToDisk is false, or evaluated for spooling to disk, if
overflowToDisk is true. In the latter case, a check for expiry is carried out. If it is expired it is
deleted; if not it is spooled. The eviction of an item from the memory store is based on the
MemoryStoreEvictionPolicy setting specified in the configuration file.

http://java.sun.com/j2se/1.4.2/docs/api/

-

-

-

-

-

-

memoryStoreEvictionPolicy is an optional attribute in ehcache.xml introduced since 1.2. Legal
values are LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU is the default, consistent with all earlier
releases of ehcache.

Least Recently Used (LRU) - Default The eldest element, is the Least Recently Used (LRU).

The last used timestamp is updated when an element is put into the cache or an element is

retrieved from the cache with a get call.

Less Frequently Used (LFU) For each get call on the element the number of hits is updated.

When a put call is made for a new element (and assuming that the max limit is reached for the

memory store) the element with least number of hits, the Less Frequently Used element, is

evicted.

First In First Out (FIFO) Elements are evicted in the same order as they come in. When a put

call is made for a new element (and assuming that the max limit is reached for the memory

store) the element that was placed first (First-In) in the store is the candidate for eviction (First-

Out). For all the eviction policies there are also putQuiet and getQuiet methods which do not

update the last used timestamp. When there is a get or a getQuiet on an element, it is checked

for expiry. If expired, it is removed and null is returned. Note that at any point in time there will

usually be some expired elements in the cache. Memory sizing of an application must always

take into account the maximum size of each cache. There is a convenience method which can

provide an estimate of the size in bytes of the MemoryStore . See calculateInMemorySize() . It

returns the serialized size of the cache. Do not use this method in production. It is very slow. It

is only meant to provide a rough estimate. The alternative would have been to have an expiry

thread. This is a trade-off between lower memory use and short locking periods and cpu

utilisation. The design is in favour of the latter. For those concerned with memory use, simply

reduce the maxElementsInMemory .

8.1.2. Off-Heap Store

Terracotta BigMemory is an add-on to Enterprise Ehcache that permits caches to use an

additional type of memory store outside the object heap.

This off-heap store, which is not subject to Java GC, is 100 times faster than the DiskStore and
allows very large caches to be created (we have tested this up to 350GB).

Because off-heap data is stored in bytes, there are two implications:

Only Serializable cache keys and values can be placed in the store, similar to DiskStore.

Serialization and deserialization take place on putting and getting from the store. This means

that the off-heap store is slower in an absolute sense (around 10 times slower than the

MemoryStore), but this theoretical difference disappears due to two effects:

the MemoryStore holds the hottest subset of data from the off-heap store, already in

http://ehcache.org/apidocs/net/sf/ehcache/Cache.html#calculateInMemorySize%28%29
http://www.terracotta.org/bigmemory?src=ehcache_off_heap_store

-

deserialized form

when the GC involved with larger heaps is taken into account, the off-heap store is faster

on average

8.1.2.1. Suitable Element Types

Only Element s which are Serializable can be placed in the OffHeapMemoryStore . Any non
serializable Element s which attempt to overflow to the OffHeapMemoryStore will be removed
instead, and a WARNING level log message emitted.

See the Off-Heap Store chapter for more details.

8.1.3. DiskStore

The DiskStore provides a disk spooling facility.

8.1.3.1. DiskStore s are Optional

The diskStore element in ehcache.xml is now optional (as of 1.5). If all caches use only
MemoryStore s, then there is no need to configure a diskStore. This simplifies configuration, and
uses less threads. It is also good where where multiple CacheManagers are being used, and
multiple disk store paths would need to be configured.

If one or more caches requires a DiskStore, and none is configured, java.io.tmpdir will be used
and a warning message will be logged to encourage explicity configuration of the diskStore path.

8.1.3.1.1. Turning off disk stores

To turn off disk store path creation, comment out the diskStore element in ehcache.xml.

The ehcache-failsafe.xml configuration uses a disk store. This will remain the case so as to not
affect existing Ehcache deployments. So, if you do not wish to use a disk store make sure you
specify your own ehcache.xml and comment out the diskStore element.

8.1.3.2. Suitable Element Types

./offheap_store.html

-

-

-

-

Only Element s which are Serializable can be placed in the DiskStore. Any non serializable
Element s which attempt to overflow to the DiskStore will be removed instead, and a WARNING
level log message emitted.

8.1.3.3. Storage

8.1.3.3.1. Files

The disk store creates a data file for each cache on startup called "cache_name .data". If the
DiskStore is configured to be persistent, an index file called "cache name .index" is created on
flushing of the DiskStore either explicitly using Cache.flush or on CacheManager shutdown.

8.1.3.3.2. Storage Location

Files are created in the directory specified by the diskStore configuration element. The diskStore
configuration for the ehcache-failsafe.xml and bundled sample configuration file ehcache.xml is
"java.io.tmpdir", which causes files to be created in the system's temporary directory.

8.1.3.3.3. diskStore Element

The diskStore element is has one attribute called path . --- diskStore path="java.io.tmpdir"/ ---
Legal values for the path attibute are legal file system paths. e.g.for Unix

 /home/application/cache

The following system properties are also legal, in which case they are translated:

user.home - User's home directory

user.dir - User's current working directory

java.io.tmpdir - Default temp file path

ehcache.disk.store.dir - A system property you would normally specify on the command line

e.g. java -Dehcache.disk.store.dir=/u01/myapp/diskdir ... Subdirectories can be specified below

the system property e.g.

 java.io.tmpdir/one

 becomes, on a Unix system,

 /tmp/one

8.1.3.4. Expiry

One thread per cache is used to remove expired elements. The optional attribute
diskExpiryThreadIntervalSeconds sets the interval between runs of the expiry thread. Warning:
setting this to a low value is not recommended. It can cause excessive DiskStore locking and high
cpu utilisation. The default value is 120 seconds.

8.1.3.5. Eviction

If the maxElementsOnDisk attribute is set, elements will be evicted from the DiskStore when it
exceeds that amount. The LFU algorithm is used for these evictions. It is not configurable to use
another algorithm.

8.1.3.6. Serializable Objects

Only Serializable objects can be stored in a DiskStore . A NotSerializableException will be thrown

if the object is not serializable.

8.1.3.7. Safety

DiskStore s are thread safe.

8.1.3.8. Persistence

DiskStore persistence is controlled by the diskPersistent configuration element. If false or omitted,
DiskStore s will not persist between CacheManager restarts. The data file for each cache will be
deleted, if it exists, both on shutdown and startup. No data from a previous instance
CacheManager is available.

If diskPersistent is true, the data file, and an index file, are saved. Cache Elements are available
to a new CacheManager . This CacheManager may be in the same VM instance, or a new one.

The data file is updated continuously during operation of the Disk Store if overflowToDisk is true.
Otherwise it is not updated until either cache.flush() is called or the cache is disposed.

In all cases the index file is only written when dispose is called on the DiskStore . This happens
when the CacheManager is shut down, a Cache is disposed, or the VM is being shut down. It is

http://java.sun.com/j2se/1.4.2/docs/api/java/io/NotSerializableException.html

-

-

-

-

-

-

-

-

-

-

-

-

-

-

recommended that the CacheManager shutdown() method be used. See Virtual Machine

Shutdown Considerations for guidance on how to safely shut the Virtual Machine down.

When a DiskStore is persisted, the following steps take place:

Any non-expired Elements of the MemoryStore are flushed to the DiskStore

Elements awaiting spooling are spooled to the data file

The free list and element list are serialized to the index file

On startup the following steps take place:

An attempt is made to read the index file. If it does not exist or cannot be read successfully, due

to disk corruption, upgrade of ehcache, change in JDK version etc, then the data file is deleted

and the DiskStore starts with no Elements in it.

If the index file is read successfully, the free list and element list are loaded into memory. Once

this is done, the index file contents are removed. This way, if there is a dirty shutdown, when

restarted, Ehcache will delete the dirt index and data files.

The DiskStore starts. All data is available.

The expiry thread starts. It will delete Elements which have expired.

These actions favour safety over persistence. Ehcache is a cache, not a database. If a file gets
dirty, all data is deleted. Once started there is further checking for corruption. When a get is done,
if the Element cannot be successfully derserialized, it is deleted, and null is returned. These
measures prevent corrupt and inconsistent data being returned.

Fragmentation Expiring an element frees its space on the file. This space is available for reuse

by new elements. The element is also removed from the in-memory index of elements.

Speed Spool requests are placed in-memory and then asynchronously written to disk. There is

one thread per cache. An in-memory index of elements on disk is maintained to quickly resolve

whether a key exists on disk, and if so to seek it and read it.

Serialization Writes to and from the disk use ObjectInputStream and the Java serialization

mechanism. This is not required for the MemoryStore. As a result the DiskStore can never be

as fast as the MemoryStore. Serialization speed is affected by the size of the objects being

serialized and their type. It has been found in the ElementTest test that:

The serialization time for a Java object being a large Map of String arrays was 126ms,

where the a serialized size was 349,225 bytes.

The serialization time for a byte[] was 7ms, where the serialized size was 310,232 bytes

Byte arrays are 20 times faster to serialize. Make use of byte arrays to increase

DiskStore performance.

RAMFS One option to speed up disk stores is to use a RAM file system. On some operating

systems there are a plethora of file systems to choose from. For example, the Disk Cache has

been successfully used with Linux' RAMFS file system. This file system simply consists of

memory. Linux presents it as a file system. The Disk Cache treats it like a normal disk - it is just

way faster. With this type of file system, object serialization becomes the limiting factor to

performance.

Operation of a Cache where overflowToDisk is false and diskPersistent is true In this

http://ehcache.org/apidocs/net/sf/ehcache/CacheManager.html#shutdown%28%29
http://java.sun.com/j2se/1.4.2/docs/api/java/io/ObjectOutputStream.html

configuration case, the disk will be written on flush or shutdown . The next time the

cache is started, the disk store will initialise but will not permit overflow from the

MemoryStore. In all other respects it acts like a normal disk store. In practice this means

that persistent in-memory cache will start up with all of its elements on disk. As gets

cause cache hits, they will be loaded up into the MemoryStore . The oher thing that may

happen is that the elements will expire, in which case the DiskStore expiry thread will

reap them, (or they will get removed on a get if they are expired). So, the Ehcache

design does not load them all into memory on start up, but lazily loads them as required.

8.1.4. Some Configuration Examples

These examples show how to allocate 8GB of machine memory to different stores. It assumes a
data set of 7GB - say for a cache of 7M items (each 1kb in size).

Those who want minimal application response time variance (ie minimizing GC pause times), will
likely want all the cache to be off-heap.

Assuming that 1GB of heap is needed for the rest of the app, they will set their Java config as
follows:

 java -Xms1G -Xmx1G -XX:maxDirectMemorySize=7G

And their Ehcache config as

 <cache
 maxElementsInMemory=100
 overflowToOffHeap="true"
 maxMemoryOffHeap="7G"
 ... />

Those who want best possible performance for a hot set of data while still reducing overall
application repsonse time variance will likely want a combination of on-heap and off-heap. The
heap will be used for the hot set, the offheap for the rest. So, for example if the hot set is 1M items
(or 1GB) of the 7GB data. They will set their Java config as follows

 java -Xms2G -Xmx2G -XX:maxDirectMemorySize=6G

And their Ehcache config as

 <cache
 maxElementsInMemory=1M
 overflowToOffHeap="true"
 maxMemoryOffHeap="6G"
 ...>

This configuration will compare VERY favorably against the alternative of keeping the less-hot set
in a database (100x slower) or caching on local disk (20x slower).

Where pauses are not a problem, the whole data set can be kept on heap:

 <cache
 maxElementsInMemory=1
 overflowToOffHeap="false"
 ...>

 Where latency isn't an issue overflow to disk can be used:

cache maxElementsInMemory=1M overflowToOffDisk="true" ... ---

9. Samples

9.1. Recipes and Code Samples

The Recipes and Code Samples page contains recipes - short concise examples for specific use
cases - and a set of code samples that will help you get started with Ehcache.

If you have a suggestion or an idea for a recipe or more code samples, please tell us about it
using the mailing list or forums .

9.2. Recipes

Recipe Description

Web Page and Fragment Caching How to use inluded Servlet Filters to Cache
Web Page and Web Page Fragments

Configure a Grails App for Clustering How to configure a Grails Application for
clustered Hibernate 2nd Level Cache

Data Freshness and Expiration How to maintain cache "freshness" by
configuring TTL and data expiration properly

Enable Terracotta Programmatically How to enable Terracotta support for
Ehcache programmatically

WAN Replication 3 Strategies for configuring WAN replication

Caching Empty Values Why caching empty values can be desirable
to deflect load from the database

../mail-lists.html
http://forums.terracotta.org
../recipes/pagecaching.html
../recipes/grails.html
../recipes/expiration.html
../recipes/programmatic.html
../recipes/wan.html
../recipes/cachenull.html

Database Read Overload When many readers simultaneously request
the same data element it is called the
"Thundering Herd" problem. How to prevent
it in a single jvm or clustered configuration

Database Write Overload Writing to the Database is a Bottleneck.
Configure write-behind to offload database
writes.

Caching methods with Spring Annotations Adding caching to methods using Ehcache
Annotations for Spring project

Cache Wrapper A simple class to make accessing Ehcache
easier for simple use cases

../recipes/thunderingherd.html
../recipes/write-behind.html
../recipes/spring-annotations.html
../recipes/wrapper.html

9.3. Code Samples

9.3.1. Using the CacheManager

All usages of Ehcache start with the creation of a CacheManager.

9.3.1.1. Singleton versus Instance

As of ehcache-1.2, Ehcache CacheManagers can be created as either singletons (use the create
factory method) or instances (use new).

Create a singleton CacheManager using defaults, then list caches.

 CacheManager.create();
 String[] cacheNames = CacheManager.getInstance().getCacheNames();

Create a CacheManager instance using defaults, then list caches.

 CacheManager manager = new CacheManager();
 String[] cacheNames = manager.getCacheNames();

Create two CacheManagers, each with a different configuration, and list the caches in each.

 CacheManager manager1 = new CacheManager("src/config/ehcache1.xml");
 CacheManager manager2 = new CacheManager("src/config/ehcache2.xml");
 String[] cacheNamesForManager1 = manager1.getCacheNames();
 String[] cacheNamesForManager2 = manager2.getCacheNames();

9.3.1.2. Ways of loading Cache Configuration

When the CacheManager is created it creates caches found in the configuration.

Create a CacheManager using defaults. Ehcache will look for ehcache.xml in the classpath.

 CacheManager manager = new CacheManager();

Create a CacheManager specifying the path of a configuration file.

 CacheManager manager = new CacheManager("src/config/ehcache.xml");

Create a CacheManager from a configuration resource in the classpath.

 URL url = getClass().getResource("/anotherconfigurationname.xml");
 CacheManager manager = new CacheManager(url);

Create a CacheManager from a configuration in an InputStream.

 InputStream fis = new FileInputStream(new File("src/config/ehcache.xml").getAbsolutePath());
 try {
 CacheManager manager = new CacheManager(fis);
 } finally {
 fis.close();
 }

9.3.1.3. Adding and Removing Caches Programmatically

You are not just stuck with the caches that were placed in the configuration. You can create and
remove them programmatically.

Add a cache using defaults, then use it. The following example creates a cache called testCache ,
which will be configured using defaultCache from the configuration.

 CacheManager singletonManager = CacheManager.create();
 singletonManager.addCache("testCache");
 Cache test = singletonManager.getCache("testCache");

Create a Cache and add it to the CacheManager, then use it. Note that Caches are not usable
until they have been added to a CacheManager.

 CacheManager singletonManager = CacheManager.create();
 Cache memoryOnlyCache = new Cache("testCache", 5000, false, false, 5, 2);
 manager.addCache(memoryOnlyCache);
 Cache test = singletonManager.getCache("testCache");

See the cache constructor for the full parameters for a new Cache:

Remove cache called sampleCache1

 CacheManager singletonManager = CacheManager.create();
 singletonManager.removeCache("sampleCache1");

9.3.1.4. Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdown hook, but it is best practice to
shut it down in your code.

Shutdown the singleton CacheManager

 CacheManager.getInstance().shutdown();

Shutdown a CacheManager instance, assuming you have a reference to the CacheManager
called manager

 manager.shutdown();

See the CacheManagerTest for more examples.

9.3.2. Creating Caches Programmatically

9.3.2.1. Creating a new cache from defaults

A new cache with a given name can be created from defaults very simply:

 manager.addCache(cache name);

9.3.2.2. Creating a new cache with custom parameters

/xref/net/sf/ehcache/Cache.html
/xref-test/net/sf/ehcache/CacheManagerTest.html

The configuration for a Cache can be specified programmatically as an argument to the Cache
constructor:

 public Cache(CacheConfiguration cacheConfiguration) {
 ...
 }

Here is an example which creates a cache called test.

 //Create a CacheManager using defaults
 CacheManager manager = CacheManager.create();

 //Create a Cache specifying its configuration.

 Cache testCache = new Cache(
 new CacheConfiguration("test", maxElements)
 .memoryStoreEvictionPolicy(MemoryStoreEvictionPolicy.LFU)
 .overflowToDisk(true)
 .eternal(false)
 .timeToLiveSeconds(60)
 .timeToIdleSeconds(30)
 .diskPersistent(false)
 .diskExpiryThreadIntervalSeconds(0));
 manager.addCache(cache);

Once the cache is created, add it to the list of caches managed by the CacheManager:

 manager.addCache(testCache);

The cache is not usable until it has been added.

9.3.3. Using Caches

All of these examples refer to manager , which is a reference to a CacheManager, which has a
cache in it called sampleCache1 .

9.3.3.1. Obtaining a reference to a Cache

Obtain a Cache called "sampleCache1", which has been preconfigured in the configuration file

 Cache cache = manager.getCache("sampleCache1");

9.3.3.2. Performing CRUD operations

Put an element into a cache

 Cache cache = manager.getCache("sampleCache1");
 Element element = new Element("key1", "value1");
 cache.put(element);

Update an element in a cache. Even though cache.put() is used, Ehcache knows there is an
existing element, and considers the put an update for the purpose of notifying cache listeners.

 Cache cache = manager.getCache("sampleCache1");
 cache.put(new Element("key1", "value1"));
 //This updates the entry for "key1"
 cache.put(new Element("key1", "value2"));

Get a Serializable value from an element in a cache with a key of "key1".

 Cache cache = manager.getCache("sampleCache1");
 Element element = cache.get("key1");
 Serializable value = element.getValue();

Get a NonSerializable value from an element in a cache with a key of "key1".

 Cache cache = manager.getCache("sampleCache1");
 Element element = cache.get("key1");
 Object value = element.getObjectValue();

Remove an element from a cache with a key of "key1".

 Cache cache = manager.getCache("sampleCache1");

 cache.remove("key1");

9.3.3.3. Disk Persistence on demand

sampleCache1 has a persistent diskStore. We wish to ensure that the data and index are written
immediately.

 Cache cache = manager.getCache("sampleCache1");
 cache.flush();

9.3.3.4. Obtaining Cache Sizes

Get the number of elements currently in the Cache .

 Cache cache = manager.getCache("sampleCache1");
 int elementsInMemory = cache.getSize();

Get the number of elements currently in the MemoryStore .

 Cache cache = manager.getCache("sampleCache1");
 long elementsInMemory = cache.getMemoryStoreSize();

Get the number of elements currently in the DiskStore .

 Cache cache = manager.getCache("sampleCache1");
 long elementsInMemory = cache.getDiskStoreSize();

9.3.3.5. Obtaining Statistics of Cache Hits and Misses

These methods are useful for tuning cache configurations.

Get the number of times requested items were found in the cache. i.e. cache hits

 Cache cache = manager.getCache("sampleCache1");
 int hits = cache.getHitCount();

Get the number of times requested items were found in the MemoryStore of the cache.

 Cache cache = manager.getCache("sampleCache1");
 int hits = cache.getMemoryStoreHitCount();

Get the number of times requested items were found in the DiskStore of the cache.

 Cache cache = manager.getCache("sampleCache1");
 int hits = cache.getDiskStoreCount();

Get the number of times requested items were not found in the cache. i.e. cache misses.

 Cache cache = manager.getCache("sampleCache1");
 int hits = cache.getMissCountNotFound();

Get the number of times requested items were not found in the cache due to expiry of the
elements.

 Cache cache = manager.getCache("sampleCache1");
 int hits = cache.getMissCountExpired();

These are just the most commonly used methods. See CacheTest for more examples. See

Cache for the full API.

9.3.3.6. Dynamically Modifying Cache Configurations

This example shows how to dynamically modify the cache configuration of an already running
cache:

 Cache cache = manager.getCache("sampleCache");
 CacheConfiguration config = cache.getCacheConfiguration();
 config.setTimeToIdleSeconds(60);
 config.setTimeToLiveSeconds(120);
 config.setMaxElementsInMemory(10000);
 config.setMaxElementsOnDisk(1000000);

/xref-test/net/sf/ehcache/CacheTest.html
/xref/net/sf/ehcache/Cache.html

Dynamic cache configurations can also be frozen to prevent future changes:

 Cache cache = manager.getCache("sampleCache");
 cache.disableDynamicFeatures();

9.3.3.7. JTA

A cache will automatically participate in the ongoing UserTransaction when configured in
transactionalMode XA. This can be done programmatically:

 //Create a CacheManager using defaults
 CacheManager manager = CacheManager.create();

 //Create a Cache specifying its configuration.
 Cache xaCache = new Cache(
 new CacheConfiguration("test", 1000)
 .overflowToDisk(true)
 .eternal(false)
 .transactionalMode(CacheConfiguration.TransactionalMode.XA)
 .terracotta(new TerracottaConfiguration().clustered(true)));
 manager.addCache(xaCache);

Or in your CacheManager's configuration file :

 <cache name="xaCache"
 maxElementsInMemory="500"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="false"
 diskPersistent="false"
 diskExpiryThreadIntervalSeconds="1"
 transactionalMode="xa">
 <terracotta clustered="true"/>
 </cache>

Please note that XA Transactional caches are supported for standalone Ehcache and also when
clustered with Terracotta, but with the replicating cluster architectures such as RMI|JMS|JGroups
as there is no locking in those architectures.

The Cache can then be used without any special requirement. Changes will only become visible
to others, once the transaction has been committed.

 Ehcache cache = cacheManager.getEhcache("xaCache");

 transactionManager.begin();

 try {
 Element e = cache.get(key);

 Object result = complexeService.doStuff(element.getValue());

 // This put will be rolled back should complexeService.doMoreStuff throw an Exception
 cache.put(new Element(key, result));

 // Any changes to result in that call, will be visible to others when the Transaction commits
 complexeService.doMoreStuff(result);

 transactionManager.commit();
 } catch (Exception e) {
 transactionManager.rollback();
 }

9.3.4. Using Distributed Caches

9.3.4.1. Terracotta Example

See the fully worked examples in the Terracotta Clustering Chapter.

9.3.5. Cache Statistics and Monitoring

9.3.5.1. Registering CacheStatistics in an MBeanServer

This example shows how to register CacheStatistics in the JDK1.5 platform MBeanServer, which
works with the JConsole management agent.

./distributed_caching_with_terracotta.html

 CacheManager manager = new CacheManager();
 MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
 ManagementService.registerMBeans(manager, mBeanServer, false, false, false, true);

9.3.6. More examples

9.3.6.1. JCache Examples

See the examples in the JCache Chapter.

9.3.6.2. Cache Server Examples

See the examples in the Cache Server Chapter.

9.3.6.3. Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, which not only tests the code, but shows
you how to use ehcache.

A link to browsable unit test source code for the major Ehcache classes is given per section. The

unit tests are also in the src.zip in the Ehcache tarball.

./jsr107.html
./cache_server.html
/xref-test/index.html

10. Dependencies

10.1. Java Requirements and Dependencies

10.1.1. Java Requirements

Current Ehcache releases require Java 1.5 and 1.6 at runtime.

Ehcache 1.5 requires Java 1.4.

The ehcache-monitor module, which provides management and monitoring, will work with
Ehcache 1.2.3 but only for Java 1.5 or higher.

10.1.2. Mandatory Dependencies

Ehcache core 1.6 through to 1.7.0 has no dependencies.

Ehcache core 1.7.1 depends on SLF4J (http://www.slf4j.org), an increasingly commonly used

logging framework which provides a choice of concrete logging implementation. See the chapter

on Logging for configuration details.

Other modules have dependencies as specified in their maven poms.

10.1.3. Maven Snippet

To include Ehcache in your project use:

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>2.3.1</version>
 <type>pom</type>
 </dependency>

http://www.slf4j.org

11. Logging

11.1. Logging

11.1.1. SLF4J Logging

As of 1.7.1, Ehcache uses the the slf4j (http://www.slf4j.org) logging facade. Plug in your own

logging framework.

11.1.1.1. Concrete Logging Implementation Use in Maven

With slf4j, users must choose a concrete logging implementation at deploy time.

The maven dependency declarations are reproduced here for convenience. Add one of these to
your Maven pom.

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>1.5.8</version>
 </dependency>

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.5.8</version>
 </dependency>

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.5.8</version>
 </dependency>

http://www.slf4j.org

11.1.1.2. Concrete Logging Implemenation Use in the Download
Kit

We provide the slf4j-api and slf4j-jdk14 jars in the kit along with the ehcache jars so that, if the app
does not already use SLF4J, you have everything you need.

Additional concrete logging implementations can be downloaded from http://www.slf4j.org .

11.1.2. Recommended Logging Levels

Ehcache seeks to trade off informing production support developers or important messages and
cluttering the log.

ERROR ERROR messages should not occur in normal production and indicate that action should

be taken.

WARN WARN messages generally indicate a configuration change should be made or an unusual

event has occurred.

DEBUG DEBUG and TRACE messages are for development use. All DEBUG level statements

are surrounded with a guard so that no performance cost is incurred unless the logging level is

set.

Setting the logging level to DEBUG should provide more information on the source of any
problems. Many logging systems enable a logging level change to be made without restarting the
application.

http://www.slf4j.org

12. RMI Replication Remote Debugger

12.1. Remote Network debugging and monitoring for

Distributed Caches

12.1.1. Introduction

The ehcache-1.x-remote-debugger.jar} can be used to debug replicated cache operations. When
started with the same configuration as the cluster, it will join the cluster and then report cluster
events for the cache of interest. By providing a window into the cluster it can help to identify the
cause of cluster problems.

12.1.2. Packaging

From version 1.5 it is packaged in its own distribution tarball along with a maven module.

It is provided as an executable jar.

12.1.3. Limitations

This version of the debugger has been tested only with the default RMI based replication.

12.1.4. Usage

It is invoked as follows:

 java -classpath [add your application jars here]
 -jar ehcache-debugger-1.5.0.jar ehcache.xml sampleCache1
 path_to_ehcache.xml [cacheToMonitor]

-

-

Note: Add to the classpath any libraries your project uses in addition to these above, otherwise
RMI will attempt to load them remotely which requires specific security policy settings that surprise
most people.

It takes one or two arguments:

the first argument, which is mandatory, is the Ehcache configuration file e.g.

app/config/ehcache.xml. This file should be configured to allow Ehcache to joing the cluster.

Using one of the existing ehcache.xml files from the other nodes normally is sufficient.

the second argument, which is optional, is the name of the cache e.g. distributedCache1 If only

the first argument is passed, it will print our a list of caches with replication configured from the

configuration file, which are then available for monitoring. If the second argument is also

provided, the debugger will monitor cache operations received for the given cache. This is done

by registering a CacheEventListener which prints out each operation.

12.1.4.1. Output

When monitoring a cache it prints a list of caches with replication configured, prints notifications as
they happen, and periodically prints the cache name, size and total events received. See sample
output below which is produced when the RemoteDebuggerTest is run.

 Caches with replication configured which are available for monitoring are:
 sampleCache19 sampleCache20 sampleCache26 sampleCache42 sampleCache33
 sampleCache51 sampleCache40 sampleCache32 sampleCache18 sampleCache25
 sampleCache9 sampleCache15 sampleCache56 sampleCache31 sampleCache7
 sampleCache12 sampleCache17 sampleCache45 sampleCache41 sampleCache30
 sampleCache13 sampleCache46 sampleCache4 sampleCache36 sampleCache29
 sampleCache50 sampleCache37 sampleCache49 sampleCache48 sampleCache38
 sampleCache6 sampleCache2 sampleCache55 sampleCache16 sampleCache27
 sampleCache11 sampleCache3 sampleCache54 sampleCache28 sampleCache10
 sampleCache8 sampleCache47 sampleCache5 sampleCache53 sampleCache39
 sampleCache23 sampleCache34 sampleCache22 sampleCache44 sampleCache52
 sampleCache24 sampleCache35 sampleCache21 sampleCache43 sampleCache1
 Monitoring cache: sampleCache1
 Cache: sampleCache1 Notifications received: 0 Elements in cache: 0
 Received put notification for element [key = this is an id, value=this is
 a value, version=1, hitCount=0, CreationTime = 1210656023456,
 LastAccessTime = 0]
 Received update notification for element [key = this is an id, value=this
 is a value, version=1210656025351, hitCount=0, CreationTime =
 1210656024458, LastAccessTime = 0]
 Cache: sampleCache1 Notifications received: 2 Elements in cache: 1
 Received remove notification for element this is an id

 Received removeAll notification.

12.1.4.2. Providing more Detailed Logging

If you see nothing happening, but cache operations should be going through, enable trace
(LOG4J) or finest (JDK) level logging on code net.sf.ehcache.distribution /code in the logging
configuration being used by the debugger. A large volume of log messages will appear. The
normal problem is that the CacheManager has not joined the cluster. Look for the list of cache
peers.

12.1.4.3. Yes, but I still have a cluster problem

Check the FAQ where a lot of commonly reported errors and their solutions are provided. Beyond
that, post to the forums or mailing list or contact Ehcache for support.

13. Garbage Collection

13.1. Tuning Garbage Collection

Applications which use Ehcache can be expected to have larger heaps. Some Ehcache
applications have heap sizes greater than 6GB.

Ehcache works well at this scale. However large heaps or long held object, which is what a cache
is, can place strain on the default Garbage Collector.

Note. The following documentation relates to Sun JDK 1.5.

13.1.1. Detecting Garbage Collection Problems

A full garbage collection event pauses all threads in the JVM. Nothing happens during the pause.
If this pause takes more than a few seconds it will become noticeable.

The clearest way to see if this is happening is to run jstat . The following command will produce a
log of garbage collection statistics, updated each ten seconds.

 jstat -gcutil <pid> 10 1000000

The thing to watch for is the Full Garbage Collection Time. The difference between the total time
for each reading is the time the system spends time paused. If there is a jump more than a few
seconds this will not be acceptable in most application contexts.

13.1.2. Garbage Collection Tuning

The Sun core garbage collection team has offered the following tuning suggestion for virtual
machines with large heaps using caching:

 java ... -XX:+DisableExplicitGC -XX:+UseConcMarkSweepGC
 -XX:NewSize=<1/4 of total heap size> -XX:SurvivorRatio=16

The reasoning for each setting is as follows:

-

-

-

-XX:+DisableExplicitGC - some libs call System.gc(). This is usually a bad idea and could

explain some of what we saw.

-XX:+UseConcMarkSweepGC - use the low pause collector

-XX:NewSize= 1/4 of total heap size -XX:SurvivorRatio=16

13.1.3. Distributed Caching Garbage Collection Tuning

Some users have reported that enabling distributed caching causes a full GC each minute. This is
an issue with RMI generally, which can be worked around by increasing the interval for garbage
collection. The effect that RMI is having is similar to a user application calling System.gc() each
minute. In the settings above this is disabled, but it does not disable the full GC initiated by RMI.

The default in JDK6 was increased to 1 hour. The following system properties control the interval.

 -Dsun.rmi.dgc.client.gcInterval=60000
 -Dsun.rmi.dgc.server.gcInterval=60000

See http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367 for the bug report and

detailed instructions on workarounds.

Increase the interval as required in your application.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367

14. JMX

14.1. JMX Management and Monitoring

14.1.1. Terracotta Monitoring Products

An extensive monitoring product, available in Enterprise Ehcache, provides a monitoring server
with probes supporting Ehcache-1.2.3 and higher for standalone and clustered Ehcache. It comes
with a web console and a RESTful API for operations integration.

See the ehcache-monitor documentation for more information.

When using Ehcache 1.7 with Terracotta clustering, the Terracotta Developer Console shows
statistics for Ehcache.

14.1.2. JMX Overview

JMX, part of JDK1.5, and available as a download for 1.4, creates a standard way of
instrumenting classes and making them available to a management and monitoring infrastructure.

The net.sf.ehcache.management package contains MBeans and a ManagementService for JMX
management of ehcache. It is in a separate package so that JMX libraries are only required if you
wish to use it - there is no leakage of JMX dependencies into the core Ehcache package.

This implementation attempts to follow Sun's JMX best practices. See
http://java.sun.com/javase/technologies/core/mntr-mgmt/ javamanagement/best-practices.jsp.

Use net.sf.ehcache.management.ManagementService.registerMBeans(...) static method to
register a selection of MBeans to the MBeanServer provided to the method.

If you wish to monitor Ehcache but not use JMX, just use the existing public methods on Cache
and CacheStatistics .

14.1.3. MBeans

/documentation/monitor.html

-

-

-

-

-

-

-

-

Ehcache uses Standard MBeans. MBeans are available for the following:

CacheManager

Cache

CacheConfiguration

CacheStatistics All MBean attributes are available to a local MBeanServer. The CacheManager

MBean allows traversal to its collection of Cache MBeans. Each Cache MBean likewise allows

traversal to its CacheConfiguration MBean and its CacheStatistics MBean.

14.1.4. JMX Remoting

The JMX Remote API allows connection from a remote JMX Agent to an MBeanServer via an

MBeanServerConnection .

Only Serializable attributes are available remotely. The following Ehcache MBean attributes are
available remotely:

limited CacheManager attributes

limited Cache attributes

all CacheConfiguration attributes

all CacheStatistics attributes Most attributes use built-in types. To access all attributes, you

need to add ehcache.jar to the remote JMX client's classpath e.g. jconsole -J-

Djava.class.path=ehcache.jar .

-

-

-

-

14.1.5. ObjectName naming scheme

CacheManager - "net.sf.ehcache:type=CacheManager,name= CacheManager "

Cache - "net.sf.ehcache:type=Cache,CacheManager= cacheManagerName ,name=

cacheName "

CacheConfiguration - "net.sf.ehcache:type=CacheConfiguration,CacheManager=

cacheManagerName ,name= cacheName "

CacheStatistics - "net.sf.ehcache:type=CacheStatistics,CacheManager= cacheManagerName

,name= cacheName "

14.1.6. The Management Service

The ManagementService class is the API entry point.

There is only one method, ManagementService.registerMBeans which is used to initiate JMX
registration of an Ehcache CacheManager's instrumented MBeans.

The ManagementService is a CacheManagerEventListener and is therefore notified of any new
Caches added or disposed and updates the MBeanServer appropriately.

Once initiated the MBeans remain registered in the MBeanServer until the CacheManager shuts
down, at which time the MBeans are deregistered. This behaviour ensures correct behaviour in
application servers where applications are deployed and undeployed.

 /**
 * This method causes the selected monitoring options to be be registered
 * with the provided MBeanServer for caches in the given CacheManager.
 * <p/>
 * While registering the CacheManager enables traversal to all of the other
 * items,

 * this requires programmatic traversal. The other options allow entry points closer
 * to an item of interest and are more accessible from JMX management tools like JConsole.
 * Moreover CacheManager and Cache are not serializable, so remote monitoring is not
 * possible * for CacheManager or Cache, while CacheStatistics and CacheConfiguration are.
 * Finally * CacheManager and Cache enable management operations to be performed.
 * <p/>
 * Once monitoring is enabled caches will automatically added and removed from the
 * MBeanServer * as they are added and disposed of from the CacheManager. When the
 * CacheManager itself * shutsdown all registered MBeans will be unregistered.
 *
 * @param cacheManager the CacheManager to listen to
 * @param mBeanServer the MBeanServer to register MBeans to
 * @param registerCacheManager Whether to register the CacheManager MBean
 * @param registerCaches Whether to register the Cache MBeans
 * @param registerCacheConfigurations Whether to register the CacheConfiguration MBeans
 * @param registerCacheStatistics Whether to register the CacheStatistics MBeans
 */
 public static void registerMBeans(
 net.sf.ehcache.CacheManager cacheManager,
 MBeanServer mBeanServer,
 boolean registerCacheManager,
 boolean registerCaches,
 boolean registerCacheConfigurations,
 boolean registerCacheStatistics) throws CacheException {

14.1.7. JConsole Example

This example shows how to register CacheStatistics in the JDK1.5 platform MBeanServer, which
works with the JConsole management agent.

 CacheManager manager = new CacheManager();
 MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
 ManagementService.registerMBeans(manager, mBeanServer, false, false, false, true);

CacheStatistics MBeans are then registered.

14.1.8. Hibernate statistics

If you are running Terracotta clustered caches as hibernate second-level cache provider, it is
possible to access the hibernate statistics + ehcache stats etc via jmx.

EhcacheHibernateMBean is the main interface that exposes all the API's via jmx. It basically
extends two interfaces -- EhcacheStats and HibernateStats . And as the name implies
EhcacheStats contains methods related with Ehcache and HibernateStats related with Hibernate.

You can see cache hit/miss/put rates, change config element values dynamically -- like
maxElementInMemory, TTI, TTL, enable/disable statistics collection etc and various other things.
Please look into the specific interface for more details.

14.1.9. JMX Tutorial

See http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html for an online

http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html

tutorial.

-

-

-

15. JTA & Transactions

15.1. Transactions in Ehcache

15.1.1. Introduction

Transactions are supported in versions of Ehcache 2.0 and higher.

The 2.3.x or lower releases only support XA. However since ehcache 2.4 support for both Global
Transactions with xa_strict and xa modes, and Local Transactions with local mode has been
added.

15.1.1.1. All or nothing

If a cache is enabled for transactions, all operations on it must happen within a transaction context
otherwise a TransactionException will be thrown.

15.1.1.2. Change Visibility

The isolation level offered in Ehcache is READ_COMMITTED . Ehcache can work as an
XAResource in which case, full two-phase commit is supported.

Specifically:

All mutating changes to the cache are transactional including put , remove , putWithWriter ,

removeWithWriter and removeAll .

Mutating changes are not visible to other transactions in the local JVM or across the cluster

until COMMIT has been called.

Until then, read such as by cache.get(...) by other transactions will return the old copy. Reads

do not block.

15.1.2. When to use transactional modes

-

-

-

-

-

-

-

15.1.2.1. Transactional modes are a powerful extension of
Ehcache allowing you to perform atomic operations on your
caches and potentially other data stores, eg: to keep your cache
in sync with your database.

local When you want your changes across multiple caches to be performed atomically. Use this

mode when you need to update your caches atomically, ie: have all your changes be

committed or rolled back using a straight simple API. This mode is most useful when a cache

contains data calculated out of other cached data.

xa Use this mode when you cache data from other data stores (eg: DBMS, JMS) and want to

do it in an atomic way under the control of the JTA API but don't want to pay the price of full

two-phase commit. In this mode, your cached data can get out of sync with the other resources

participating in the transactions in case of a crash so only use it if you can afford to live with

stale data for a brief period of time.

xa_strict Same as xa but use it only if you need strict XA disaster recovery guarantees. In this

mode, the cached data can never get out of sync with the other resources participating in the

transactions, even in case of a crash but you pay a high price in performance to get that extra

safety.

15.1.3. Configuration

Transactions are enabled on a cache by cache basis with the transactionalMode cache attribute.

The allowed values are:

xa_strict

xa

local

off The default value is off. Enabling a cache for xa_strict transactions is shown in the following

example:

 <cache name="xaCache"
 maxElementsInMemory="500"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="false"
 diskPersistent="false"
 diskExpiryThreadIntervalSeconds="1"
 transactionalMode="xa_strict">

 </cache>

15.1.3.1. Considerations when using clustered caches with
Terracotta

For Terracotta clustered caches, transactionalMode can only be used where terracotta
consistencyType="strong". Because caches can be dynamically changed into
consistencyType=eventual mode for bulk loading, any attempt to perform a transaction when this
is the case will throw a CacheException .

Note that transactions do not work with Terracotta's identity mode. An attempt to initialise a
transactional cache when this mode is set will result in a CacheException being thrown. The
default mode is serialization mode.

Also note that all transactional modes are currently sensitive to the ABA problem.

15.1.4. Global Transactions

Global Transactions are supported by Ehcache. Ehcache can act as an XAResouce to participate

in JTA ("Java Transaction API") transactions under the control of a Transaction Manager. This is

typically provided by your application server, however you may also use a third party transaction

manager such as Bitronix.

To use Global Transactions, select either xa_strict or xa mode. The differences are explained in
the sections below.

15.1.4.1. Implementation

Global transactions support is implemented at the Store level, through XATransactionStore and
JtaLocalTransactionStore. The former actually decorates the underlying MemoryStore
implementation, augmenting it with transaction isolation and two-phase commit support through
an XAResouce implementation. The latter decorates a LocalTransactionStore-decorated cache to

make it controllable by the standard JTA API instead of the proprietary TransactionController API.

During it's initialization, the Cache will lookup the TransactionManager using the provided
TransactionManagerLookup implementation. Then, using the
TransactionManagerLookup.register(XAResouce) , the newly created XAResource will be
registered.

The store is automatically configured to copy every Element read from the cache or written to it.
Cache is copy-on-read and copy-on-write.

15.1.5. Failure Recovery

As specified by the JTA specification, only prepared transaction data is recoverable.

Prepared data is persisted onto the cluster and locks on the memory are held. This basically
means that non-clustered caches cannot persist transactions data, so recovery errors after a
crash may be reported by the transaction manager.

15.1.5.1. Recovery

At any time after something went wrong, an XAResource may be asked to recover. Data that has
been prepared may either be committed or rolled back during recovery. In accordance with XA,
data that has not yet been prepared is discarded.

The recovery guarantee differs depending on the xa mode.

15.1.5.1.1. xa Mode

With xa , the cache doesn't get registered as an XAResource with the transaction manager but

merely can follow the flow of a JTA transaction by registering a JTA Synchronization . The cache

can end up inconsistent with the other resources if there is a JVM crash in the mutating node.

Please note that while some inconsistency may occur between your cache and your other XA
resources (like your database for instance) after a crash in this mode, in no way the caches' data
will end up inconsistent: the transaction still is fully atomic on the cache iself!

15.1.5.1.2. xa_strict Mode

If xa_strict is used the cache will always respond to the TransactionManager's recover calls with
the list of prepared XIDs of failed transactions. Those transaction branches can then be committed
or rolled back by the transaction manager. This is the standard XA mechanism in strict compliance
with the JTA specification.

15.1.6. Sample Apps

We have three sample applications showing how to use XA with a variety of technologies.

15.1.6.1. XA Sample App

This sample application uses JBoss application server. It shows an example using User managed
transactions. While we expect most people will use JTA from within Spring or EJB where the
container rather than managing it themselves, it clearly shows what is going on.

The following snippet from our SimpleTX servlet shows a complete transaction.

 Ehcache cache = cacheManager.getEhcache("xaCache");

 UserTransaction ut = getUserTransaction();

 printLine(servletResponse, "Hello...");
 try {
 ut.begin();
 int index = serviceWithinTx(servletResponse, cache);
 printLine(servletResponse, "Bye #" + index);
 ut.commit();

 } catch(Exception e) {
 printLine(servletResponse,
 "Caught a " + e.getClass() + "! Rolling Tx back");
 if(!printStackTrace) {
 PrintWriter s = servletResponse.getWriter();
 e.printStackTrace(s);
 s.flush();
 }
 rollbackTransaction(ut);
 }

The source code for the demo can be checked out from

http://svn.terracotta.org/svn/forge/projects/ehcache-jta-sample/trunk

A README.txt explains how to get the JTA Sample app going.

15.1.6.2. XA Banking Application

The Idea of this application is to show a real world scenario. AwWeb app reads account transfer
messages from a queue and tries to execute these account transfers.

With JTA turned on, failures are rolled back so that the cached account balance is always the

http://svn.terracotta.org/svn/forge/projects/ehcache-jta-sample/trunk

-

-

-

-

-

-

-

same as the true balance summed from the database.

This app is a Spring-based Java web app running in a Jetty container. It has (embedded) the
following components:

A JMS Server (ActiveMQ)

2 databases (embedded Derby XA instances)

2 caches (JTA Ehcache) All XA Resources are managed by Atomikos TransactionManager.

Transaction demarcation is done using Spring AOP's @Transactional annotation. You can run

it with: mvn clean jetty:run . Then point your browser at: http://localhost:9080 . To see what

happens without XA transactions: mvn clean jetty:run -Dxa=no The source code for the demo

can be checked out from http://svn.terracotta.org/svn/forge/projects/ehcache-jta-banking/trunk

A README.txt explains how to get the JTA Sample app going.

15.1.6.3. Examinator

Examinator is our complete application that shows many aspects of caching in one web based
Exam application, all using the Terracotta Server Array.

Check out from http://svn.terracotta.org/svn/forge/projects/exam/

15.1.7. Transaction Managers

15.1.7.1. Automatically Detected Transaction Managers

Ehcache automatically detects and uses the following transaction managers in the following order:

GenericJNDI (e.g. Glassfish, JBoss, JTOM and any others that register themselves in JNDI at

the standard location of java:/TransactionManager

Weblogic (since 2.4.0)

Bitronix

Atomikos

No configuration is required; they work out of the box.

The first found is used.

15.1.7.2. Configuring a Transaction Manager

http://localhost:9080
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-banking/trunk
http://svn.terracotta.org/svn/forge/projects/exam/

-

-

-

If your Transaction Manager is not in the above list or you wish to change the priority you need to
configure your own lookup class and specify it in place of the DefaultTransactionManagerLookup
in the ehcache.xml config:

 <transactionManagerLookup
 class= "net.sf.ehcache.transaction.manager.DefaultTransactionManagerLookup"
 properties="" propertySeparator=":"/>

You can also provide a different location for the JNDI lookup by providing the jndiName property
to the DefaultTransactionManagerLookup.

The example below provides the proper location for the TransactionManager in GlassFish v3:

 <transactionManagerLookup
 class="net.sf.ehcache.transaction.manager.DefaultTransactionManagerLookup"
 properties="jndiName=java:appserver/TransactionManager" propertySeparator=";"/>

15.1.8. Local Transactions

Local Transactions allow single phase commit across multiple cache operations, across one or
more caches, and in the same CacheManager, whether distributed with Terracotta or standalone.

This lets you apply multiple changes to a CacheManager all in your own transaction. If you also
want to apply changes to other resources such as a database then you need to open a transaction
to them and manually handle commit and rollback to ensure consistency.

Local transactions are not controlled by a Transaction Manager. Instead there is an explicit API
where a reference is obtained to a TransactionController for the CacheManager using
cacheManager.getTransactionController() and the steps in the transaction are called explicitly.

The steps in a local transaction are:

transactionController.begin() - This marks the beginning of the local transaction on the current

thread. The changes are not visible to other threads or to other transactions.

transactionController.commit() - Commits work done in the current transaction on the calling

thread.

transactionController.rollback() - Rolls back work done in the current transaction on the calling

thread. The changes done since begin are not applied to the cache.

These steps should be placed in a try-catch block which catches TransactionException . If any
exceptions are thrown, rollback() should be called.

-

-

-

Local Transactions has it's own exceptions that can be thrown, which are all subclasses of
CacheException . They are:

TransactionException - a general exception

TransactionInterruptedException - if Thread.interrupt() got called while the cache was

processing a transaction.

TransactionTimeoutException - if a cache operation or commit is called after the transaction

timeout has elapsed.

15.1.8.1. Configuration

Local transactions are configured as follows:

 <cache name="sampleCache"
 ...
 transactionalMode="local"
 </cache>

15.1.8.2. Isolation Level

As with the other transaction modes, the isolation level is READ_COMMITTED.

15.1.8.3. Transaction Timeouts

If a transaction cannot complete within the timeout period, then a TransactionTimeoutException
will be thrown. To return the cache to a consistent state you need to call
transactionController.rollback() .

Because TransactionController is at the level of the CacheManager, a default timeout can be set
which applies to all transactions across all caches in a CacheManager. If not set, it is 15 seconds.

To change the defaultTimeout:

 transactionController.setDefaultTransactionTimeout(int
defaultTransactionTimeoutSeconds)

The countdown starts straight after begin() is called. You might have another local transaction on
a JDBC connection and you may be making multiple changes. If you think it could take longer

than 15 seconds for an individual transaction, you can override the default when you begin the
transaction with:

 transactionController.begin(int transactionTimeoutSeconds) {

15.1.8.4. Sample Code

This example shows a transaction which performs multiple operations across two caches.

 CacheManager cacheManager = CacheManager.getInstance();

 try {
 cacheManager.getTransactionController().begin();

 cache1.put(new Element(1, "one"));
 cache2.put(new Element(2, "two"));
 cache1.remove(4);

 cacheManager.getTransactionController().commit();
 } catch (CacheException e) {
 cacheManager.getTransactionController().rollback()
 }

15.1.8.5. What can go wrong

15.1.8.5.1. JVM crash between begin and commit

On restart none of the changes applied after begin are there.

On restart, nothing needs to be done. Under the covers in the case of a Terracotta cluster, the
Element's new value is there but not applied. It's will be lazily removed on next access.

15.1.9. Performance

15.1.9.1. Managing Contention

-

-

-

-

-

-

-

-

-

-

If two transactions, either standalone or across the cluster, attempt to perform a cache operation
on the same element then the following rules apply:

The first transaction gets access

The following transactions will block on the cache operation until either the first transaction

completes or the transaction timeout occurs.

Under the covers, when an element is involved in a transaction, it is replaced with a new element
with a marker that is locked, along with the transaction id. The normal cluster semantics are used.

Because transactions only work with coherent=true caches, the first transaction will be the thread
that manages to atomically place a soft lock on the Element. (Up to Terracotta 3.4 this was done
with write locks. After that it is done with the CAS based putIfAbsent and replace methods).

15.1.9.2. What granularity of locking is used?

Ehcache standalone up to 2.3 used page level locking, where each segment in the
CompoundStore is locked. From 2.4, it is one with soft locks stored in the Element itself and is on
a key basis.

Terracotta clustered caches are locked on the key level.

15.1.9.3. Performance Comparisons

Any transactional cache adds an overhead which is significant for writes and nearly negligible for
reads.

Within the modes the relative time take to perform writes, where off = 1, is:

off - no overhead

xa_strict - 20 times slower

xa - 3 times slower

local - 3 times slower The relative read performance is:

off - no overhead

xa_strict - 20 times slower

xa - 30% slower

local - 30% slower

Accordingly, xa_strict should only be used where it's full guarantees are required, othewise one of
the other modes should be used.

15.1.10. FAQ

15.1.10.1. Is IBM Websphere Transaction Manager supported?

Mostly. xa_strict is not supported due to each version of Websphere essentially being a custom
implementation i.e. no stable interface to implement against. However, xa , which uses
TransactionManager callbacks and local are supported.

15.1.10.2. How do transactions interact with Write-behind and
Write-through caches?

If your transactional enabled cache is being used with a writer, write operations will be queued
until transaction commit time. Solely a Write-through approach would have its potential
XAResource participate in the same transaction. Write-behind, while supported, should probably
not be used with an XA transactional Cache, as the operations would never be part of the same
transaction. Your writer would also be responsible for obtaining a new transaction...

Using Write-through with a non XA resource would also work, but there is no guarantee the
transaction will succeed after the write operations have been executed successfully. On the other
hand, any thrown exception during these write operations would cause the transaction to be rolled
back by having UserTransaction.commit() throw a RollbackException.

15.1.10.3. Are Hibernate Transactions supported?

Ehcache is a "transactional" cache for Hibernate purposes. The
net.sf.ehcache.hibernate.EhCacheRegionFactory has support for Hibernate entities configured
with cache usage="transactional"/ .

15.1.10.4. How do I make WebLogic 10 work with Ehcache JTA?

WebLogic uses an optimization that is not supported by our implementation. By default WebLogic
10 will spawn threads to start the Transaction on each XAResource in parallel. As we need
transaction work to be performed on the same Thread, you will have to turn this optimization off by
setting parallel-xa-enabled option to false in your domain configuration :

 <jta>
 ...
 <checkpoint-interval-seconds>300</checkpoint-interval-seconds>
 <parallel-xa-enabled>false</parallel-xa-enabled>
 <unregister-resource-grace-period>30</unregister-resource-grace-period>
 ...
 </jta>

16. Ehcache Monitor

16.1. Ehcache Monitor

This add-on tool for Ehcache provides enterprise-class monitoring and management capabilities
for use in both development and production. It is intended to help understand and tune cache
usage, detect errors, and provide an easy to use access point to integrate with production
management systems. It also provides administrative functionality such as the ability to forcefully
remove items from caches.

Simply install the Monitor on an Operations server, add the Monitor Probe jar to your app, add a
few lines of config in ehcache.xml and your done.

The package contains a probe and a server. The probe installs with your existing Ehcache cache
instance, and communicates to a central server. The server aggregates data from multiple probes.
It can be accessed via a simple web UI, as well as a scriptable API. In this way, it is easy to
integrate with common third party systems management tools (such as Hyperic, Nagios etc). The
probe is designed to be compatible with all versions of Ehcache from 1.5 and requires JDK 1.5 or
1.6.

Get the Ehcache Monitor now.

16.1.1. Installation And Configuration

First download and extract the Ehcache Monitor package.

The package consists of a lib directory with the probe and monitor server jars, a bin directory with
startup and shutdown scripts for the monitor server and an etc directory with an example monitor
server configuration file and a Jetty Server configuration file.

16.1.2. Recommended Deployment Topology

It is recommended to place the Monitor on an Operations server separate to production. The
Monitor acts as an aggregation point for access by end users and for scripted connection from
Operations tools for data feeds and set up of alerts.

http://www.terracotta.org/ehcache.org/download-monitor
/modules/monitor.html

1.

16.1.2.1. Probe

To include the probe in your Ehcache application, you need to perform two steps:

Add the ehcache-probe- version .jar to your application classpath (or war file). Do this in the

same way you added the core ehcache jar to your application. If you are Maven based, the

probe module is in the Terracotta public repository for easy integration. --- repository id

terracotta-releases /id url http://www.terracotta.org/download/reflector/releases /url /repository

dependency groupId org.terracotta /groupId artifactId ehcache-probe /artifactId version

[version]/version /dependency

 [[2]] Configure Ehcache to communicate with the probe by specifying the class name of
the probe, the address (or hostname),
 the port that the monitor will be running on and whether to do memory
measurement. This is done by adding the following to ehcache.xml:

 +---
 <cacheManagerPeerListenerFactory
 class="org.terracotta.ehcachedx.monitor.probe.ProbePeerListenerFactory"
 properties="monitorAddress=localhost, monitorPort=9889, memoryMeasurement=true"
/>
 +---

 [[3]] Include required SLF4J logging jars.

 Ehcache 1.7.1 and above require SLF4J. Earlier versions used commons logging. The
probe, like all new Ehcache modules,
 uses SLF4J, which is becoming a new standard in open source projects.

 If you are using Ehcache 1.5 to 1.7.0, you will need to add slf4j-api and one concrete
logger.

 If you are using Ehcache 1.7.1 and above you should not need to do anything because
you will already be using
 slf4j-api and one concrete logger.

 More information on SLF4J is available from http://www.slf4j.org.

 [[4]] Ensure that statistics capture in each cache is turned on for the probe to gather
statistics.

 Statistics were turned off by default from Ehcache 2.1 onwards.

 +---
 <cache name="sampleCache2"
 maxElementsInMemory="1000"
 eternal="true"
 overflowToDisk="false"
 memoryStoreEvictionPolicy="FIFO"
 statistics="true"
 />
 +---

 ** {Monitor}

 Copy the monitor package to a monitoring server.

 To start the monitor, run the startup script provided in the bin directory: startup.sh on
Unix and startup.bat on Microsoft Windows.
 The monitor port selected in this script should match the port specified in ehcache.xml.

 The monitor can be configured, including interface, port and simple security settings, in
the etc/ehcache-monitor.conf.

 The monitor connection timeout can also be configured. If the monitor is frequently
timing out while attempting to connect to a node (due to long GC cycles, for example),
then the default timeout value may not be suitable for your environment. You can set the
monitor timeout using the system property
<<<ehcachedx.connection.timeout.seconds>>>. For example, <<<-
Dehcachedx.connection.timeout.seconds=60>>> sets the timeout to 60 seconds.

 * {Securing the Monitor}

 The Monitor can be secured in a variety of ways. The simplest method involves simply
editing ehcache-monitor.conf to specify
 a single user name and password. This method has the obvious drawbacks that (1) it
provides only a single login identity, and (2)
 the credentials are stored in clear-text.

 A more comprehensive security solution can be achieved by configuring the Jetty
Server with one ore more <<<UserRealm>>>s as described by
 {{{http://docs.codehaus.org/display/JETTY/JAAS} Jetty and JAAS}}. Simply edit
etc/jetty.xml to use the appropriate <<<UserRealm>>>
 implementation for your needs. To configure the Monitor to authenticate against an
existing LDAP server, first ensure that you have
 defined and properly registered a <<<LoginConfig>>>, such as the following example:

 +---
 MyExistingLDAPLoginConfig {
 com.sun.security.auth.module.LdapLoginModule REQUIRED
 java.naming.security.authentication="simple"
 userProvider="ldap://ldap-host:389"
 authIdentity="uid={USERNAME},ou=People,dc=myorg,dc=org"
 useSSL=false
 bindDn="cn=Manager"
 bindCredential="secretBindCredential"
 bindAuthenticationType="simple"
 debug=true;
 };
 +---

 Note: the <<<LdapLoginModule>>> is new with JDK 1.6.

 JAAS supports many different types of login modules and it is up to the reader to
provide a valid, working JAAS
 environment. For more information regarding JAAS refer to
{{{http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html}
JAAS Reference Guide}}.

 For information on how to register your LoginConfig refer to
$JAVA_HOME/jre/lib/security/java.security.

 Next, edit etc/jetty.xml like so:

 +---
 <?xml version="1.0"?>
 <!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN"
 "http://jetty.mortbay.org/configure.dtd">

 <Configure id="Server" class="org.terracotta.ehcachedx.org.mortbay.jetty.Server">
 <Set name="UserRealms">
 <Array type="org.terracotta.ehcachedx.org.mortbay.jetty.security.UserRealm">
 <Item>
 <New
class="org.terracotta.ehcachedx.org.mortbay.jetty.plus.jaas.JAASUserRealm">
 <Set name="Name">MyArbitraryLDAPRealmName</Set>
 <Set name="LoginModuleName">MyExistingLDAPLoginConfig</Set>
 </New>
 </Item>
 </Array>
 </Set>
 </Configure>
 +---

 The <<<LoginModuleName>>> you specify as the second constructor parameter to the
<<<JAASUserRealm>>> class must exactly match
 the name of your <<<LoginModule>>>. The realm name specified as the first
constructor parameter can be an arbitrary value.

 Note: the version of Jetty used in the Monitor has been repackaged so be sure to prefix
any standard Jetty class names with
 <<<org.terracotta.ehcachedx>>>.

 If the Jetty Server is found to have been configured with any security realms, the simple
user name and password from
 ehcache-monitor.conf is ignored.

 * {Using the Web GUI}

 The web-based GUI is available by pointing your browser at http://<monitor-host-
name>:<monitor-port>/monitor. For a default installation on the local machine, this would
be http://localhost:9889/monitor

 The GUI contains six tabs, described as follows:

 ** Cache Managers

 This tab shows aggregate statistics for the cache managers being monitored by probes
connected to the monitor server. Double-clicking on any cache manager drills down to the
detailed Statistics tab for that manager.

 ** Statistics

 This tab shows the statistics being gathered for each cache managed by the selected
cache manager.

 The Settings button permits you to add additional statistics fields to the display. Note:
only displayed fields are collected and aggregated by the probe.
 Adding additional display fields will increase the processing required for probe and the
monitor. The selected settings are stored in a preferences cookie in your browser.

 Double-clicking on any cache drills down to the Contents tab for that cache.

 ** Configuration

 This tab shows the key configuration information for each cache managed by the
selected cache manager.

 ** Contents

 This tab enables you to look inside the cache, search for elements via their keys and
remove individual or groups of elements from the cache.

 The GUI is set to refresh at the same frequency that the probes aggregate their statistic
samples which is every 10 seconds by default. The progress bar at the bottom of the
screen indicates the time until the next refresh.

 ** Charts

 This tab contains various live charts of cache statistics. It gives you a feel for the
trending of the each statistic, rather than
 just the latest value.

 *** Estimated Memory Use Chart

 This chart shows the estimated memory use of the Cache.

 Memory is estimated by sampling. The first 15 puts or updates are measured and then
every 100th put or update. Most caches
 contain objects of similar size. If this is not the case for your cache, then the estimate
will not be accurate.

 Measurements are performed by walking the object graph of sampled elements through
reflection. In some cases such as classes
 not visible to the classloader, the measurement fails and 0 is recorded for cache size. If
you see a chart with 0 memory
 size values but the cache has data in it, then this is the cause. For this release, caches
distributed via Terracotta
 server show as 0.

 ** API

 This tab contains a listing of the API methods. Each is a hyperlink, which may be
clicked on. Some will display data and some will require
 additional arguments. If additional arguments are required an error message will be
displayed with the details. This tab is meant for
 interative testing of the API.

 * {Using the API}

 The Monitor provides a API over HTTP on the same port as the Web GUI.

 The list of functions supported by the API can be accessed by pointing your browser at
 http://<monitor-host-name>:<monitor-port>/monitor/list. For a default installation on the
local machine, this would be
 http://localhost:9889/monitor/list

 The API returns data as either structured XML or plan text. The default format is txt.

 For example, the getVersion function returns the software version of the monitor server.
It can be called as follows:

 http://localhost:9889/monitor/getVersion

 or, to receive the results as XML:

 http://localhost:9889/monitor/getVersion?format=xml

 To query the data collected by the monitor server from scripts that can then be used to
pass the data to enterprise system management
 frameworks, commands such as <<<curl>>> or <<<wget>>> can be used.

 For example, on a Linux system, to query the list of probes that a local monitor on the
default port is currently aware of, and return
 the data in XML format, the following command could be used:

 +---
 $ curl http://localhost:9889/monitor/listProbes?format=xml
 +---

 * {Licensing}

 Unless otherwise indicated, this module is licensed for usage in development.

 For details see the license terms in the appropriate LICENSE.txt. To obtain a
commercial license for use in production,
 please contact sales@terracottatech.com

 * Limitations

 ** History not Implemented

 This release has server side history configuration in place, however history is not
implemented. It is anticipated
 it will be implemented in the next release. In the meantime, the charts with their recent
history provide trending.

 ** Memory Measurement limitations

 Unfortunately in Java, there is no JSR for memory measurement of objects.
Implementations, such as the sizeof one we use
 are subject to fragilities.

 For example, Java 7 memory measurement is not supported at this time. You will get a
<<<java.lang.NoSuchFieldException: header>>>
 exception message if you use memory measurement with Java 7.

 Memory measurement can optionally be turned off by setting
<<<memoryMeasurement=false>>> in the probe configuration.

-

-

17. Bulk Loading

17.1. Bulk Loading

Ehcache has a bulk loading mode that dramatically speeds up bulk loading into caches using the
Terracotta Server Array.

17.1.1. Uses

Bulk loading is designed to be used for:

cache warming - where caches need to be filled before bringing an application online

periodic batch loading - say an overnight batch process that uploads data

17.1.2. API

With bulk loading, the API for putting data into the cache stays the same. Just use cache.put(...)
cache.load(...) or cache.loadAll(...)>>>.

What changes is that there is a special mode that suspends Terracotta's normal coherence
guarantees and provides optimised flushing to the Terracotta Server Array (the L2 cache).

This mode can be enabled programmatically or statically in ehcache.xml. Programmatically, four
methods control coherent behaviour: setNodeCoherence(boolean mode) , isNodeCoherent() ,
isClusterCoherent() and waitUntilClusterCoherent() .

17.1.2.1. setNodeCoherence(boolean mode)

setNodeCoherence(false) sets coherence to false for the Ehcache node. The setting for the rest of
the cluster stays the same. The effect is that normal read and write locks are not obtained.
setNodeCoherence(true) brings back the cache to coherent mode for the node.

17.1.2.2. isNodeCoherent()

-

-

Use this to find out if the node is in coherent mode locally. This does not account for other nodes
in the cluster (if any). The node may be coherent while its incoherent cluster-wide (like some other
node is incoherent)

17.1.2.3. isClusterCoherent()

Reflects whether the cache is in coherent or incoherent mode cluster-wide. Coherent cluster-wide
means that all nodes in the cluster is using the cache in coherent mode. If even one of the nodes
is using the cache in incoherent mode, the cache is incoherent cluster-wide

17.1.2.4. waitUntilClusterCoherent()

Calling this method will block the calling thread until the cache becomes coherent cluster-wide.

waitUntilClusterCoherent

waits until everyone is coherent. Will not return until the entire cluster is coherent.

setNodeCoherence(true | false)

This affects the local node only. The settings in the rest of the cluster are not affected.

Then to put it back call with true parameter.

This method does not return until all the transactions are flushed to the cluster. Only the calling
thread is blocked. This way you know when coherence is restored. This returns as soon DONT
SAY. Will make async later.

Everyone block

The initial state is from the config.

In a local standalone cache, setNodeCoherence should throw an
UnsupportedOperationException. waitUntilClusterCoherent will also throw an
UnsupportedOperationException.

Configuration Coherent mode may be set by default in the configuration. The terracotta element

has an attribute coherent which can be true or false. By default it is true. Ehcache 1.7

introduced a partial implementation of this feature for reads only. That is the coherentRead. It is

still honoured but deprecated.

This can be dynamically controlled through JMX via the Dev Console. Writes can also be

synchronous or asynchronous. This is controlled by the synchronousWrites. When you are

running in incoherent mode synchronousWrites are ignored - it is always asynchronous.

17.1.3. Speed Improvement

The speed performance improvement is an order of magnitude faster.

ehcacheperf (Spring Pet Clinic) now has a bulk load test which shows the performance
improvement for using a Terracotta cluster.

17.1.4. FAQ

17.1.4.1. Why does the bulk loading mode only apply to
Terracotta clusters?

Ehcache, both standalone and replicated is already very fast and nothing needed to be added.

17.1.4.2. How does bulk load with RMI distributed caching work?

The core updates are very fast. RMI updates are batched by default once per second, so bulk
loading will be efficiently replicated.

17.1.5. Performance Tips

17.1.5.1. When to use Multiple Put Threads

It is not necessary to create multiple threads when calling cache.put . Only a marginal
performance improvement will result, because the call is already so fast.

It is only necessary if the source is slow. By reading from the source in multiple threads a speed
up could result. An example is a database, where multiple reading threads will often be better.

17.1.5.2. Bulk Loading on Multiple Nodes

The implementation scales very well when the load is split up against multiple Ehcache
CacheManagers on multiple machines.

You add extra nodes for bulk loading to get up to 93 times performance.

17.1.5.3. Why not run in bulk load mode all the time

Terracotta clustering provides coherence, scaling and durability. Some applications will require
coherence, or not for some caches, such as reference data. It is possible to run a cache
permanently in incoherent mode.

In ehcache.xml, set the coherent attribute to false in the terracotta element. The terracotta
element is a sub-element of cache, so this can be configured per cache.

17.1.6. Download

The bulk loading feature is in the ehcache-core module but only provides a performance
improvement to Terracotta clusters (as bulk loading to Ehcache standalone is very fast already)

Download here .

For a full distribution enabling connection to the Terracotta Server array download here .

17.1.7. Further Information

Saravanan who was the lead on this feature has blogged about it here .

http://sourceforge.net/projects/ehcache/files/ehcache-core
http://sourceforge.net/projects/ehcache/files/ehcache
http://sarosblog.blogspot.com/2010/02/terracotta-distributed-ehcaches-new.html

18. Class Loading

18.1. Class loading and Class Loaders

Class loading within the plethora of environments Ehcache can be running is a somewhat vexed
issue.

Since ehcache-1.2 all classloading is done in a standard way in one utility class: ClassLoaderUtil .

18.1.1. Plugin class loading

Ehcache allows plugins for events and distribution. These are loaded and created as follows:

 /**
 * Creates a new class instance. Logs errors along the way. Classes are loaded using the
 * Ehcache standard classloader.
 *
 * @param className a fully qualified class name
 * @return null if the instance cannot be loaded
 */
 public static Object createNewInstance(String className) throws CacheException {
 Class clazz;
 Object newInstance;
 try {
 clazz = Class.forName(className, true, getStandardClassLoader());
 } catch (ClassNotFoundException e) {
 //try fallback
 try {
 clazz = Class.forName(className, true, getFallbackClassLoader());
 } catch (ClassNotFoundException ex) {
 throw new CacheException("Unable to load class " + className +
 ". Initial cause was " + e.getMessage(), e);
 }
 }

 try {
 newInstance = clazz.newInstance();
 } catch (IllegalAccessException e) {
 throw new CacheException("Unable to load class " + className +

 ". Initial cause was " + e.getMessage(), e);
 } catch (InstantiationException e) {
 throw new CacheException("Unable to load class " + className +
 ". Initial cause was " + e.getMessage(), e);
 }
 return newInstance;
 }

 /**
 * Gets the <code>ClassLoader</code> that all classes in ehcache, and extensions, should
 * use for classloading. All ClassLoading in Ehcache should use this one. This is the only
 * thing that seems to work for all of the class loading situations found in the wild.
 * @return the thread context class loader.
 */
 public static ClassLoader getStandardClassLoader() {
 return Thread.currentThread().getContextClassLoader();
 }

 /**
 * Gets a fallback <code>ClassLoader</code> that all classes in ehcache, and extensions,
 * should use for classloading. This is used if the context class loader does not work.
 * @return the <code>ClassLoaderUtil.class.getClassLoader();</code>
 */
 public static ClassLoader getFallbackClassLoader() {
 return ClassLoaderUtil.class.getClassLoader();
 }

-

-

-

-

-

If this does not work for some reason a CacheException is thrown with a detailed error message.

18.1.2. Loading of ehcache.xml resources

If the configuration is otherwise unspecified, Ehcache looks for a configuration in the following
order:

Thread.currentThread().getContextClassLoader().getResource("/ehcache.xml")

ConfigurationFactory.class.getResource("/ehcache.xml")

ConfigurationFactory.class.getResource("/ehcache-failsafe.xml")

Ehcache uses the first configuration found.

Note the use of "/ehcache.xml" which requires that ehcache.xml be placed at the root of the
classpath, i.e. not in any package.

18.1.3. Classloading with Terracotta clustering

If Terracotta clustering is being used with valueMode="serialization" then keys and values will be
moved across the cluster in byte[] and deserialized on other nodes.

The classloaders used (in order) to instantiate those classes will be:

Thread.currentThread().getContextClassLoader()

The classloader that defined the CacheManager initially

-

-

-

-

-

19. Performance Considerations

19.1. Performance Considerations

19.1.1. DiskStore

Ehcache comes with a MemoryStore and a DiskStore . The MemoryStore is approximately an
order of magnitude faster than the DiskStore . The reason is that the DiskStore incurs the
following extra overhead:

Serialization of the key and value

Eviction from the MemoryStore using an eviction algorithm

Reading from disk

Note that writing to disk is not a synchronous performance overhead because it is handled by a
separate thread.

A Cache should alway have its maximumSize attribute set to 1 or higher. A Cache with a
maximum size of 1 has twice the performance of a disk only cache, i.e. one where the
maximumSize is set to 0. For this reason a warning will be issued if a Cache is created with a 0
maximumSize .

19.1.2. Replication

The asynchronous replicator is the highest performance. There are two different effects:

Because it is asynchronous the caller returns immediately

The messages are placed in a queue. As the queue is processed, multiple messages are sent

in one RMI call, dramatically accelerating replication performance.

19.1.3. Statistics

Collection of cache statistics is not entirely free of overhead. In production systems where
monitoring is not required statistics can be disabled. This can be done either programatically by
calling setStatisticsEnabled(false) on the cache instance, or in configuration by setting the
statistics="false" attribute of the relevant cache configuration element. As of Ehcache 2.1.0
statistics are off by default.

20. Cache Decorators

20.1. Cache Decorators

Ehcache 1.2 introduced the Ehcache interface, of which Cache is an implementation. It is possible
and encouraged to create Ehcache decorators that are backed by a Cache instance, implement
Ehcache and provide extra functionality.

The Decorator pattern is one of the the well known Gang of Four patterns.

Decorated caches are accessed from the CacheManager using
CacheManager.getEhcache(String name) .

Note that, for backward compatibility, CacheManager.getCache(String name) has been retained.
However only CacheManager.getEhcache(String name) returns the decorated cache.

20.1.1. Creating a Decorator

20.1.1.1. Programmatically

Cache decorators are created as follows:

 BlockingCache newBlockingCache = new BlockingCache(cache);

The class must implement Ehcache.

20.1.1.2. By Configuration

Cache decorators can be configured directly in ehcache.xml. The decorators will be created and
added to the CacheManager. It accepts the name of a concrete class that extends
net.sf.ehcache.constructs.CacheDecoratorFactory The properties will be parsed according to the
delimiter (default is comma ',') and passed to the concrete factory's
createDecoratedEhcache(Ehcache cache, Properties properties) method along with the reference
to the owning cache.

It is configured as per the following example:

 <cacheDecoratorFactory
 class="net.sf.ehcache.constructs.nonstop.NonStopCacheDecoratorFactory"
 properties="name=localReadsCacheDecorator, timeoutBehavior=localReads
..." />

Note that from version 2.2, decorators can be configured against the defaultCache . This is very
useful for frameworks like Hibernate that add caches based on the defaultCache .

20.1.2. Adding decorated caches to the CacheManager

Having created a decorator programmatically it is generally useful to put it in a place where
multiple threads may access it.

Note that decorators created via configuration in ehcache.xml have already been added to the
CacheManager .

20.1.2.1. Using
CacheManager.replaceCacheWithDecoratedCache()

A built-in way is to replace the Cache in CacheManager with the decorated one. This is achieved
as in the following example:

 cacheManager.replaceCacheWithDecoratedCache(cache, newBlockingCache);

The CacheManager replaceCacheWithDecoratedCache method requires that the decorated

cache be built from the underlying cache from the same name.

Note that any overwritten Ehcache methods will take on new behaviours without casting, as per
the normal rules of Java. Casting is only required for new methods that the decorator introduces.

Any calls to get the cache out of the CacheManager now return the decorated one.

A word of caution. This method should be called in an appropriately synchronized init style method
before multiple threads attempt to use it. All threads must be referencing the same decorated
cache. An example of a suitable init method is found in CachingFilter :

 /**
 * The cache holding the web pages. Ensure that all threads for a given cache name
 * are using the same instance of this.
 */
 private BlockingCache blockingCache;

 /**
 * Initialises blockingCache to use
 *
 * @throws CacheException The most likely cause is that a cache has not been
 * configured in Ehcache's configuration file ehcache.xml for the
 * filter name
 */
 public void doInit() throws CacheException {
 synchronized (this.getClass()) {
 if (blockingCache == null) {
 final String cacheName = getCacheName();
 Ehcache cache = getCacheManager().getEhcache(cacheName);
 if (!(cache instanceof BlockingCache)) {
 //decorate and substitute
 BlockingCache newBlockingCache = new BlockingCache(cache);
 getCacheManager().replaceCacheWithDecoratedCache(cache,
newBlockingCache);
 }
 blockingCache = (BlockingCache)
getCacheManager().getEhcache(getCacheName());
 }
 }
 }

 Ehcache blockingCache = singletonManager.getEhcache("sampleCache1");

The returned cache will exhibit the decorations.

20.1.2.2. Using CacheManager.addDecoratedCache()

Sometimes you want to add a decorated cache but retain access to the underlying cache.

The way to do this is to create a decorated cache and then call cache.setName(new_name) and
then add it to CacheManager with CacheManager.addDecoratedCache() .

 /**
 * Adds a decorated {@link Ehcache} to the CacheManager. This method neither creates
the memory/disk store
 * nor initializes the cache. It only adds the cache reference to the map of caches held by
this
 * cacheManager.
 * <p/>
 * It is generally required that a decorated cache, once constructed, is made available to
other execution
 * threads. The simplest way of doing this is to either add it to the cacheManager with a
different name or
 * substitute the original cache with the decorated one.
 * <p/>
 * This method adds the decorated cache assuming it has a different name. If another
cache (decorated or not)
 * with the same name already exists, it will throw {@link ObjectExistsException}. For
replacing existing
 * cache with another decorated cache having same name, please use
 * {@link #replaceCacheWithDecoratedCache(Ehcache, Ehcache)}
 * <p/>
 * Note that any overridden Ehcache methods by the decorator will take on new behaviours
without casting.
 * Casting is only required for new methods that the decorator introduces. For more
information see the well
 * known Gang of Four Decorator pattern.
 *
 * @param decoratedCache
 * @throws ObjectExistsException
 * if another cache with the same name already exists.
 */
 public void addDecoratedCache(Ehcache decoratedCache) throws ObjectExistsException {

20.1.3. Built-in Decorators

20.1.3.1. BlockingCache

A blocking decorator for an Ehcache, backed by a @link Ehcache .

It allows concurrent read access to elements already in the cache. If the element is null, other
reads will block until an element with the same key is put into the cache.

This is useful for constructing read-through or self-populating caches.

BlockingCache is used by CachingFilter .

20.1.3.2. SelfPopulatingCache

A selfpopulating decorator for @link Ehcache that creates entries on demand.

Clients of the cache simply call it without needing knowledge of whether the entry exists in the
cache. If null the entry is created.

The cache is designed to be refreshed. Refreshes operate on the backing cache, and do not
degrade performance of get calls.

SelfPopulatingCache extends BlockingCache. Multiple threads attempting to access a null
element will block until the first thread completes. If refresh is being called the threads do not
block - they return the stale data.

This is very useful for engineering highly scalable systems.

20.1.3.3. Caches with Exception Handling

These are decorated. See Cache Exception Handlers for full details.

./cache_exception_handlers.html

-

-

-

-

-

-

-

-

21. Hibernate Caching

21.1. Hibernate Second Level Cache

IMPORTANT NOTICES - PLEASE READ

Users of Ehcache and/or Terracotta Ehcache for Hibernate prior to Ehcache 2.0 should read:

Upgrade Notes for Ehcache versions prior to 2.0

These instructions are for Hibernate 3. For older instructions on how to use Hibernate 2.1, please
refer to:

Guide for Version 1.1

21.1.1. Overview

Ehcache easily integrates with the Hibernate Object/Relational persistence and query service.

Gavin King, the maintainer of Hibernate, is also a committer to the Ehcache project. This ensures

Ehcache will remain a first class cache for Hibernate.

Configuring Ehcache for Hibernate is simple. The basic steps are:

Download and install Ehcache into your project

Configure Ehcache as a cache provider in your project's Hibernate configuration.

Configure second level caching in your project's Hibernate configuration.

Configure Hibernate caching for each entity, collection, or query you wish to cache.

Configure ehcache.xml as necessary for each entity, collection, or query configured for

caching.

For more information regarding cache configuration in Hibernate see the Hibernate

documentation.

21.1.2. Downloading and Installing Ehcache

The Hibernate provider is in the ehcache-core module. Download:

the latest version of the Ehcache core module here

For Terracotta clustering, download:

./hibernate-upgrade.html
http://ehcache.org/documentation/documentation-1_1.html
http://hibernate.org
http://www.hibernate.org/hib_docs/reference/en/html_single/
http://sourceforge.net/projects/ehcache/files/ehcache-core

- a full Ehcache distribution here

21.1.3. Maven

If you are a maven user, you'll need to configure or add the following repository to your build
(pom.xml):

 <repository>
 <id>terracotta-releases</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>false</enabled></snapshots>
 </repository>

Then, you will need to configure or add the the ehcache core module defined by the following
dependencies to your build (pom.xml):

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-core</artifactId>
 <version>2.3.1</version>
 </dependency>

If you are configuring Hibernate and Ehcache for Terracotta clustering, you will also need to add
the following dependencies to your build (pom.xml):

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-terracotta</artifactId>
 <version>2.3.1</version>
 </dependency>

 <dependency>
 <groupId>org.terracotta</groupId>
 <artifactId>terracotta-toolkit-1.1-runtime</artifactId>
 <version>2.0.0</version>
 </dependency>

21.1.4. Configure Ehcache as the Second Level Cache

http://sourceforge.net/projects/ehcache/files/ehcache

Provider

To configure Ehcache as a Hibernate second level cache, set the region factory property (for
Hibernate 3.3 and above) or the factory class property (Hibernate 3.2 and below) to one of the
following in the Hibernate configuration.

Hibernate configuration is configured either via hibernate.cfg.xml, hibernate.properties or Spring.
The format given is for hibernate.cfg.xml.

21.1.4.1. Hibernate 3.3 and higher

ATTENTION HIBERNATE 3.2 USERS: Make sure to note the change to BOTH the property name
and value.

Use:

 <property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

for instance creation, or

 <property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.SingletonEhCacheRegionFactory</property>

to force Hibernate to use a singleton of Ehcache CacheManager.

21.1.4.2. Hibernate 3.0 - 3.2

Use:

 <property name="hibernate.cache.provider_class">
 net.sf.ehcache.hibernate.EhCacheProvider</property>

for instance creation, or

 <property name="hibernate.cache.provider_class">
 net.sf.ehcache.hibernate.SingletonEhCacheProvider</property>

to force Hibernate to use a singleton Ehcache CacheManager.

21.1.5. Enable Second Level Cache and Query Cache
Settings

In addition to configuring the second level cache provider setting, you will need to turn on the
second level cache (by default it is configured to off - 'false' - by Hibernate). This is done by setting
the following property in your hibernate config:

 <property name="hibernate.cache.use_second_level_cache">true</property>

You may also want to turn on the Hibernate query cache. This is done by setting the following
property in your hibernate config:

 <property name="hibernate.cache.use_query_cache">true</property>

21.1.6. Optional

The following settings or actions are optional.

21.1.6.1. Ehcache Configuration Resource Name

The configurationResourceName property is used to specify the location of the ehcache
configuration file to be used with the given Hibernate instance and cache provider/region-factory.

The resource is searched for in the root of the classpath. It is used to support multiple
CacheManagers in the same VM. It tells Hibernate which configuration to use. An example might
be "ehcache-2.xml".

When using multiple Hibernate instances it is therefore recommended to use multiple non-
singleton providers or region factories, each with a dedicated Ehcache configuration resource.

 net.sf.ehcache.configurationResourceName=/name_of_ehcache.xml

21.1.6.2. Set the Hibernate cache provider programmatically

The provider can also be set programmatically in Hibernate by adding necessary Hibernate
property settings to the configuration before creating the SessionFactory:

 Configuration.setProperty("hibernate.cache.region.factory_class",
 "net.sf.ehcache.hibernate.EhCacheRegionFactory")

21.1.7. Putting it all together

If you are using Hibernate 3.3 and enabling both second level caching and query caching, then
your hibernate config file should contain the following:

 <property name="hibernate.cache.use_second_level_cache">true</property>
 <property name="hibernate.cache.use_query_cache">true</property>
 <property
name="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFacto
ry</property>

An equivalent Spring configuration file would contain:

 <prop key="hibernate.cache.use_second_level_cache">true</prop>
 <prop key="hibernate.cache.use_query_cache">true</prop>
 <prop
key="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFactory
</prop>

21.1.8. Configure Hibernate Entities to use Second Level

Caching

In addition to configuring the Hibernate second level cache provider, Hibernate must also be told
to enable caching for entities, collections, and queries.

For example, to enable cache entries for the domain object
com.somecompany.someproject.domain.Country there would be a mapping file something like the
following:

 <hibernate-mapping>

 <class
 name="com.somecompany.someproject.domain.Country"
 table="ut_Countries"
 dynamic-update="false"
 dynamic-insert="false"
 >
 ...
 </class>
 </hibernate-mapping>

To enable caching, add the following element.

 <cache usage="read-write|nonstrict-read-write|read-only" />

e.g.

 <hibernate-mapping>

 <class
 name="com.somecompany.someproject.domain.Country"
 table="ut_Countries"
 dynamic-update="false"
 dynamic-insert="false"
 >
 <cache usage="read-write" />
 ...
 </class>
 </hibernate-mapping>

This can also be achieved using the @Cache annotation, e.g.

 @Entity
 @Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
 public class Country {
 ...
 }

21.1.8.1. Definition of the different cache strategies

21.1.8.1.1. read-only

Caches data that is never updated.

21.1.8.1.2. nonstrict-read-write

Caches data that is sometimes updated without ever locking the cache. If concurrent access to an
item is possible, this concurrency strategy makes no guarantee that the item returned from the
cache is the latest version available in the database. Configure your cache timeout accordingly!

21.1.8.1.3. read-write

Caches data that is sometimes updated while maintaining the semantics of "read committed"
isolation level. If the database is set to "repeatable read", this concurrency strategy almost
maintains the semantics. Repeatable read isolation is compromised in the case of concurrent
writes.

21.1.9. Configure ehcache.xml

Because ehcache.xml has a defaultCache, caches will always be created when required by
Hibernate. However more control can be exerted by specifying a configuration per cache, based
on its name.

In particular, because Hibernate caches are populated from databases, there is potential for them
to get very large. This can be controlled by capping their maxElementsInMemory and specifying
whether to overflowToDisk beyond that.

Hibernate uses a specific convention for the naming of caches of Domain Objects, Collections,
and Queries.

21.1.9.1. Domain Objects

Hibernate creates caches named after the fully qualified name of Domain Objects.

So, for example to create a cache for com.somecompany.someproject.domain.Country create a
cache configuration entry similar to the following in ehcache.xml.

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
 </ehcache>

21.1.9.2. Hibernate

CacheConcurrencyStrategy read-write, nonstrict-read-write and read-only policies apply to
Domain Objects.

21.1.9.3. Collections

Hibernate creates collection caches named after the fully qualified name of the Domain Object
followed by "." followed by the collection field name.

For example, a Country domain object has a set of advancedSearchFacilities. The Hibernate
doclet for the accessor looks like:

 /**
 * Returns the advanced search facilities that should appear for this country.
 * @hibernate.set cascade="all" inverse="true"
 * @hibernate.collection-key column="COUNTRY_ID"
 * @hibernate.collection-one-to-many
class="com.wotif.jaguar.domain.AdvancedSearchFacility"
 * @hibernate.cache usage="read-write"
 */
 public Set getAdvancedSearchFacilities() {

 return advancedSearchFacilities;
 }

You need an additional cache configured for the set. The ehcache.xml configuration looks like:

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <cache name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="50"
 eternal="false"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
 <cache
 name="com.somecompany.someproject.domain.Country.advancedSearchFacilities"
 maxElementsInMemory="450"
 eternal="false"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
 </ehcache>

21.1.9.4. Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only policies apply to Domain Object collections.

21.1.9.5. Queries

Hibernate allows the caching of query results using two caches.

"net.sf.hibernate.cache.StandardQueryCache" and
"net.sf.hibernate.cache.UpdateTimestampsCache" in versions 2.1 to 3.1 and
"org.hibernate.cache.StandardQueryCache" and"org.hibernate.cache.UpdateTimestampsCache"
in version 3.2. are always used.

21.1.9.6. StandardQueryCache

This cache is used if you use a query cache without setting a name. A typical ehcache.xml
configuration is:

 <cache
 name="org.hibernate.cache.StandardQueryCache"
 maxElementsInMemory="5"
 eternal="false"
 timeToLiveSeconds="120"
 overflowToDisk="true"/>

21.1.9.7. UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It is important that the
cache timeout of the underlying cache implementation be set to a higher value than the timeouts
of any of the query caches. In fact, it is recommend that the the underlying cache not be
configured for expiry at all.

A typical ehcache.xml configuration is:

 <cache
 name="org.hibernate.cache.UpdateTimestampsCache"
 maxElementsInMemory="5000"
 eternal="true"
 overflowToDisk="true"/>

21.1.9.8. Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using
Query.setCacheRegion(String name). The name of the cache in ehcache.xml is then the name
given in that method. The name can be whatever you want, but by convention you should use
"query." followed by a descriptive name.

E.g.

 <cache name="query.AdministrativeAreasPerCountry"
 maxElementsInMemory="5"
 eternal="false"
 timeToLiveSeconds="86400"
 overflowToDisk="true"/>

21.1.9.9. Using Query Caches

For example, let's say we have a common query running against the Country Domain.

Code to use a query cache follows:

 public List getStreetTypes(final Country country) throws HibernateException {
 final Session session = createSession();

 try {
 final Query query = session.createQuery(

 "select st.id, st.name"
 + " from StreetType st "
 + " where st.country.id = :countryId "
 + " order by st.sortOrder desc, st.name");
 query.setLong("countryId", country.getId().longValue());
 query.setCacheable(true);
 query.setCacheRegion("query.StreetTypes");
 return query.list();
 } finally {
 session.close();
 }
 }

The query.setCacheable(true) line caches the query.

The query.setCacheRegion("query.StreetTypes") line sets the name of the Query Cache.

Alex Miller has a good article on the query cache here .

21.1.9.10. Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-only policies apply to Domain Objects. Cache
policies are not configurable for query cache. They act like a non-locking read only cache.

21.1.10. Demo Apps

We have demo applications showing how to use the Hibernate 3.3 CacheRegionFactory.

21.1.10.1. Hibernate Tutorial

Check out from https://svn.terracotta.org/repo/forge/projects/hibernate-tutorial-web/trunk

terracotta_community_login

21.1.10.2. Examinator

Examinator is our complete application that shows many aspects of caching, all using the
Terracotta Server Array.

Check out from https://svn.terracotta.org/svn/forge/projects/exam/ terracotta_community_login

21.1.11. Performance Tips

21.1.11.1. Session.load

Session.load will always try to use the cache.

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
https://svn.terracotta.org/repo/forge/projects/hibernate-tutorial-web/trunk
https://svn.terracotta.org/svn/forge/projects/exam/

-

-

-

-

21.1.11.2. Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use the cache for
any associated objects. Session.find does however cause the cache to be populated.

Query.find works in exactly the same way.

Use these where the chance of getting a cache hit is low.

21.1.11.3. Session.iterate and Query.iterate

Session.iterate always uses the cache for the primary object and any associated objects.

Query.iterate works in exactly the same way.

Use these where the chance of getting a cache hit is high.

21.1.12. How to Scale

Configuring each Hibernate instance with a standalone ehcache will dramatically improve
performance. However most production applications use multiple application instances for
redundancy and for scalability. Ideally applications are horizontally scalable, where adding more
application instances linearly improves throughput.

With an application deployed on multiple nodes, using standalone Ehcache means that each
instance holds its own data. On a cache miss on any node, Hibernate will read from the database.
This generally results in N reads where N is the number of nodes in the cluster. As each new node
gets added database workload goes up. Also, when data is written in one node, the other nodes
are unaware of the data write, and thus subsequent reads of this data on other nodes will result in
stale reads.

The solution is to turn on distributed caching or replicated caching .

Ehcache comes with native cache distribution using the following mechanism:

Terracotta

Ehcache supports the following methods of cache replication:

RMI

JGroups

JMS replication

./distributed_caching.html

-

-

-

-

-

-

Selection of the distributed cache or replication mechanism may be made or changed at any time.
There are no changes to the application. Only changes to ehcache.xml file are required. This
allows an application to easily scale as it grows without expensive re-architecting.

21.1.13. Configuring Ehcache for distributed caching using
Terracotta

Ehcache provides built-in support for Terracotta distributed caching. The following are the key
considerations when selecting this option:

Simple snap-in configuration with one line of configuration

Simple to scale up to as much performance as you need -- no application changes required

Wealth of "CAP" configuration options allow you to configure your cache for whatever it needs -

fast, coherent, asynchronous updates, dirty reads etc.

The fastest coherent option for caches with reads and writes

Store as much data as you want - 20GB -> 1TB

Commercial products and support available from http://www.terracotta.org

Configuring Terracotta replication is described in the Terracotta Documentation . A sample cache

configuration is provided here:

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <terracottaConfig url="localhost:9510" />

 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <terracotta/>
 </cache>
 </ehcache>

21.1.14. Configuring Ehcache replication using RMI,
JGroups, or JMS

http://www.terracotta.org
http://www.terracotta.org/documentation/ga/distributed-hibernate-install.html

-

-

-

Ehcache can use JMS, JGroups or RMI as a cache replication scheme. The following are the key
considerations when selecting this option:

No locking is used during replication, so cached data may be stale. Your application should be

able to deal with stale data.

session.refresh() should be used to check the cache against the database before performing a

write that must be correct. This can have a performance inmpact on the database.

Each node in the cluster stores all data, thus the cache size is limited to memory size, or disk if

disk overflow is selected.

21.1.14.1. Configuring for RMI Replication

RMI configuration is described in the Ehcache User Guide - RMI Distributed Caching . A sample

cache configuration (using automatic discovery) is provided here:

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

 properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
 multicastGroupPort=4446, timeToLive=32"/>

 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
 </cache>
 </ehcache>

21.1.14.2. Configuring for JGroups Replication

Configuraging JGroups replication is described in the Ehcache User Guide - Distributed Caching

with JGroups . A sample cache configuration is provided here:

./distributed_caching_with_rmi.html
./distributed_caching_with_jgroups.html
./distributed_caching_with_jgroups.html

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution.jgroups
 .JGroupsCacheManagerPeerProviderFactory"
 properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;ip_ttl=32;
 mcast_send_buf_size=150000;mcast_recv_buf_size=80000):
 PING(timeout=2000;num_initial_members=6):
 MERGE2(min_interval=5000;max_interval=10000):
 FD_SOCK:VERIFY_SUSPECT(timeout=1500):
 pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):
 UNICAST(timeout=5000):
 pbcast.STABLE(desired_avg_gossip=20000):
 FRAG:
 pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;
 shun=false;print_local_addr=true)"
 propertySeparator="::"
 />

 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
 replicateUpdates=true, replicateUpdatesViaCopy=false,
 replicateRemovals=true" />
 </cache>
 </ehcache>

21.1.14.3. Configuring for JMS Replication

Configuring JMS replication is described in the Ehcache User Guide - JMS Distributed Caching . A

sample cache configuration (for ActiveMQ) is provided here:

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>

./distributed_caching_with_rmi.html

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,
 providerURL=tcp://localhost:61616,
 topicConnectionFactoryBindingName=topicConnectionFactory,
 topicBindingName=ehcache"
 propertySeparator=","
 />
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
 properties="replicateAsynchronously=true,
 replicatePuts=true,
 replicateUpdates=true,
 replicateUpdatesViaCopy=true,
 replicateRemovals=true,
 asynchronousReplicationIntervalMillis=1000"
 propertySeparator=","/>
 </cache>
 </ehcache>

21.1.15. FAQ

21.1.15.1. Should I use the provider in the Hibernate distribution
or in Ehcache?

Since Hibernate 2.1, Hibernate has included an Ehcache CacheProvider . That provider is
periodically synced up with the provider in the Ehcache Core distribution. New features are
generally added in to the Ehcache Core provider and then the Hibernate one.

21.1.15.2. What is the relationship between the Hibernate and
Ehcache projects?

Gavin King and Greg Luck cooperated to create Ehcache and include it in Hibernate. Since 2009
Greg Luck has been a committer on the Hibernate project so as to ensure Ehcache remains a
first-class 2nd level cache for Hibernate.

21.1.15.3. Does Ehcache support the new Hibernate 3.3 2nd
level caching SPI?

Yes. Ehcache 2.0 supports this new API.

21.1.15.4. Does Ehcache support the transactional strategy?

Yes. It was introduced in Ehcache 2.1.

21.1.15.5. Is Ehcache Cluster Safe?

hibernate.org maintains a table listing the providers. While ehcache works as a distributed cache
for Hibernate, it is not listed as "Cluster Safe". What this means is that `Hibernate's lock and
unlock methods are not implemented. Changes in one node will be applied without locking. This
may or may not be a noticeable problem.

In Ehcache 1.7 when using Terracotta, this cannot happen as access to the clustered cache itself

is controlled with read locks and write locks.

In Ehcache 2.0 when using Terracotta, the lock and unlock methods tie-in to the underlying
clustered cache locks. We expect Ehcache 2.0 to be marked as cluster safe in new versions of the
Hibernate documentation.

21.1.15.6. How are Hibernate Entities keyed?

Hibernate identifies cached Entities via an object id. This is normally the primary key of a
database row.

21.1.15.7. Can you use Identity mode with the Terracotta Server
Array

You cannot use identity mode clustered cache with Hibernate. If the cache is exclusively used by
Hibernate we will convert identity mode caches to serialization mode. If the cache cannot be
determined to be exclusively used by Hibernate (i.e. generated from a singleton cache manager)
then an exception will be thrown indicating the misconfigured cache. Serialization mode is in any
case the default for Terracotta clustered caches.

21.1.15.8. I get org.hibernate.cache.ReadWriteCache - An item
was expired by the cache while it was locked error messages.
What is it?

Soft locks are implemented by replacing a value with a special type that marks the element as
locked, thus indicating to other threads to treat it differently to a normal element. This is used in
the Hibernate Read/Write strategy to force fall-through to the database during the two-phase
commit - since we don't know exactly what should be returned by the cache while the commit is in
process (but the db does).

If a soft-locked Element is evicted by the cache during the 2 phase commit, then once the 2 phase
commit completes the cache will fail to update (since the soft-locked Element was evicted) and the
cache entry will be reloaded from the database on the next read of that object. This is obviously
non-fatal (we're a cache failure here so it should not be a problem).

The only problem it really causes would I imagine be a small rise in db load.

So, in summary the Hibernate messages are not problematic.

The underlying cause is the probabilistic evictor can theoretically evict recently loaded items. This

-

-

-

evictor has been tuned over successive ehcache releases. As a result this warning will happen
most often in 1.6, less often in 1.7 and very rarely in 1.8.

You can also use the deterministic evictor to avoid this problem. Specify the java -
Dnet.sf.ehcache.use.classic.lru=true system property to turn on classic LRU which contains a
deterministic evictor.

21.1.15.9. I get java.lang.ClassCastException:
org.hibernate.cache.ReadWriteCache$Item incompatible with
net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcacheAc
cessStrategy$Lockable

This is the tell-tale error you get if you are:

using a Terracotta cluster with Ehcache

you have upgraded part of the cluster to use net.sf.ehcache.hibernate.EhCacheRegionFactory

but part of it is still using the old SPI of EhCacheProvider.

you are upgrading a Hibernate version Ensure you have changed all nodes and that you clear

any caches during the upgrade.

-

-

-

-

-

-

-

-

22. JDBC Caching

22.1. Hibernate Second Level Cache

IMPORTANT NOTICES - PLEASE READ

Users of Ehcache and/or Terracotta Ehcache for Hibernate prior to Ehcache 2.0 should read:

Upgrade Notes for Ehcache versions prior to 2.0

These instructions are for Hibernate 3. For older instructions on how to use Hibernate 2.1, please
refer to:

Guide for Version 1.1

22.1.1. Overview

Ehcache easily integrates with the Hibernate Object/Relational persistence and query service.

Gavin King, the maintainer of Hibernate, is also a committer to the Ehcache project. This ensures

Ehcache will remain a first class cache for Hibernate.

Configuring Ehcache for Hibernate is simple. The basic steps are:

Download and install Ehcache into your project

Configure Ehcache as a cache provider in your project's Hibernate configuration.

Configure second level caching in your project's Hibernate configuration.

Configure Hibernate caching for each entity, collection, or query you wish to cache.

Configure ehcache.xml as necessary for each entity, collection, or query configured for

caching.

For more information regarding cache configuration in Hibernate see the Hibernate

documentation.

22.1.2. Downloading and Installing Ehcache

The Hibernate provider is in the ehcache-core module. Download:

the latest version of the Ehcache core module here

For Terracotta clustering, download:

./hibernate-upgrade.html
http://ehcache.org/documentation/documentation-1_1.html
http://hibernate.org
http://www.hibernate.org/hib_docs/reference/en/html_single/
http://sourceforge.net/projects/ehcache/files/ehcache-core

- a full Ehcache distribution here

22.1.3. Maven

If you are a maven user, you'll need to configure or add the following repository to your build
(pom.xml):

 <repository>
 <id>terracotta-releases</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>false</enabled></snapshots>
 </repository>

Then, you will need to configure or add the the ehcache core module defined by the following
dependencies to your build (pom.xml):

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-core</artifactId>
 <version>2.3.1</version>
 </dependency>

If you are configuring Hibernate and Ehcache for Terracotta clustering, you will also need to add
the following dependencies to your build (pom.xml):

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-terracotta</artifactId>
 <version>2.3.1</version>
 </dependency>

 <dependency>
 <groupId>org.terracotta</groupId>
 <artifactId>terracotta-toolkit-1.1-runtime</artifactId>
 <version>2.0.0</version>
 </dependency>

22.1.4. Configure Ehcache as the Second Level Cache

http://sourceforge.net/projects/ehcache/files/ehcache

Provider

To configure Ehcache as a Hibernate second level cache, set the region factory property (for
Hibernate 3.3 and above) or the factory class property (Hibernate 3.2 and below) to one of the
following in the Hibernate configuration.

Hibernate configuration is configured either via hibernate.cfg.xml, hibernate.properties or Spring.
The format given is for hibernate.cfg.xml.

22.1.4.1. Hibernate 3.3 and higher

ATTENTION HIBERNATE 3.2 USERS: Make sure to note the change to BOTH the property name
and value.

Use:

 <property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

for instance creation, or

 <property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.SingletonEhCacheRegionFactory</property>

to force Hibernate to use a singleton of Ehcache CacheManager.

22.1.4.2. Hibernate 3.0 - 3.2

Use:

 <property name="hibernate.cache.provider_class">
 net.sf.ehcache.hibernate.EhCacheProvider</property>

for instance creation, or

 <property name="hibernate.cache.provider_class">
 net.sf.ehcache.hibernate.SingletonEhCacheProvider</property>

to force Hibernate to use a singleton Ehcache CacheManager.

22.1.5. Enable Second Level Cache and Query Cache
Settings

In addition to configuring the second level cache provider setting, you will need to turn on the
second level cache (by default it is configured to off - 'false' - by Hibernate). This is done by setting
the following property in your hibernate config:

 <property name="hibernate.cache.use_second_level_cache">true</property>

You may also want to turn on the Hibernate query cache. This is done by setting the following
property in your hibernate config:

 <property name="hibernate.cache.use_query_cache">true</property>

22.1.6. Optional

The following settings or actions are optional.

22.1.6.1. Ehcache Configuration Resource Name

The configurationResourceName property is used to specify the location of the ehcache
configuration file to be used with the given Hibernate instance and cache provider/region-factory.

The resource is searched for in the root of the classpath. It is used to support multiple
CacheManagers in the same VM. It tells Hibernate which configuration to use. An example might
be "ehcache-2.xml".

When using multiple Hibernate instances it is therefore recommended to use multiple non-
singleton providers or region factories, each with a dedicated Ehcache configuration resource.

 net.sf.ehcache.configurationResourceName=/name_of_ehcache.xml

22.1.6.2. Set the Hibernate cache provider programmatically

The provider can also be set programmatically in Hibernate by adding necessary Hibernate
property settings to the configuration before creating the SessionFactory:

 Configuration.setProperty("hibernate.cache.region.factory_class",
 "net.sf.ehcache.hibernate.EhCacheRegionFactory")

22.1.7. Putting it all together

If you are using Hibernate 3.3 and enabling both second level caching and query caching, then
your hibernate config file should contain the following:

 <property name="hibernate.cache.use_second_level_cache">true</property>
 <property name="hibernate.cache.use_query_cache">true</property>
 <property
name="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFacto
ry</property>

An equivalent Spring configuration file would contain:

 <prop key="hibernate.cache.use_second_level_cache">true</prop>
 <prop key="hibernate.cache.use_query_cache">true</prop>
 <prop
key="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFactory
</prop>

22.1.8. Configure Hibernate Entities to use Second Level

Caching

In addition to configuring the Hibernate second level cache provider, Hibernate must also be told
to enable caching for entities, collections, and queries.

For example, to enable cache entries for the domain object
com.somecompany.someproject.domain.Country there would be a mapping file something like the
following:

 <hibernate-mapping>

 <class
 name="com.somecompany.someproject.domain.Country"
 table="ut_Countries"
 dynamic-update="false"
 dynamic-insert="false"
 >
 ...
 </class>
 </hibernate-mapping>

To enable caching, add the following element.

 <cache usage="read-write|nonstrict-read-write|read-only" />

e.g.

 <hibernate-mapping>

 <class
 name="com.somecompany.someproject.domain.Country"
 table="ut_Countries"
 dynamic-update="false"
 dynamic-insert="false"
 >
 <cache usage="read-write" />
 ...
 </class>
 </hibernate-mapping>

This can also be achieved using the @Cache annotation, e.g.

 @Entity
 @Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
 public class Country {
 ...
 }

22.1.8.1. Definition of the different cache strategies

22.1.8.1.1. read-only

Caches data that is never updated.

22.1.8.1.2. nonstrict-read-write

Caches data that is sometimes updated without ever locking the cache. If concurrent access to an
item is possible, this concurrency strategy makes no guarantee that the item returned from the
cache is the latest version available in the database. Configure your cache timeout accordingly!

22.1.8.1.3. read-write

Caches data that is sometimes updated while maintaining the semantics of "read committed"
isolation level. If the database is set to "repeatable read", this concurrency strategy almost
maintains the semantics. Repeatable read isolation is compromised in the case of concurrent
writes.

22.1.9. Configure ehcache.xml

Because ehcache.xml has a defaultCache, caches will always be created when required by
Hibernate. However more control can be exerted by specifying a configuration per cache, based
on its name.

In particular, because Hibernate caches are populated from databases, there is potential for them
to get very large. This can be controlled by capping their maxElementsInMemory and specifying
whether to overflowToDisk beyond that.

Hibernate uses a specific convention for the naming of caches of Domain Objects, Collections,
and Queries.

22.1.9.1. Domain Objects

Hibernate creates caches named after the fully qualified name of Domain Objects.

So, for example to create a cache for com.somecompany.someproject.domain.Country create a
cache configuration entry similar to the following in ehcache.xml.

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
 </ehcache>

22.1.9.2. Hibernate

CacheConcurrencyStrategy read-write, nonstrict-read-write and read-only policies apply to
Domain Objects.

22.1.9.3. Collections

Hibernate creates collection caches named after the fully qualified name of the Domain Object
followed by "." followed by the collection field name.

For example, a Country domain object has a set of advancedSearchFacilities. The Hibernate
doclet for the accessor looks like:

 /**
 * Returns the advanced search facilities that should appear for this country.
 * @hibernate.set cascade="all" inverse="true"
 * @hibernate.collection-key column="COUNTRY_ID"
 * @hibernate.collection-one-to-many
class="com.wotif.jaguar.domain.AdvancedSearchFacility"
 * @hibernate.cache usage="read-write"
 */
 public Set getAdvancedSearchFacilities() {

 return advancedSearchFacilities;
 }

You need an additional cache configured for the set. The ehcache.xml configuration looks like:

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <cache name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="50"
 eternal="false"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
 <cache
 name="com.somecompany.someproject.domain.Country.advancedSearchFacilities"
 maxElementsInMemory="450"
 eternal="false"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
 </ehcache>

22.1.9.4. Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only policies apply to Domain Object collections.

22.1.9.5. Queries

Hibernate allows the caching of query results using two caches.

"net.sf.hibernate.cache.StandardQueryCache" and
"net.sf.hibernate.cache.UpdateTimestampsCache" in versions 2.1 to 3.1 and
"org.hibernate.cache.StandardQueryCache" and "org.hibernate.cache.UpdateTimestampsCache"
in version 3.2. are always used.

22.1.9.6. StandardQueryCache

This cache is used if you use a query cache without setting a name. A typical ehcache.xml
configuration is:

 <cache
 name="org.hibernate.cache.StandardQueryCache"
 maxElementsInMemory="5"
 eternal="false"
 timeToLiveSeconds="120"
 overflowToDisk="true"/>

22.1.9.7. UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It is important that the
cache timeout of the underlying cache implementation be set to a higher value than the timeouts
of any of the query caches. In fact, it is recommend that the the underlying cache not be
configured for expiry at all.

A typical ehcache.xml configuration is:

 <cache
 name="org.hibernate.cache.UpdateTimestampsCache"
 maxElementsInMemory="5000"
 eternal="true"
 overflowToDisk="true"/>

22.1.9.8. Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using
Query.setCacheRegion(String name). The name of the cache in ehcache.xml is then the name
given in that method. The name can be whatever you want, but by convention you should use
"query." followed by a descriptive name.

E.g.

 <cache name="query.AdministrativeAreasPerCountry"
 maxElementsInMemory="5"
 eternal="false"
 timeToLiveSeconds="86400"
 overflowToDisk="true"/>

22.1.9.9. Using Query Caches

For example, let's say we have a common query running against the Country Domain.

Code to use a query cache follows:

 public List getStreetTypes(final Country country) throws HibernateException {
 final Session session = createSession();

 try {
 final Query query = session.createQuery(

 "select st.id, st.name"
 + " from StreetType st "
 + " where st.country.id = :countryId "
 + " order by st.sortOrder desc, st.name");
 query.setLong("countryId", country.getId().longValue());
 query.setCacheable(true);
 query.setCacheRegion("query.StreetTypes");
 return query.list();
 } finally {
 session.close();
 }
 }

The query.setCacheable(true) line caches the query.

The query.setCacheRegion("query.StreetTypes") line sets the name of the Query Cache.

Alex Miller has a good article on the query cache here .

22.1.9.10. Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-only policies apply to Domain Objects. Cache
policies are not configurable for query cache. They act like a non-locking read only cache.

22.1.10. Demo Apps

We have demo applications showing how to use the Hibernate 3.3 CacheRegionFactory.

22.1.10.1. Hibernate Tutorial

Check out from https://svn.terracotta.org/repo/forge/projects/hibernate-tutorial-web/trunk

terracotta_community_login

22.1.10.2. Examinator

Examinator is our complete application that shows many aspects of caching, all using the
Terracotta Server Array.

Check out from https://svn.terracotta.org/svn/forge/projects/exam/ terracotta_community_login

22.1.11. Performance Tips

22.1.11.1. Session.load

Session.load will always try to use the cache.

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
https://svn.terracotta.org/repo/forge/projects/hibernate-tutorial-web/trunk
https://svn.terracotta.org/svn/forge/projects/exam/

-

-

-

-

22.1.11.2. Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use the cache for
any associated objects. Session.find does however cause the cache to be populated.

Query.find works in exactly the same way.

Use these where the chance of getting a cache hit is low.

22.1.11.3. Session.iterate and Query.iterate

Session.iterate always uses the cache for the primary object and any associated objects.

Query.iterate works in exactly the same way.

Use these where the chance of getting a cache hit is high.

22.1.12. How to Scale

Configuring each Hibernate instance with a standalone ehcache will dramatically improve
performance. However most production applications use multiple application instances for
redundancy and for scalability. Ideally applications are horizontally scalable, where adding more
application instances linearly improves throughput.

With an application deployed on multiple nodes, using standalone Ehcache means that each
instance holds its own data. On a cache miss on any node, Hibernate will read from the database.
This generally results in N reads where N is the number of nodes in the cluster. As each new node
gets added database workload goes up. Also, when data is written in one node, the other nodes
are unaware of the data write, and thus subsequent reads of this data on other nodes will result in
stale reads.

The solution is to turn on distributed caching or replicated caching .

Ehcache comes with native cache distribution using the following mechanism:

Terracotta

Ehcache supports the following methods of cache replication:

RMI

JGroups

JMS replication

./distributed_caching.html

-

-

-

-

-

-

Selection of the distributed cache or replication mechanism may be made or changed at any time.
There are no changes to the application. Only changes to ehcache.xml file are required. This
allows an application to easily scale as it grows without expensive re-architecting.

22.1.13. Configuring Ehcache for distributed caching using
Terracotta

Ehcache provides built-in support for Terracotta distributed caching. The following are the key
considerations when selecting this option:

Simple snap-in configuration with one line of configuration

Simple to scale up to as much performance as you need -- no application changes required

Wealth of "CAP" configuration options allow you to configure your cache for whatever it needs -

fast, coherent, asynchronous updates, dirty reads etc.

The fastest coherent option for caches with reads and writes

Store as much data as you want - 20GB -> 1TB

Commercial products and support available from http://www.terracotta.org

Configuring Terracotta replication is described in the Terracotta Documentation . A sample cache

configuration is provided here:

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <terracottaConfig url="localhost:9510" />

 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <terracotta/>
 </cache>
 </ehcache>

22.1.14. Configuring Ehcache replication using RMI,
JGroups, or JMS

http://www.terracotta.org
http://www.terracotta.org/documentation/ga/distributed-hibernate-install.html

-

-

-

Ehcache can use JMS, JGroups or RMI as a cache replication scheme. The following are the key
considerations when selecting this option:

No locking is used during replication, so cached data may be stale. Your application should be

able to deal with stale data.

session.refresh() should be used to check the cache against the database before performing a

write that must be correct. This can have a performance inmpact on the database.

Each node in the cluster stores all data, thus the cache size is limited to memory size, or disk if

disk overflow is selected.

22.1.14.1. Configuring for RMI Replication

RMI configuration is described in the Ehcache User Guide - RMI Distributed Caching . A sample

cache configuration (using automatic discovery) is provided here:

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

 properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
 multicastGroupPort=4446, timeToLive=32"/>

 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
 </cache>
 </ehcache>

22.1.14.2. Configuring for JGroups Replication

Configuraging JGroups replication is described in the Ehcache User Guide - Distributed Caching

with JGroups . A sample cache configuration is provided here:

./distributed_caching_with_rmi.html
./distributed_caching_with_jgroups.html
./distributed_caching_with_jgroups.html

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>
 <cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution.jgroups
 .JGroupsCacheManagerPeerProviderFactory"
 properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;ip_ttl=32;
 mcast_send_buf_size=150000;mcast_recv_buf_size=80000):
 PING(timeout=2000;num_initial_members=6):
 MERGE2(min_interval=5000;max_interval=10000):
 FD_SOCK:VERIFY_SUSPECT(timeout=1500):
 pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):
 UNICAST(timeout=5000):
 pbcast.STABLE(desired_avg_gossip=20000):
 FRAG:
 pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;
 shun=false;print_local_addr=true)"
 propertySeparator="::"
 />

 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
 replicateUpdates=true, replicateUpdatesViaCopy=false,
 replicateRemovals=true" />
 </cache>
 </ehcache>

22.1.14.3. Configuring for JMS Replication

Configuring JMS replication is described in the Ehcache User Guide - JMS Distributed Caching . A

sample cache configuration (for ActiveMQ) is provided here:

 <?xml version="1.0" encoding="UTF-8"?>

 <ehcache>

./distributed_caching_with_rmi.html

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,
 providerURL=tcp://localhost:61616,
 topicConnectionFactoryBindingName=topicConnectionFactory,
 topicBindingName=ehcache"
 propertySeparator=","
 />
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
 properties="replicateAsynchronously=true,
 replicatePuts=true,
 replicateUpdates=true,
 replicateUpdatesViaCopy=true,
 replicateRemovals=true,
 asynchronousReplicationIntervalMillis=1000"
 propertySeparator=","/>
 </cache>
 </ehcache>

22.1.15. FAQ

22.1.15.1. Should I use the provider in the Hibernate distribution
or in Ehcache?

Since Hibernate 2.1, Hibernate has included an Ehcache CacheProvider . That provider is
periodically synced up with the provider in the Ehcache Core distribution. New features are
generally added in to the Ehcache Core provider and then the Hibernate one.

22.1.15.2. What is the relationship between the Hibernate and
Ehcache projects?

Gavin King and Greg Luck cooperated to create Ehcache and include it in Hibernate. Since 2009
Greg Luck has been a committer on the Hibernate project so as to ensure Ehcache remains a
first-class 2nd level cache for Hibernate.

22.1.15.3. Does Ehcache support the new Hibernate 3.3 2nd
level caching SPI?

Yes. Ehcache 2.0 supports this new API.

22.1.15.4. Does Ehcache support the transactional strategy?

Yes. It was introduced in Ehcache 2.1.

22.1.15.5. Is Ehcache Cluster Safe?

hibernate.org maintains a table listing the providers. While ehcache works as a distributed cache
for Hibernate, it is not listed as "Cluster Safe". What this means is that `Hibernate's lock and
unlock methods are not implemented. Changes in one node will be applied without locking. This
may or may not be a noticeable problem.

In Ehcache 1.7 when using Terracotta, this cannot happen as access to the clustered cache itself

is controlled with read locks and write locks.

In Ehcache 2.0 when using Terracotta, the lock and unlock methods tie-in to the underlying
clustered cache locks. We expect Ehcache 2.0 to be marked as cluster safe in new versions of the
Hibernate documentation.

22.1.15.6. How are Hibernate Entities keyed?

Hibernate identifies cached Entities via an object id. This is normally the primary key of a
database row.

22.1.15.7. Can you use Identity mode with the Terracotta Server
Array

You cannot use identity mode clustered cache with Hibernate. If the cache is exclusively used by
Hibernate we will convert identity mode caches to serialization mode. If the cache cannot be
determined to be exclusively used by Hibernate (i.e. generated from a singleton cache manager)
then an exception will be thrown indicating the misconfigured cache. Serialization mode is in any
case the default for Terracotta clustered caches.

22.1.15.8. I get org.hibernate.cache.ReadWriteCache - An item
was expired by the cache while it was locked error messages.
What is it?

Soft locks are implemented by replacing a value with a special type that marks the element as
locked, thus indicating to other threads to treat it differently to a normal element. This is used in
the Hibernate Read/Write strategy to force fall-through to the database during the two-phase
commit - since we don't know exactly what should be returned by the cache while the commit is in
process (but the db does).

If a soft-locked Element is evicted by the cache during the 2 phase commit, then once the 2 phase
commit completes the cache will fail to update (since the soft-locked Element was evicted) and the
cache entry will be reloaded from the database on the next read of that object. This is obviously
non-fatal (we're a cache failure here so it should not be a problem).

The only problem it really causes would I imagine be a small rise in db load.

So, in summary the Hibernate messages are not problematic.

The underlying cause is the probabilistic evictor can theoretically evict recently loaded items. This

-

-

-

evictor has been tuned over successive ehcache releases. As a result this warning will happen
most often in 1.6, less often in 1.7 and very rarely in 1.8.

You can also use the deterministic evictor to avoid this problem. Specify the java -
Dnet.sf.ehcache.use.classic.lru=true system property to turn on classic LRU which contains a
deterministic evictor.

22.1.15.9. I get java.lang.ClassCastException:
org.hibernate.cache.ReadWriteCache$Item incompatible with
net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcacheAc
cessStrategy$Lockable

This is the tell-tale error you get if you are:

using a Terracotta cluster with Ehcache

you have upgraded part of the cluster to use net.sf.ehcache.hibernate.EhCacheRegionFactory

but part of it is still using the old SPI of EhCacheProvider.

you are upgrading a Hibernate version Ensure you have changed all nodes and that you clear

any caches during the upgrade.

-

-

23. Shutting down Ehcache

23.1. Shutting Down Ehcache

If you are using persistent disk stores, or distributed caching, care should be taken to shutdown
ehcache.

Note that Hibernate automatically shuts down its Ehcache CacheManager .

The recommended way to shutdown the Ehcache is:

to call CacheManager.shutdown()

in a web app, register the Ehcache ShutdownListener Though not recommended, Ehcache also

lets you register a JVM shutdown hook.

23.1.1. ServletContextListener

Ehcache proivdes a ServletContextListener that shutsdown CacheManager. Use this when you
want to shutdown Ehcache automatically when the web application is shutdown.

To receive notification events, this class must be configured in the deployment descriptor for the
web application.

To do so, add the following to web.xml in your web application:

 <listener>
<listener-class>net.sf.ehcache.constructs.web.ShutdownListener</listener-class>
 </listener>

23.1.2. The Shutdown Hook

Ehcache CacheManager can optionally register a shutdown hook.

To do so, set the system property net.sf.ehcache.enableShutdownHook=true .

This will shutdown the CacheManager when it detects the Virtual Machine shutting down and it is
not already shut down.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

23.1.2.1. When to use the shutdown hook

Use the shutdown hook where:

you need guaranteed orderly shutdown, when for example using persistent disk stores, or

distributed caching.

CacheManager is not already being shutdown by a framework you are using or by your

application. Having said that, shutdown hooks are inherently dangerous. The JVM is shutting

down, so sometimes things that can never be null are. Ehcache guards against as many of

these as it can, but the shutdown hook should be the last option to use.

23.1.2.2. What the shutdown hook does

The shutdown hook is on CacheManager. It simply calls the shutdown method.

The sequence of events is:

call dispose for each registered CacheManager event listener

call dispose for each Cache. Each Cache will:

shutdown the MemoryStore. The MemoryStore will flush to the DiskStore

shutdown the DiskStore. If the DiskStore is persistent, it will write the entries and index

to disk.

shutdown each registered CacheEventListener

set the Cache status to shutdown, preventing any further operations on it.

set the CacheManager status to shutdown, preventing any further operations on it

23.1.2.3. When a shutdown hook will run, and when it will not

The shutdown hook runs when:

a program exists normally. e.g. System.exit() is called, or the last non-daemon thread exits

the Virtual Machine is terminated. e.g. CTRL-C. This corresponds to kill -SIGTERM pid or kill -

15 pid on Unix systems.

The shutdown hook will not run when:

the Virtual Machine aborts

A SIGKILL signal is sent to the Virtual Machine process on Unix systems. e.g. kill -SIGKILL pid

or kill -9 pid

A TerminateProcess call is sent to the process on Windows systems.

23.1.3. Dirty Shutdown

If Ehcache is shutdown dirty then any persistent disk stores will be corrupted. They will be deleted,
with a log message, on the next startup.

Replications waiting to happen to other nodes in a distributed cache will also not get written.

-

-

24. Web Caching

24.1. Web Caching

Ehcache provides a set of general purpose web caching filters in the ehcache-web module.

Using these can make an amazing difference to web application performance. A typical server can
deliver 5000+ pages per second from the page cache. With built-in gzipping, storage and network
transmission is highly efficient. Cache pages and fragments make excellent candidates for
DiskStore storage, because the object graphs are simple and the largest part is already a byte[].

24.1.1. SimplePageCachingFilter

This is a simple caching filter suitable for caching compressable HTTP responses such as HTML,
XML or JSON.

It uses a Singleton CacheManager created with the default factory method. Override to use a
different CacheManager

It is suitable for:

complete responses i.e. not fragments.

A content type suitable for gzipping. e.g. text or text/html For fragments see the

SimplePageFragmentCachingFilter.

24.1.2. Keys

Pages are cached based on their key. The key for this cache is the URI followed by the query
string. An example is /admin/SomePage.jsp?id=1234&name=Beagle .

This key technique is suitable for a wide range of uses. It is independent of hostname and port
number, so will work well in situations where there are multiple domains which get the same
content, or where users access based on different port numbers.

A problem can occur with tracking software, where unique ids are inserted into request query
strings. Because each request generates a unique key, there will never be a cache hit. For these
situations it is better to parse the request parameters and override
calculateKey(javax.servlet.http.HttpServletRequest) with an implementation that takes account of
only the significant ones.

-

-

24.1.3. Configuring the cacheName

A cache entry in ehcache.xml should be configured with the name of the filter.

Names can be set using the init-param cacheName , or by sub-classing this class and overriding
the name.

24.1.4. Concurrent Cache Misses

A cache miss will cause the filter chain, upstream of the caching filter to be processed. To avoid
threads requesting the same key to do useless duplicate work, these threads block behind the first
thread.

The thead timeout can be set to fail after a certain wait by setting the init-param
blockingTimeoutMillis . By default threads wait indefinitely. In the event upstream processing
never returns, eventually the web server may get overwhelmed with connections it has not
responded to. By setting a timeout, the waiting threads will only block for the set time, and then
throw a @link net.sf.ehcache.constructs.blocking.LockTimeoutException . Under either scenario

an upstream failure will still cause a failure.

24.1.5. Gzipping

Significant network efficiencies, and page loading speedups, can be gained by gzipping
responses.

Whether a response can be gzipped depends on:

Whether the user agent can accept GZIP encoding. This feature is part of HTTP1.1. If a

browser accepts GZIP encoding it will advertise this by including in its HTTP header: All

common browsers except IE 5.2 on Macintosh are capable of accepting gzip encoding. Most

search engine robots do not accept gzip encoding.

Whether the user agent has advertised its acceptance of gzip encoding. This is on a per

request basis. If they will accept a gzip response to their request they must include the

following in the HTTP request header:

 Accept-Encoding: gzip

Responses are automatically gzipped and stored that way in the cache. For requests which do

not accept gzip encoding the page is retrieved from the cache, ungzipped and returned to the

user agent. The ungzipping is high performance.

-

-

-

24.1.6. Caching Headers

The SimpleCachingHeadersPageCachingFilter extends SimplePageCachingFilter to provide the
HTTP cache headers: ETag, Last-Modified and Expires. It supports conditional GET.

Because browsers and other HTTP clients have the expiry information returned in the response
headers, they do not even need to request the page again. Even once the local browser copy has
expired, the browser will do a conditional GET.

So why would you ever want to use SimplePageCachingFilter, which does not set these headers?
The answer is that in some caching scenarios you may wish to remove a page before its natural
expiry. Consider a scenario where a web page shows dynamic data. Under Ehcache the Element
can be removed at any time. However if a browser is holding expiry information, those browsers
will have to wait until the expiry time before getting updated. The caching in this scenario is more
about defraying server load rather than minimising browser calls.

24.1.7. Init-Params

The following init-params are supported:

cacheName - the name in ehcache.xml used by the filter.

blockingTimeoutMillis - the time, in milliseconds, to wait for the filter chain to return with a

response on a cache miss. This is useful to fail fast in the event of an infrastructure failure.

varyHeader - set to true to set Vary:Accept-Encoding in the response when doing Gzip. This

header is needed to support HTTP proxies however it is off by default.

 <init-param>
 <param-name>varyHeader</param-name>
 <param-value>true</param-value>
 </init-param>

24.1.8. Re-entrance

Care should be taken not to define a filter chain such that the same CachingFilter class is
reentered. The CachingFilter uses the BlockingCache . It blocks until the thread which did a get
which results in a null does a put. If reentry happens a second get happens before the first put.
The second get could wait indefinitely. This situation is monitored and if it happens, an
IllegalStateException will be thrown.

24.1.9. SimplePageFragmentCachingFilter

The SimplePageFragmentCachingFilter does everyting that SimplePageCachingFilter does,
except it never gzips, so the fragments can be combined. There is variant of this filter which sets
browser caching headers, because that is only applicable to the entire page.

24.1.10. Example web.xml configuration

 <web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd "
 version="2.5">

 <filter>
 <filter-name>CachePage1CachingFilter</filter-name>
 <filter-class>net.sf.ehcache.constructs.web.filter.SimplePageCachingFilter
 </filter-class>
 <init-param>
 <param-name>suppressStackTraces</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>cacheName</param-name>
 <param-value>CachePage1CachingFilter</param-value>
 </init-param>
 </filter>

 <filter>
 <filter-name>SimplePageFragmentCachingFilter</filter-name>
 <filter-class>net.sf.ehcache.constructs.web.filter.SimplePageFragmentCachingFilter
 </filter-class>
 <init-param>
 <param-name>suppressStackTraces</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>cacheName</param-name>
 <param-value>SimplePageFragmentCachingFilter</param-value>
 </init-param>
 </filter>

 <filter>
 <filter-name>SimpleCachingHeadersPageCachingFilter</filter-name>
 <filter-class>net.sf.ehcache.constructs.web.filter.SimpleCachingHeadersPageCachingFilter
 </filter-class>
 <init-param>
 <param-name>suppressStackTraces</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>cacheName</param-name>
 <param-value>CachedPage2Cache</param-value>
 </init-param>

 </filter>

 <!-- This is a filter chain. They are executed in the order below.
 Do not change the order. -->
 <filter-mapping>
 <filter-name>CachePage1CachingFilter</filter-name>
 <url-pattern>/CachedPage.jsp</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 </filter-mapping>

 <filter-mapping>
 <filter-name>SimplePageFragmentCachingFilter</filter-name>
 <url-pattern>/include/Footer.jsp</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>SimplePageFragmentCachingFilter</filter-name>
 <url-pattern>/fragment/CachedFragment.jsp</url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name>SimpleCachingHeadersPageCachingFilter</filter-name>
 <url-pattern>/CachedPage2.jsp</url-pattern>
 </filter-mapping>

An ehcache.xml configuration file, matching the above would then be:

 <Ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../../main/config/ehcache.xsd">

 <diskStore path="java.io.tmpdir"/>

 <defaultCache
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="5"
 timeToLiveSeconds="10"
 overflowToDisk="true"
 />

 <!-- Page and Page Fragment Caches -->

 <cache name="CachePage1CachingFilter"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="10000"
 timeToLiveSeconds="10000"
 overflowToDisk="true">
 </cache>

 <cache name="CachedPage2Cache"
 maxElementsInMemory="10"
 eternal="false"
 timeToLiveSeconds="3600"
 overflowToDisk="true">
 </cache>

 <cache name="SimplePageFragmentCachingFilter"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="10000"
 timeToLiveSeconds="10000"
 overflowToDisk="true">
 </cache>

 <cache name="SimpleCachingHeadersTimeoutPageCachingFilter"
 maxElementsInMemory="10"

 eternal="false"
 timeToIdleSeconds="10000"
 timeToLiveSeconds="10000"
 overflowToDisk="true">
 </cache>

 </ehcache>

-

-

24.1.11. CachingFilter Exceptions

Additional exception types have been added to the Caching Filter.

24.1.11.1. FilterNonReentrantException

Thrown when it is detected that a caching filter's doFilter method is reentered by the same thread.
Reentrant calls will block indefinitely because the first request has not yet unblocked the cache.
Nasty.

24.1.11.2. AlreadyGzippedException

The web package performs gzipping operations. One cause of problems on web browsers is
getting content that is double or triple gzipped. They will either get gobblydeegook or a blank
page. This exception is thrown when a gzip is attempted on already gzipped content.

24.1.11.3. ResponseHeadersNotModifiableException

A gzip encoding header needs to be added for gzipped content. The
HttpServletResponse#setHeader() method is used for that purpose. If the header had already
been set, the new value normally overwrites the previous one. In some cases according to the
servlet specification, setHeader silently fails. Two scenarios where this happens are:

The response is committed.

RequestDispatcher#include method caused the request.

-

-

25. Distributed Caching

25.1. Distributed and Replicated Caching

Many production applications are deployed in clusters of multiple instances for availability and
scalability. However, without a distributed or replicated cache, application clusters exhibit a
number of undesirable behaviors, such as:

Cache Drift --if each application instance maintains its own cache, updates made to one cache

will not appear in the other instances. This also happens to web session data. A distributed or

replicated cache ensures that all of the cache instances are kept in sync with each other.

Database Bottlenecks --In a single-instance application, a cache effectively shields a database

from the overhead of redundant queries. However, in a distributed application environment,

each instance much load and keep its own cache fresh. The overhead of loading and

refreshing multiple caches leads to database bottlenecks as more application instances are

added. A distributed or replicated cache eliminates the per-instance overhead of loading and

refreshing multiple caches from a database.

25.1.1. Distributed Caching

Ehcache comes bundled with a distributed caching mechanism using Terracotta that enables
multiple CacheManagers and their caches in multiple JVMs to share data with each other. Adding
distributed caching to Ehcache takes only two lines of configuration.

Using Terracotta for Ehcache distributed caching is the recommended method of operating
Ehcache in a distributed or scaled-out application environment. It provides the highest level of
performance, availability, and scalability. As the maintainers of Ehcache, the Terracotta
development team has invested million of hours developing Ehcache and its distributed cache
capabilities.

To get started, see the Distributed Caching With Terracotta chapter .

25.1.2. Replicated Caching

In addition to the built-in distributed caching, Ehcache has a pluggable cache replication scheme
which enables the addition of cache replication mechanisms.

The following additional replicated caching mechanisms are available:

./distributed_caching_with_terracotta.html

-

-

-

-

-

-

-

RMI

JGroups

JMS

Cache Server

Each of the is covered in its own chapter.

One solution is to replicate data between the caches to keep them consistent, or coherent. Typical
operations which Applicable operations include:

put

update (put which overwrites an existing entry)

remove

Update supports updateViaCopy or updateViaInvalidate. The latter sends the a remove message
out to the cache cluster, so that other caches remove the Element, thus preserving coherency. It
is typically a lower cost option than a copy.

25.1.2.1. Using a Cache Server

Ehcache 1.5 supports the Ehcache Cache Server.

To achieve shared data, all JVMs read to and write from a Cache Server, which runs it in its own
JVM.

To achieve redundancy, the Ehcache inside the Cache Server can be set up in its own cluster.

This technique will be expanded upon in Ehcache 1.6.

25.1.2.2. Notification Strategies

The best way of notifying of put and update depends on the nature of the cache.

If the Element is not available anywhere else then the Element itself should form the payload of
the notification. An example is a cached web page. This notification strategy is called copy.

Where the cached data is available in a database, there are two choices. Copy as before, or
invalidate the data. By invalidating the data, the application tied to the other cache instance will be
forced to refresh its cache from the database, preserving cache coherency. Only the Element key
needs to be passed over the network.

Ehcache supports notification through copy and invalidate, selectable per cache.

25.1.2.3. Potential Issues with Replicated Caching

25.1.2.3.1. Potential for Inconsistent Data

Timing scenarios, race conditions, delivery, reliability constraints and concurrent updates to the
same cached data can cause inconsistency (and thus a lack of coherency) across the cache
instances.

This potential exists within the Ehcache implementation. These issues are the same as what is
seen when two completely separate systems are sharing a database; a common scenario.

Whether data inconsistency is a problem depends on the data and how it is used. For those times
when it is important, Ehcache provides for synchronous delivery of puts and updates via
invalidation. These are discussed below:

25.1.2.3.1.1. Synchronous Delivery

Delivery can be specified to be synchronous or asynchronous. Asynchronous delivery gives faster
returns to operations on the local cache and is usually preferred. Synchronous delivery adds time
to the local operation, however delivery of an update to all peers in the cluster happens before the
cache operation returns.

25.1.2.3.1.2. Put and Update via Invalidation

The default is to update other caches by copying the new value to them. If the
replicatePutsViaCopy property is set to false in the replication configuration, puts are made by
removing the element in any other cache peers. If the replicateUpdatesViaCopy property is set to
false in the replication configuration, updates are made by removing the element in any other
cache peers.

This forces the applications using the cache peers to return to a canonical source for the data.

A similar effect can be obtained by setting the element TTL to a low value such as a second.

Note that these features impact cache performance and should not be used where the main
purpose of a cache is performance boosting over coherency.

25.1.2.3.2. Use of Time To Idle

Time To Idle is inconsistent with replicated caching. Time-to-idle makes some entries live longer
on some nodes than in others because of cache usage patterns. However, the cache entry "last
touched" timestamp is not replicated across the distributed cache.

Do not use Time To Idle with distributed caching, unless you do not care about inconsistent data
across nodes.

26. Distributed Caching with Terracotta Server

Arrays

26.1. Distributed Caching With Terracotta

Terracotta has been integrated with Ehcache since Ehcache 1.4.

From version 1.7 Ehcache has been seamlessly integrated with Terracotta 3.1.1 and takes just a
few lines of config in ehcache.xml to get up and running.

In Ehcache 2.0 additional configuration options have been added which provide finer grained
control.

Distribution with the Terracotta Server Array ("TSA") is the preferred distribution mechanism. It
provides coherency, JTA, HA, scale and high performance. It is available as open source or with
additional features in the Ehcache EX and FX product editions.

26.1.1. Architecture

Ehcache distributed with TSA is different to the other distribution mechanisms. They all replicate
data, with 100% of data held in each node. Scaling is thus limited to how much can be comfortably
held in each node. Replication is also not JTA transactional or guaranteed coherent.

With TSA the data is split between an Ehcache node, which is the L1 Cache and the TSA, which
is the L2 Cache. As with the other replication mechanisms the L1 can hold as much data as is
comfortable. All the rest lies in the L2. In Ehcache EX, each CacheManager can have only one
logical TSA (there can be multiple redundant TSAs for HA). In Ehcache FX, the TSAs are striped
for unlimited scale.

Data is held in-process in the Ehcache L1 for rapid access, however the data is also always in the
TSA. So the cache is unaffected by termination of an Ehcache node. When the node comes back
up it reconnects to the TSA L2 and as it uses data fills its local L1. There is thus no notion of a
bootstrap as there is with the other distribution mechanisms.

26.1.2. Worked Example

As this example shows, running Ehcache with Terracotta clustering is no different from normal

programmatic use.

 import net.sf.ehcache.Cache;
 import net.sf.ehcache.CacheManager;
 import net.sf.ehcache.Element;

 public class TerracottaExample {
 CacheManager cacheManager = new CacheManager();

 public TerracottaExample() {
 Cache cache = cacheManager.getCache("sampleTerracottaCache");
 int cacheSize = cache.getKeys().size();
 cache.put(new Element("" + cacheSize, cacheSize));
 for (Object key : cache.getKeys()) {
 System.out.println("Key:" + key);
 }
 }

 public static void main(String[] args) throws Exception {
 new TerracottaExample();
 }
 }

The above example looks for sampleTerracottaCache.

In ehcache.xml, we need to uncomment or add the following line:

 <terracottaConfig url="localhost:9510"/>

which tells Ehcache to load the Terracotta server config from localhost port 9510. Note: You must
have a Terracotta 3.1.1 or higher server running locally for this example.

Next we want to enable Terracotta clustering for the cache named sampleTerracottaCache .
Uncomment or add the following in ehcache.xml.

 <cache name="sampleTerracottaCache"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="1800"
 overflowToDisk="false">
 <terracotta/>
 </cache>

-

-

-

-

-

-

That's it!

26.1.3. Terracotta Configuration

Terracotta configuration in ehcache.xml is in three parts:

CacheManager Configuration

Terracotta Server Configuration

Enabling Terracotta clustering per cache

26.1.3.1. CacheManager Configuration

The attributes of ehcache are:

name an optional name for the CacheManager. The name is optional and primarily used for

documentation or to distinguish Terracotta clustered cache state. With Terracotta clustered

caches, a combination of CacheManager name and cache name uniquely identify a particular

cache store in the Terracotta clustered memory. The name will show up in the Developer

Consoles.

updateCheck an optional boolean flag specifying whether this CacheManager should check for

new versions of Ehcache over the Internet. If not specified, updateCheck="true".

monitoring an optional setting that determines whether the CacheManager should automatically

register the SampledCacheMBean with the system MBean server. Currently, this monitoring is

only useful when using Terracotta and thus the "autodetect" value will detect the presence of

Terracotta and register the MBean. Other allowed values are "on" and "off". The default is

"autodetect".

 <Ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
 updateCheck="true" monitoring="autodetect">

26.1.3.2. Programmatic Configuration

CacheManagers can be configured programmatically with a fluent API. The example below
creates a CacheManager with a Terracotta config specified in an URL, and creates a
defaultCache and a cache named "example".

 Configuration configuration = new Configuration()

 .terracotta(new TerracottaClientConfiguration().url("localhost:9510"))
 .defaultCache(new CacheConfiguration("defaultCache", 100))
 .cache(new CacheConfiguration("example", 100)
 .timeToIdleSeconds(5)
 .timeToLiveSeconds(120)
 .terracotta(new TerracottaConfiguration()));

 CacheManager manager = new CacheManager(configuration);

-

-

-

26.1.3.3. Terracotta Server Configuration

Note: You need to install and run one or more Terracotta servers to use Terracotta clustering.

See http://www.terracotta.org/dl.

With a server/servers up and running you need to specify the location of the servers.

Configuration can be specified in two main ways: by reference to a source of configuration or by
use of an embedded Terracotta configuration file.

26.1.3.3.1. Specification of a source of configuration

To specify a reference to a source (or sources) of configuration, use the url attribute. The url
attribute must contain a comma-separated list of:

path to the Terracotta configuration file (usually named tc-config.xml) Example using a path to

Terracotta configuration file:

 <terracottaConfig url="/app/config/tc-config.xml"/>

URL to the Terracotta configuration file Example using a URL to a Terracotta configuration file:

 <terracottaConfig url="http://internal/ehcache/app/tc-config.xml"/>

server host : port of a running Terracotta Server instance Example pointing to a Terracotta

server installed on localhost:

 <terracottaConfig url="localhost:9510"/>

Example using multiple Terracotta server instance URLs (for fault tolerance):

 <terracottaConfig url="host1:9510,host2:9510,host3:9510"/>

26.1.3.3.2. Specification using embedded tc-config

To embed a Terracotta configuration file within the Ehcache configuration, simply place the usual
Terracotta XML config within the terracottaConfig element.

-

-

-

-

In this example we have two Terracotta servers running on server1 and server2 .

 <terracottaConfig>
 <tc-config>
 <servers>
 <server host="server1" name="s1"/>
 <server host="server2" name="s2"/>
 </servers>
 <clients>
 <logs>app/logs-%i</logs>
 </clients>
 </tc-config>
 </terracottaConfig>

26.1.3.4. Enabling Terracotta clustering per cache

Cache elements can also contain information about whether the cache can be clustered with
Terracotta.

The terracotta sub-element has the following attributes:

clustered=true|false Indicates whether this cache should be clustered with Terracotta. By

default, if the terracotta element is included, clustered=true.

valueMode=serialization|identity Indicates whether this cache should be clustered with

serialized copies of the values or using Terracotta identity mode. By default, values will be

cached in serialization mode which is similar to other replicated Ehcache modes. The identity

mode is only available in certain Terracotta deployment scenarios and will maintain actual

object identity of the keys and values across the cluster. In this case, all users of a value

retrieved from the cache are using the same clustered value and must provide appropriate

locking for any changes made to the value (or objects referred to by the value).

coherentReads=true|false Indicates whether this cache should have coherent reads with

guaranteed consistency across the cluster. By default, this setting is true. If you set this

property to false, reads are allowed to check the local value without locking, possibly seeing

stale values. This is a performance optimization with weaker concurrency guarantees and

should generally be used with caches that contain read-only data or where the application can

tolerate reading stale data. Note that from Ehcache 2.0, this setting has the same affect as

coherent .

copyOnRead=true|false new_in_2 Indicates whether cache values are deserialized on every

read or if the materialized cache value can be re-used between get() calls. This setting is useful

if a cache is being shared by callers with disparate classloaders or to prevent local drift if

keys/values are mutated locally w/o putting back to the cache. i.e. if set to true then each

thread has its own copy and cannot affect other threads. NOTE: This setting is only relevant for

-

-

caches with valueMode=serialization

coherent=true|false new_in_2 Indicates whether this cache should have coherent reads and

writes with guaranteed consistency across the cluster. By default, its value is true. If this

attribute is set to false (or "incoherent" mode), values from the cache are read without locking,

possibly yielding stale data. Writes to a cache in incoherent mode are batched and applied

without acquiring cluster-wide locks, possibly creating inconsistent values across cluster.

Incoherent mode is a performance optimization with weaker concurrency guarantees and

should generally be used for bulk-loading caches, for loading a read-only cache, or where the

application that can tolerate reading stale data. This setting overrides coherentReads , which is

deprecated. For backward compatibility any configurations setting a value for coherentReads

will apply to coherent .

synchronousWrites=true|false new_in_2 When set to true, clustered caches use Terracotta

SYNCHRONOUS WRITE locks. Asynchronous writes(synchronousWrites="false") maximize

performance byallowing clients to proceed without waiting for a "transaction received"

acknowledgement from the server. Synchronous writes (synchronousWrites="true") maximizes

data safety by requiring that a client receive server acknowledgement of a transaction before

that client can proceed. If coherence mode is disabled using configuration (coherent="false") or

through the coherence API, only asynchronous writes can occur (synchronousWrites="true" is

ignored). By default this value is false (i.e. clustered caches use normal Terracotta WRITE

locks). The simplest way to enable clustering is to add:

 <terracotta/>

To indicate the cache should not be clustered (or remove the terracotta element altogether):

 <terracotta clustered="false"/>

To indicate the cache should be clustered using identity mode:

 <terracotta clustered="true" valueMode="identity"/>

Following is an example Terracotta clustered cache named sampleTerracottaCache.

 <cache name="sampleTerracottaCache"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="1800"
 overflowToDisk="false">
 <terracotta/>

 </cache>

26.1.4. Copy On Read

The copyOnRead setting is most easily explained by first examining what it does when not
enabled and exploring the potential problems that can arise.

For a cache for which copyOnRead is NOT enabled, the following reference comparsion will
always be true (NOTE: assuming no other thread changes the cache mapping between the
get()'s)

 Object obj1 = c.get("key").getValue();
 Object obj2 = c.get("key").getValue();

 if (obj1 == obj2) {
 System.err.println("Same value objects!");
 }

The fact that the same object reference is returned accross multiple get()'s implies that the cache
is storing a direct reference to cache value. When copyOnRead is enabled the object references
will be fresh and unique upon every get().

This default behavior (copyOnRead=false) is usually what you want although there are at least
two scenarios in which this is problematic: (1) Caches shared between classloaders and (2)
Mutable value objects

Imagine two web applications that both have access to the same Cache instance (this implies that
the core ehcache classes are in a common classloader). Imagine further that the classes for value
types in the cache are duplicated in the web application (ie. they are not present in the common
loader). In this scenario you would get ClassCastExceptions when one web application accessed
a value previously read by the other application. One solution to this problem is obviously to move
the value types to the common loader, but another is to enable copyOnRead so that thread
context loader of the caller will be used to materialize the cache values on each get(). This feature
has utility in OSGi environments as well where a common cache service might be shared between
bundles

Another subtle issue concerns mutable value objects in a clustered cache. Consider this simple
code which shows a Cache that contains a mutable value type (Foo):

 class Foo {
 int field;
 }

 Foo foo = (Foo) c.get("key").getValue();

 foo.field++;

 // foo instance is never re-put() to the cache

 // ...

If the Foo instance is never re-put() to the Cache your local cache is no longer consistent with the
cluster (it is locally modified only). Enabling copyOnRead eliminates this possibility since the only
way to affect cache values is to call mutator methods on the Cache.

It is worth noting that there is a performance penalty to copyOnRead since values are deserialized
on every get().

26.1.5. Behaviour differences with CacheEventListener s
when using Terracotta Clustering

Terracotta clustering works by clustering the MemoryStore , unlike the replication mechanisms
which use the CacheEventListener infrastructure.

This results in a simpler programming contract than with the replication mechanisms.

Things to note:

26.1.5.1. Cache listeners

Cache listeners listen for changes, including replicated cluster changes, made through the Cache
API. Because Terracotta cluster changes happen transparently directly to the MemoryStore a
listener will not be invoked when an event occurs out on the cluster. If it occurs locally, then it
must have occurred through the Cache API, so a local event will be detected by a local listener.

A common use of listeners is to trigger a reload of a just invalidated Element . In Terracotta
clustering this is avoided as a change in one node is always coherent to the other nodes.

To send out cache change events across the cluster, you need to set up a local listener on the
relevant cache so that these events can be propagated to other nodes. This is done by adding the
following cacheEventListenerFactory tag to the cache:

 <cacheEventListenerFactory
class="net.sf.ehcache.event.TerracottaCacheEventReplicationFactory"/>

26.1.5.2. Overflow to Disk

Overflow to Disk is ignored when using Terracotta Clustering. However it is not needed because
the Terracotta server has its own overflow to disk. Once the maxElementsInMemory limit is
reached Element s will be evicted to the cluster.

-

-

-

-

26.1.6. Cluster Topology new_in_2

The interface net.sf.ehcache.cluster.CacheCluster provides methods for obtaining topology
information for a Terracotta cluster.

The following methods are available:

String getScheme() Returns a scheme name for the cluster information. Currently

TERRACOTTA is the only scheme supported.

Collection<ClusterNode> getNodes() Returns information on all the nodes in the cluster,

including ID, hostname, and IP address.

boolean addTopologyListener(ClusterTopologyListener listener) Adds a cluster-events listener.

Returns true if the listener is already active.

boolean removeTopologyListener(ClusterTopologyListener) Removes a cluster-events listener.

Returns true if the listener is already inactive. The interface net.sf.ehcache.cluster.ClusterNode

provides methods for obtaining information on specific cluster nodes.

 public interface ClusterNode {

 /**
 * Get a unique (per cluster) identifier for this node.
 *
 * @return Unique per cluster identifier
 */
 String getId();

 /**
 * Get the host name of the node
 *
 * @return Host name of node
 */
 String getHostname();

 /**
 * Get the IP address of the node
 *
 * @return IP address of node
 */
 String getIp();

 }

26.1.7. Terracotta Cluster Events new_in_2

Terracotta has a Terracotta Cluster event notification mechanism. From Ehcache 2.0, Ehcache
can receive these events.

This is not cache event notification, rather it is cluster event notification.

The Terracotta Distributed Ehcache cluster events API provides access to Terracotta cluster
events and cluster topology.

The interface net.sf.ehcache.cluster.ClusterTopologyListener provides methods for detecting the
following cluster events:

 public interface ClusterTopologyListener {

 /**
 * A node has joined the cluster
 *
 * @param node The joining node
 */
 void nodeJoined(ClusterNode node);

 /**
 * A node has left the cluster
 *
 * @param node The departing node
 */
 void nodeLeft(ClusterNode node);

 /**
 * This node has established contact with the cluster and can execute clustered operations.
 *
 * @param node The current node
 */
 void clusterOnline(ClusterNode node);

 /**
 * This node has lost contact (possibly temporarily) with the cluster and cannot execute
 * clustered operations
 *
 * @param node The current node
 */
 void clusterOffline(ClusterNode node);

 }

26.1.7.1. Example Code

This example prints out the cluster nodes and then registers a ClusterTopologyListener which
prints out events as they happen.

 CacheManager mgr = ...

 CacheCluster cluster = mgr.getCluster("Terracotta");

 // Get current nodes

 Collection<ClusterNode> nodes = cluster.getNodes();

 for(ClusterNode node : nodes) {

 System.out.println(node.getId() + " " + node.getHostname() + " " + node.getIp());

 }

 // Register listener

 cluster.addTopologyListener(new ClusterTopologyListener() {

 public void nodeJoined(ClusterNode node) { System.out.println(node + " joined"); }

 public void nodeLeft(ClusterNode node) { System.out.println(node + " left"); }

 public void clusterOnline(ClusterNode node) { System.out.println(node + " enabled"); }

 public void clusterOffline(ClusterNode node) { System.out.println(node + " disabled"); }

 });

26.1.7.2. Uses for Cluster Events

If Ehcache got disconnected from the Terracotta Server Array say due to a network issue, then in
Ehcache 2.0 each cache operation will block indefinitely. In other words it is configured for fail-fast
to protect the ACIDity of the cluster.

-

-

-

However this approach will also cause processing of requests to the cache to stop likely causing
the outage to cascade. In some cases graceful degradation may be more appropriate. When the
clusterOffline events fires you could call Cache.setDisabled() which will cause puts and gets to
bypass the cache. Your application would then degrade to operating without a cache, but might be
able to do useful work.

You could also take the whole application off-line.

When connectivity is restored you could then reverse the action, taking the cache back online or
the application back on line as the case may be.

We expect to add some of these common behaviours into configuration in the next release:

blocking - block until connectivity is restored

disable cache - cache cleared, puts ignored, gets return null

local mode - continue but use local data only. This last one presents problems on reconnect

because local changes will not be consistent with the cluster.

26.1.8. More Information

Please see Terracotta Documentation for much more information.

26.1.9. Development Setup

The extra thing at development time is having a local Terracotta server running for integration
and/or interactive testing.

26.1.9.1. Maven

Terracotta has a Maven plugin available which makes this very simple.

26.1.9.1.1. Setting up for Integration Testing

 <pluginRepositories>
 <pluginRepository>
 <id>terracotta-snapshots</id>
 <url>http://www.terracotta.org/download/reflector/maven2</url>

http://www.terracotta.org/documentation

 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>

 <plugin>
 <groupId>org.terracotta.maven.plugins</groupId>
 <artifactId>tc-maven-plugin</artifactId>
 <version>1.5.1</version>
 <executions>
 <execution>
 <id>run-integration</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>run-integration</goal>
 </goals>
 </execution>
 <execution>
 <id>terminate-integration</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>terminate-integration</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

26.1.9.1.2. Interactive Testing

To start Terracotta:

 mvn tc:start

To stop Terracotta:

 mvn tc:stop

See http://forge.terracotta.org/releases/projects/tc-maven-plugin/ for a complete reference.

26.1.10. FAQ

26.1.10.1. I get a net.sf.ehcache.CacheException: Terracotta
cache classes are not available, you are missing jar(s) most likely

You need to include the ehcache-terracotta jar in your classpath.

26.1.10.2. When I start ehcache I get "WARN - Can't connect to
server[localhost:9510:s1]. Retrying..."

You have not configured a Terracotta server for Ehcache to connect to.

26.1.10.3. Is expiry the same in Terracotta?

timeToIdle and timeToLive work as usual. Ehcache 1.7 introduced a less fine grained age
recording in Element which rounds up to the nearest second. Some APIs may be sensitive to this
change.

In Ehcache Elements can have overridden TTI and TTLs. Terracotta supports this functionality.

http://forge.terracotta.org/releases/projects/tc-maven-plugin/

-

-

-

26.1.10.4. I have TTL/TTI not configured or set to 0 (eternal) and
have created Elements with a specific TTL which is being
ignored. Why?

There is a high cost in checking individual elements for eviction in the Terracotta server. To incur
that cost and have your Element TTL/TTIs recognised in this case set
ehcache.storageStrategy.dcv2.perElementTTITTL.enabled = true" in system properties.

26.1.10.5. I have set maxElementsOnDisk to a fixed number, but
my Terracotta L2 keeps growing.

maxElementsOnDisk was inadvertenly ignored in the new DCV2 implementation. This was logged
as a bug: https://jira.terracotta.org/jira/browse/EHCTERR-1 and is fixed in Terracotta 3.5.

26.1.10.6. DCV2 Eviction Algorithm

The DCV2 algorithm is optimised for fast server side performance.

It does not evict as soon as it is full, but periodically checks the size. Based on how much overfull
it is (call that n) it will in it's next eviction pass evict those n elements.

It picks a random sample 30% larger than n .

It then works through the sample and:

skips any elements that are in any L1, on the basis that they have been recently used

evicts any expired elements

evicts enough non-expired elements to make n .

26.1.10.7. Changing configuration

Terracotta clusters remember the configuration settings. You need to delete the cluster to change
cache settings of Terracotta distributed caches. You can also use the Terracotta Dev Console to
apply persistent changes to common cache settings.

26.1.10.8. What Eviction strategies are supported?

https://jira.terracotta.org/jira/browse/EHCTERR-1

-

-

Ehcache supports LRU, LFU and FIFO eviction strategies.

Terracotta supports LRU and LFU eviction from the local node. Not FIFO and not custom evictors.

26.1.10.9. What Stores are available and how are they
configured?

The Terracotta server provides an additional store, generally referred to as the Level 2 or L2

store.

The MemoryStore in JVM in the local node is referred to as the L1 Store.

maxElementsInMemory - the maximum number of elements in the local L1 store.

maxElementsOnDisk - is overridden when using Terracotta to provide the L2 size. The L2 size is
effectively the maximum cache size.

overflowToDisk normally controls whether to overflow to the DiskStore. This is ignored when using
Terracotta - the DiskStore is never used. When the store gets full, elements will always overflow to
the Terracotta L2 Store running on the server. The L2 can be further configured with the tcconfig.

26.1.10.10. When do Elements overflow?

Two things to cause elements to be flushed from L1 to L2.

the L1 store exceeding maxElementsInMemory

When the local JVM exceeds 70% of Old Generation. This can be turned off in the TC Config.

By default it is on (in 1.7).

26.1.10.11. How does Element equality work in Serialization
mode?

An Element, key and value in Ehcache is guaranteed to .equals() another as it moves between
stores.

In the Express install or Serialization mode of Terracotta, which is the default, Terracotta is the
same. Elements will not == each other as they move between stores.

26.1.10.12. How does Element equality work in Identity mode?

An Element in Ehcache is guaranteed to .equals() another as it moves between stores.

However in Identity mode, Terracotta makes a further guarantee that they key and the value == .
This is achieved using extensions to the Java Memory Model.

26.1.10.13. What is the recommended way to write to a
database?

Terracotta' non Ehcache API offers an async writethrough to the database which is guaranteed. It
uses the TIM Async module and works by putting the database update in a clustered queue. It
guarantees that a node, even if the local node fails, will take it out and process it.

That option is not available with Ehcache although it may get added.

26.1.10.14. If updates to a database bypass the Terracotta
clustered application, then how is that coherent?

It isn't. This is a problem with using a database as an integration point. Integration via a message
queue, with a Terracotta clustered application acting as a message queue listener and updating
the database avoids this. As would The application receiving a REST or SOAP call and writing to
the database.

AQ can have DB trigger put in a poll. Or AQ can push it up.

26.1.10.15. Do CacheEventListeners work?

A local CacheEventListener will work locally, but other nodes in a Terracotta cluster are not
notified unless the TerracottaCacheEventReplicationFactory event listener is registered for the
cache.

26.1.10.16. What are the JMX statistics available in the
Terracotta Developer Console?

SampledCache and SampledCacheManager MBeans are made available in the Terracotta

-

-

-

-

-

Developer Console.

These are time based gauges, based on once per second measurements. These are different to
the JMX MBeans available through the ManagementService .

26.1.10.17. What classloader is used to deserialize clustered
objects in valueMode="serialization"?

The following classloaders are tried in this order:

Thread.currentThread().getContextClassLoader() (so set this to override)

The classloader used to define the Ehcache CacheManager - the one that loaded the ehcache-

terracotta.jar

26.1.10.18. What versions of Ehcache and Terracotta work
together?

For the latest compatibility information, see

http://www.terracotta.org/confluence/display/release/Home .

26.1.10.19. What happens when an L1 (i.e. an Ehcache node)
disconnects from the L2 (i.e. the Terracotta Server Array)?

The L1 receives an operations disabled event. Then spawns a thread with a timer waiting for an

operations-enabled event. How long to wait depends on heart beating settings. 65 seconds

should work for the default assuming l2.l1.reconnect is enabled with 5s timeout.

If in this time there is no Operations-Enabled event, then the L1 can conclude that it is

disconnected and flip a Boolean in the application, which instructs incoming requests to not

access the Terracotta Shared space. Note that existing threads doing I/O against the TC server

(whether for data or for locks) are stuck.

If the application desires timeouts then you have to employ a proxy collection - e.g. a wrapper

around a Queue or Map, (in DSO) - where the Queue APIs are proxied through to a thread pool

- so that you can try/join out in "timeout" seconds and throw a timeout to the application. This is

however somewhat messy - since the application threads may receive a timeout, but the

"terracotta transaction" may still make it through to the L2.

http://www.terracotta.org/confluence/display/release/Home

-

-

-

-

-

-

-

-

27. Replicated Caching with RMI

27.1. RMI Replicated Caching

Since version 1.2, Ehcache has provided replicated caching using RMI.

An RMI implementation is desirable because:

it itself is the default remoting mechanism in Java

it is mature

it allows tuning of TCP socket options

Element keys and values for disk storage must already be Serializable, therefore directly

transmittable over RMI without the need for conversion to a third format such as XML.

it can be configured to pass through firewalls

RMI had improvements added to it with each release of Java, which can then be taken

advantage of.

While RMI is a point-to-point protocol, which can generate a lot of network traffic, Ehcache
manages this through batching of communications for the asynchronous replicator.

To set up RMI replicated caching you need to configure the CacheManager with:

a PeerProvider

a CacheManagerPeerListener The for each cache that will be replicated, you then need to add

one of the RMI cacheEventListener types to propagate messages. You can also optionally

configure a cache to bootstrap from other caches in the cluster.

27.1.1. Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element itself. In this
case the operation will be replicated provided the key is Serializable, even if the Element is not.

27.1.2. Configuring the Peer Provider

27.1.2.1. Peer Discovery

Ehcache has the notion of a group of caches acting as a replicated cache. Each of the caches is a
peer to the others. There is no master cache. How do you know about the other caches that are in
your cluster? This problem can be given the name Peer Discovery.

Ehcache provides two mechanisms for peer discovery, just like a car: manual and automatic.

To use one of the built-in peer discovery mechanisms specify the class attribute of
cacheManagerPeerProviderFactory as
net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory in the ehcache.xml
configuration file.

27.1.2.2. Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish and maintain a multicast group. It features
minimal configuration and automatic addition to and deletion of members from the group. No a
priori knowledge of the servers in the cluster is required. This is recommended as the default
option.

Peers send heartbeats to the group once per second. If a peer has not been heard of for 5
seconds it is dropped from the group. If a new peer starts sending heartbeats it is admitted to the
group.

Any cache within the configuration set up as replicated will be made available for discovery by
other peers.

To set automatic peer discovery, specify the properties attribute of
cacheManagerPeerProviderFactory as follows:

peerDiscovery=automatic multicastGroupAddress=multicast address | multicast host name
multicastGroupPort=port timeToLive=0-255 (See below in common problems before setting this)
hostName= the hostname or IP of the interface to be used for sending and receiving multicast

packets (relevant to mulithomed hosts only)

27.1.2.2.1. Example

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and
sampleCache12. The configuration required for each server is identical:

Configuration for server1 and server2

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

 properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
 multicastGroupPort=4446, timeToLive=32"/>

27.1.2.3. Manual Peer Discovery

Manual peer configuration requires the IP address and port of each listener to be known. Peers
cannot be added or removed at runtime. Manual peer discovery is recommended where there are
technical difficulties using multicast, such as a router between servers in a cluster that does not
propagate multicast datagrams. You can also use it to set up one way replications of data, by
having server2 know about server1 but not vice versa.

To set manual peer discovery, specify the properties attribute of
cacheManagerPeerProviderFactory as follows: peerDiscovery=manual
rmiUrls=//server:port/cacheName, ...

The rmiUrls is a list of the cache peers of the server being configured. Do not include the server
being configured in the list.

27.1.2.3.1. Example

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and
sampleCache12. Following is the configuration required for each server:

Configuration for server1

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

 properties="peerDiscovery=manual,
 rmiUrls=//server2:40001/sampleCache11|//server2:40001/sampleCache12"/>

-

-

-

-

Configuration for server2

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

 properties="peerDiscovery=manual,
 rmiUrls=//server1:40001/sampleCache11|//server1:40001/sampleCache12"/>

27.1.3. Configuring the CacheManagerPeerListener

A CacheManagerPeerListener listens for messages from peers to the current CacheManager.

You configure the CacheManagerPeerListener by specifiying a
CacheManagerPeerListenerFactory which is used to create the CacheManagerPeerListener using
the plugin mechanism.

The attributes of cacheManagerPeerListenerFactory are:

class - a fully qualified factory class name * properties - comma separated properties having

meaning only to the factory. Ehcache comes with a built-in RMI-based distribution system. The

listener component is RMICacheManagerPeerListener which is configured using

RMICacheManagerPeerListenerFactory. It is configured as per the following example:

 <cacheManagerPeerListenerFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"

 properties="hostName=localhost, port=40001,
 socketTimeoutMillis=2000"/>

Valid properties are:

hostName (optional) - the hostName of the host the listener is running on. Specify where the

host is multihomed and you want to control the interface over which cluster messages are

received. The hostname is checked for reachability during CacheManager initialisation. If the

hostName is unreachable, the CacheManager will refuse to start and an CacheException will

be thrown indicating connection was refused. If unspecified, the hostname will use

InetAddress.getLocalHost().getHostAddress() , which corresponds to the default host network

interface. Warning: Explicitly setting this to localhost refers to the local loopback of 127.0.0.1,

which is not network visible and will cause no replications to be received from remote hosts.

You should only use this setting when multiple CacheManagers are on the same machine.

port (mandatory) - the port the listener listens on.

socketTimeoutMillis (optional) - the number of seconds client sockets will wait when sending

messages to this listener until they give up. By default this is 2000ms.

-

-

-

-

-

27.1.4. Configuring Cache Replicators

Each cache that will be replicated needs to set a cache event listener which then replicates
messages to the other CacheManager peers. This is done by adding a
cacheEventListenerFactory element to each cache's configuration.

 <!-- Sample cache named sampleCache2. -->
 <cache name="sampleCache2"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="100"
 timeToLiveSeconds="100"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true, replicateUpdates=true,
 replicateUpdatesViaCopy=false, replicateRemovals=true "/>
 </cache>

class - use net.sf.ehcache.distribution.RMICacheReplicatorFactory

The factory recognises the following properties:

replicatePuts=true | false - whether new elements placed in a cache are replicated to others.

Defaults to true.

replicateUpdates=true | false - whether new elements which override an element already

existing with the same key are replicated. Defaults to true.

replicateRemovals=true - whether element removals are replicated. Defaults to true.

replicateAsynchronously=true | false - whether replications are asyncrhonous (true) or

synchronous (false). Defaults to true.

replicateUpdatesViaCopy=true | false - whether the new elements are copied to other caches

(true), or whether a remove message is sent. Defaults to true.

To reduce typing if you want default behaviour, which is replicate everything in asynchronous
mode, you can leave off the RMICacheReplicatorFactory properties as per the following example:

 <!-- Sample cache named sampleCache4. All missing RMICacheReplicatorFactory
properties
 default to true -->
 <cache name="sampleCache4"
 maxElementsInMemory="10"
 eternal="true"

 overflowToDisk="false"
 memoryStoreEvictionPolicy="LFU">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
 </cache>

27.1.5. Configuring Bootstrap from a Cache Peer

When a peer comes up, it will be incoherent with other caches. When the bootstrap completes it
will be partially coherent. Bootstrap gets the list of keys from a random peer, and then loads those
in batches from random peers. If bootstrap fails then the Cache will not start (not like this right
now). However if a cache replication operation occurs which is then overwritten by bootstrap there
is a chance that the cache could be inconsistent.

Here are some scenarios:

Delete overwritten by boostrap put --- Cache A keys with values: 1, 2, 3, 4, 5

Cache B starts bootstrap

Cache A removes key 2

Cache B removes key 2 and then bootstrap puts it back

Put overwritten by boostrap put --- Cache A keys with values: 1, 2, 3, 4, 5

Cache B starts bootstrap

Cache A updates the value of key 2

Cache B updates the value of key 2 and then bootstrap overwrites it with the old value

The solution is for bootstrap to get a list of keys and write them all before committing transactions.

This could cause synchronous transaction replicates to back up. To solve this problem, commits
will be accepted, but not written to the cache until after bootstrap. Coherency is maintained
because the cache is not available until bootstrap has completed and the transactions have been
completed.

27.1.6. Full Example

Ehcache's own integration tests provide complete examples of RMI-based replication. The best
example is the integration test for cache replication. You can see it online here:

http://ehcache.org/xref-test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html

http://ehcache.org/xref-test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html

The test uses 5 ehcache.xml's representing 5 CacheManagers set up to replicate using RMI.

27.1.7. Common Problems

27.1.7.1. Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listener will fail to start on Tomcat if the
installation path has spaces in it. See http://archives.java.sun.com/cgi-bin/wa?A2=ind0205&L=rmi-
users&P=797 and http://www.ontotext.com/kim/doc/sys-doc/faq-howto-bugs/known-bugs.html.

As the default on Windows is to install Tomcat in "Program Files", this issue will occur by default.

27.1.7.2. Multicast Blocking

The automatic peer discovery process relies on multicast. Multicast can be blocked by routers.
Virtualisation technologies like Xen and VMWare may be blocking multicast. If so enable it. You
may also need to turn it on in the configuration for your network interface card.

An easy way to tell if your multicast is getting through is to use the Ehcache remote debugger and
watch for the heartbeat packets to arrive.

27.1.7.3. Multicast Not Propagating Far Enough or Propagating
Too Far

You can control how far the multicast packets propagate by setting the badly misnamed time to
live. Using the multicast IP protocol, the timeToLive value indicates the scope or range in which a
packet may be forwarded. By convention:

 0 is restricted to the same host
 1 is restricted to the same subnet
 32 is restricted to the same site
 64 is restricted to the same region
 128 is restricted to the same continent
 255 is unrestricted

The default value in Java is 1, which propagates to the same subnet. Change the timeToLive

property to restrict or expand propagation.

-

-

28. Replicated Caching with JGroups

28.1. Replicated Caching using JGroups

JGroups can be used as the underlying mechanism for the replication operations in ehcache.
JGroups offers a very flexible protocol stack, reliable unicast and multicast message transmission.
On the down side JGroups can be complex to configure and some protocol stacks have
dependencies on others.

To set up replicated caching using JGroups you need to configure a PeerProviderFactory of type
JGroupsCacheManagerPeerProviderFactory which is done globally for a CacheManager For each
cache that will be replicated, you then need to add a cacheEventListenerFactory of type
JGroupsCacheReplicatorFactory to propagate messages.

28.1.1. Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element itself. In this
case the operation will be replicated provided the key is Serializable, even if the Element is not.

28.1.2. Peer Discovery

If you use the UDP multicast stack there is no additional configuration. If you use a TCP stack you
will need to specify the initial hosts in the cluster.

28.1.3. Configuration

There are two things to configure:

The JGroupsCacheManagerPeerProviderFactory which is done once per CacheManager and

therefore once per ehcache.xml file.

The JGroupsCacheReplicatorFactory which is added to each cache's configuration. The main

configuration happens in the JGroupsCacheManagerPeerProviderFactory connect sub-

property. A connect property is passed directly to the JGroups channel and therefore all the

protocol stacks and options available in JGroups can be set.

28.1.4. Example configuration using UDP Multicast

Suppose you have two servers in a cluster. You wish to replicated sampleCache11 and
sampleCache12 and you wish to use UDP multicast as the underlying mechanism.

The configuration for server1 and server2 are identical and will look like this:

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
 properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;):PING:
MERGE2:FD_SOCK:VERIFY_SUSPECT:pbcast.NAKACK:UNICAST:pbcast.STABLE:FRAG:
pbcast.GMS"
 propertySeparator="::"
 />

28.1.5. Example configuration using TCP Unicast

The TCP protocol requires the IP address of all servers to be known. They are configured through
the TCPPING protocol of Jgroups.

Suppose you have 2 servers host1 and host2, then the configuration is:

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
 properties="connect=TCP(start_port=7800):
 TCPPING(initial_hosts=host1[7800],host2[7800];port_range=10;timeout=3000;
 num_initial_members=3;up_thread=true;down_thread=true):
 VERIFY_SUSPECT(timeout=1500;down_thread=false;up_thread=false):
pbcast.NAKACK(down_thread=true;up_thread=true;gc_lag=100;retransmit_timeout=3000):
 pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;shun=false;
 print_local_addr=false;down_thread=true;up_thread=true)"
 propertySeparator="::" />

28.1.6. Protocol considerations.

You should read the JGroups documentation to configure the protocols correctly.

See http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html .

http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html

-

-

-

-

-

If using UDP you should at least configure PING, FD_SOCK (Failure detection),
VERIFY_SUSPECT, pbcast.NAKACK (Message reliability), pbcast.STABLE (message garbage
collection).

28.1.7. Configuring CacheReplicators

Each cache that will be replicated needs to set a cache event listener which then replicates
messages to the other CacheManager peers. This is done by adding a
cacheEventListenerFactory element to each cache's configuration. The properties are identical to
the one used for RMI replication.

The listener factory MUST be of type JGroupsCacheReplicatorFactory .

 <!-- Sample cache named sampleCache2. -->
 <cache name="sampleCache2"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="100"
 timeToLiveSeconds="100"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
 replicateUpdates=true, replicateUpdatesViaCopy=false, replicateRemovals=true" />
 </cache>

The configuration options are explained below:

class - use net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory

The factory recognises the following properties:

replicatePuts=true | false - whether new elements placed in a cache are replicated to others.

Defaults to true.

replicateUpdates=true | false - whether new elements which override an element already

existing with the same key are replicated. Defaults to true.

replicateRemovals=true - whether element removals are replicated. Defaults to true.

replicateAsynchronously=true | false - whether replications are asyncrhonous (true) or

synchronous (false). Defaults to true.

replicateUpdatesViaCopy=true | false - whether the new elements are copied to other caches

(true), or whether a remove message is sent. Defaults to true.

- asynchronousReplicationIntervalMillis default 1000ms Time between updates when replication

is asynchroneous

28.1.8. Complete Sample configuration

A typical complete configuration for one replicated cache configured for UDP will look like:

 <Ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../../../main/config/ehcache.xsd">

 <diskStore path="java.io.tmpdir/one"/>

 <cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution.jgroups
 .JGroupsCacheManagerPeerProviderFactory"
 properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;ip_ttl=32;
 mcast_send_buf_size=150000;mcast_recv_buf_size=80000):
 PING(timeout=2000;num_initial_members=6):
 MERGE2(min_interval=5000;max_interval=10000):
 FD_SOCK:VERIFY_SUSPECT(timeout=1500):
 pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):
 UNICAST(timeout=5000):
 pbcast.STABLE(desired_avg_gossip=20000):
 FRAG:
 pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;
 shun=false;print_local_addr=true)"
 propertySeparator="::"
 />

 <cache name="sampleCacheAsync"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="1000"
 timeToLiveSeconds="1000"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
 replicateUpdates=true, replicateUpdatesViaCopy=false,
 replicateRemovals=true" />
 </cache>

 </ehcache>

28.1.9. Common Problems

If replication using JGroups doesn't work the way you have it configured try this configuration
which has been extensively tested:

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"/>

 <cache name="sampleCacheAsync"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="1000"
 timeToLiveSeconds="1000"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
 replicateUpdates=true, replicateUpdatesViaCopy=false,
 replicateRemovals=true" />
 </cache>

If this fails to replicate, try to get the example programs from JGroups to run:

http://www.jgroups.org/javagroupsnew/docs/manual/html/ch02.html#d0e451

and

http://www.jgroups.org/javagroupsnew/docs/manual/html/ch02.html#ItDoesntWork

Once you have figured out the connection string that works in your network for JGroups, you can
directly paste it in the connect property of JGroupsCacheManagerPeerProviderFactory .

-

-

-

-

-

29. Replicated Caching with JMS

29.1. Replicated Caching using JMS

As of version 1.6, JMS can be used as the underlying mechanism for the replicated operations in
Ehcache with the jmsreplication module.

JMS, ("Java Message Service") is an industry standard mechanism for interacting with message
queues. Message queues themselves are a very mature piece of infrastructure used in many
enterprise software contexts. Because they are a required part of the Java EE specification, the
large enterprise vendors all provide their own implementations. There are also several open
source choices including Open MQ and Active MQ. Ehcache is integration tested against both of
these.

The Ehcache jmsreplication module lets organisations with a message queue investment leverage

it for caching.

It provides:

replication between cache nodes using a replication topic, in accordance with ehcache's

standard replication mechanism

pushing of data directly to cache nodes from external topic publishers, in any language. This is

done by sending the data to the replication topic, where it automatically picked up by the cache

subscribers.

a JMSCacheLoader, which sends cache load requests to a queue. Either an Ehcache cluster

node, or an external queue receiver can respond.

29.1.1. Ehcache Replication and External Publishers

Ehcache replicates using JMS as follows:

Each cache node subscribes to a predefined topic, configured as the topicBindingName in

ehcache.xml.

Each replicated cache publishes cache Element s to that topic. Replication is configured per

cache. To set up replicated caching using JMS you need to configure a

JMSCacheManagerPeerProviderFactory which is done globally for a CacheManager. For each

cache that wishing to replicate, you add a JGroupsCacheReplicatorFactory element to the

cache element.

-

-

29.1.1.1. Configuration

29.1.1.1.1. Message Queue Configuration

Each cluster needs to use a fixed topic name for replication. Set up a topic using the tools in your
message queue. Out of the box, both ActiveMQ and Open MQ support auto creation of
destinations, so this step may be optional.

29.1.1.1.2. Ehcache Configuration

Configuration is done in the ehcache.xml.

There are two things to configure:

The JMSCacheManagerPeerProviderFactory which is done once per CacheManager and

therefore once per ehcache.xml file.

The JMSCacheReplicatorFactory which is added to each cache's configuration if you want that

cache replicated. The main configuration happens in the

JGroupsCacheManagerPeerProviderFactory connect sub-property. A connect property is

passed directly to the JGroups channel and therefore all the protocol stacks and options

available in JGroups can be set.

29.1.1.1.2.1. Configuring the JMSCacheManagerPeerProviderFactory

Following is the configuration instructions as it appears in the sample ehcache.xml shipped with
ehcache:

 {Configuring JMS replication}.
 ===========================

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="..."
 propertySeparator=","
 />

 The JMS PeerProviderFactory uses JNDI to maintain message queue independence.
 Refer to the manual for full configuration examples using ActiveMQ and Open Message
Queue.

 Valid properties are:
 * initialContextFactoryName (mandatory) - the name of the factory used to create the
 message queue initial context.
 * providerURL (mandatory) - the JNDI configuration information for the service provider to
 use.
 * topicConnectionFactoryBindingName (mandatory) - the JNDI binding name for the
 TopicConnectionFactory
 * topicBindingName (mandatory) - the JNDI binding name for the topic name
 * securityPrincipalName - the JNDI java.naming.security.principal
 * securityCredentials - the JNDI java.naming.security.credentials
 * urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs
 * userName - the user name to use when creating the TopicConnection to the Message
Queue
 * password - the password to use when creating the TopicConnection to the Message Queue
 * acknowledgementMode - the JMS Acknowledgement mode for both publisher and
subscriber.
 The available choices are
 AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE and
SESSION_TRANSACTED.
 The default is AUTO_ACKNOWLEDGE.
 * listenToTopic - true or false. If false, this cache will send to the JMS topic but will
 not listen for updates.
 * Default is true.

29.1.1.1.2.2. Example Configurations

Usage is best illustrated with concrete examples for Active MQ and Open MQ.

29.1.1.1.2.3. Configuring the JMSCacheManagerPeerProviderFactory for Active MQ

This configuration works with Active MQ out of the box.

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,
 providerURL=tcp://localhost:61616,
 topicConnectionFactoryBindingName=topicConnectionFactory,
 topicBindingName=ehcache"
 propertySeparator=","
 />

You need to provide your own ActiveMQInitialContextFactory for the initialContextFactoryName.

An example which should work for most purposes is:

 public class ExampleActiveMQInitialContextFactory extends ActiveMQInitialContextFactory {

 /**
 * {@inheritDoc}
 */
 @Override
 @SuppressWarnings("unchecked")
 public Context getInitialContext(Hashtable environment) throws NamingException {

 Map<String, Object> data = new ConcurrentHashMap<String, Object>();

 String factoryBindingName =
(String)environment.get(JMSCacheManagerPeerProviderFactory
 .TOPIC_CONNECTION_FACTORY_BINDING_NAME);

 try {
 data.put(factoryBindingName, createConnectionFactory(environment));
 } catch (URISyntaxException e) {
 throw new NamingException("Error initialisating ConnectionFactory with message "

 + e.getMessage());
 }

 String topicBindingName =
(String)environment.get(JMSCacheManagerPeerProviderFactory
 .TOPIC_BINDING_NAME);

 data.put(topicBindingName, createTopic(topicBindingName));

 return createContext(environment, data);
 }
 }

29.1.1.1.2.4. Configuring the JMSCacheManagerPeerProviderFactory for Open MQ

This configuration works with an out of the box Open MQ.

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,
 providerURL=file:///tmp,
 topicConnectionFactoryBindingName=MyConnectionFactory,
 topicBindingName=ehcache"
 propertySeparator=","
 />

To set up the Open MQ file system initial context to work with this example use the following
imqobjmgr commands to create the requires objects in the context.

 imqobjmgr add -t tf -l 'MyConnectionFactory' -j java.naming.provider.url \
 =file:///tmp -j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -f
 imqobjmgr add -t t -l 'ehcache' -o 'imqDestinationName=EhcacheTopicDest'
 -j java.naming.provider.url\
 =file:///tmp -j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -f

29.1.1.1.2.5. Configuring the JMSCacheReplicatorFactory

This is the same as configuring any of the cache replicators. The class should be
net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory .

See the following example:

 <cache name="sampleCacheAsync"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="1000"
 timeToLiveSeconds="1000"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
 properties="replicateAsynchronously=true,
 replicatePuts=true,

 replicateUpdates=true,
 replicateUpdatesViaCopy=true,
 replicateRemovals=true,
 asynchronousReplicationIntervalMillis=1000"
 propertySeparator=","/>
 </cache>

29.1.1.2. External JMS Publishers

Anything that can publish to a message queue can also add cache entries to ehcache. These are
called non-cache publishers.

29.1.1.2.1. Required Message Properties

Publishers need to set up to four String properties on each message: cacheName, action,
mimeType and key.

29.1.1.2.1.1. cacheName Property

A JMS message property which contains the name of the cache to operate on.

If no cacheName is set the message will be ignored . A warning log message will indicate that the
message has been ignored.

29.1.1.2.1.2. action Property

A JMS message property which contains the action to perform on the cache.

Available actions are strings labeled PUT , REMOVE and REMOVE_ALL .

If not set no action is performed. A warning log message will indicate that the message has been
ignored.

29.1.1.2.1.3. mimeType Property

A JMS message property which contains the mimeType of the message. Applies to the PUT
action. If not set the message is interpreted as follows:

ObjectMessage - if it is an net.sf.ehcache.Element, then it is treated as such and stored in the
cache.

For other objects, a new Element is created using the object in the ObjectMessage as the value
and the key property as a key. Because objects are already typed, the mimeType is ignored.

TextMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be

specified. If not specified it is stored as type text/plain .

BytesMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be
specified. If not specified it is stored as type application/octet-stream .

Other message types are not supported.

To send XML use a TextMessage or BytesMessage and set the mimeType to application/xml .It
will be stored in the cache as a value of MimeTypeByteArray.

The REMOVE and REMOVE_ALL actions do not require a mimeType property.

29.1.1.2.1.4. key Property

The key in the cache on which to operate on. The key is of type String.

The REMOVE_ALL action does not require a key property.

If an ObjectMessage of type net.sf.ehcache.Element is sent, the key is contained in the element.
Any key set as a property is ignored.

If the key is required but not provided, a warning log message will indicate that the message has
been ignored.

29.1.1.2.2. Code Samples

These samples use Open MQ as the message queue and use it with out of the box defaults. They
are heavily based on Ehcache's own JMS integration tests. See the test source for more details.

Messages should be sent to the topic that Ehcache is listening on. In these samples it is
EhcacheTopicDest .

All samples get a Topic Connection using the following method:

 private TopicConnection getMQConnection() throws JMSException {
 com.sun.messaging.ConnectionFactory factory = new
com.sun.messaging.ConnectionFactory();
 factory.setProperty(ConnectionConfiguration.imqAddressList, "localhost:7676");
 factory.setProperty(ConnectionConfiguration.imqReconnectEnabled, "true");
 TopicConnection myConnection = factory.createTopicConnection();
 return myConnection;
 }

29.1.1.2.3. PUT a Java Object into an Ehcache JMS Cluster

 String payload = "this is an object";
 TopicConnection connection = getMQConnection();
 connection.start();

 TopicSession publisherSession =
 connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

 ObjectMessage message = publisherSession.createObjectMessage(payload);
 message.setStringProperty(ACTION_PROPERTY, "PUT");
 message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
 //don't set. Should work.
 //message.setStringProperty(MIME_TYPE_PROPERTY, null);
 //should work. Key should be ignored when sending an element.
 message.setStringProperty(KEY_PROPERTY, "1234");

 Topic topic = publisherSession.createTopic("EhcacheTopicDest");
 TopicPublisher publisher = publisherSession.createPublisher(topic);
 publisher.send(message);

 connection.stop();

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a Java class
String value of "this is an object".

29.1.1.2.4. PUT XML into an Ehcache JMS Cluster

 TopicConnection connection = getMQConnection();
 connection.start();

 TopicSession publisherSession = connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 String value = "<?xml version=\"1.0\"?>\n" +
 "<oldjoke>\n" +
 "<burns>Say <quote>goodnight</quote>,\n" +
 "Gracie.</burns>\n" +

 "<allen><quote>Goodnight, \n" +
 "Gracie.</quote></allen>\n" +
 "<applause/>\n" +
 "</oldjoke>";

 TextMessage message = publisherSession.createTextMessage(value);
 message.setStringProperty(ACTION_PROPERTY, "PUT");
 message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
 message.setStringProperty(MIME_TYPE_PROPERTY, "application/xml");
 message.setStringProperty(KEY_PROPERTY, "1234");

 Topic topic = publisherSession.createTopic("EhcacheTopicDest");
 TopicPublisher publisher = publisherSession.createPublisher(topic);
 publisher.send(message);

 connection.stop();

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a value of
type MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache value object
from which a mimeType and byte[] can be retrieved. The mimeType will be "application/xml". The
byte[] will contain the XML String encoded in bytes, using the platform's default charset.

29.1.1.2.5. PUT arbitrary bytes into an Ehcache JMS Cluster

 byte[] bytes = new byte[]{0x34, (byte) 0xe3, (byte) 0x88};
 TopicConnection connection = getMQConnection();
 connection.start();

 TopicSession publisherSession = connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 BytesMessage message = publisherSession.createBytesMessage();
 message.writeBytes(bytes);
 message.setStringProperty(ACTION_PROPERTY, "PUT");
 message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
 message.setStringProperty(MIME_TYPE_PROPERTY, "application/octet-stream");
 message.setStringProperty(KEY_PROPERTY, "1234");

 Topic topic = publisherSession.createTopic("EhcacheTopicDest");
 TopicPublisher publisher = publisherSession.createPublisher(topic);
 publisher.send(message);

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" in and a value of
type MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache value object
from which a mimeType and byte[] can be retrieved. The mimeType will be "application/octet-
stream". The byte[] will contain the original bytes.

29.1.1.2.6. REMOVE

 TopicConnection connection = getMQConnection();

 connection.start();

 TopicSession publisherSession = connection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

 ObjectMessage message = publisherSession.createObjectMessage();
 message.setStringProperty(ACTION_PROPERTY, "REMOVE");
 message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
 message.setStringProperty(KEY_PROPERTY, "1234");

 Topic topic = publisherSession.createTopic("EhcacheTopicDest");
 TopicPublisher publisher = publisherSession.createPublisher(topic);
 publisher.send(message);

Ehcache will remove the Element with key "1234" from cache "sampleCacheAsync" from the
cluster.

29.1.1.2.7. REMOVE_ALL

 TopicConnection connection = getMQConnection();
 connection.start();

 TopicSession publisherSession = connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 ObjectMessage message = publisherSession.createObjectMessage();
 message.setStringProperty(ACTION_PROPERTY, "REMOVE_ALL");
 message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");

 Topic topic = publisherSession.createTopic("EhcacheTopicDest");
 TopicPublisher publisher = publisherSession.createPublisher(topic);
 publisher.send(message);

 connection.stop();

Ehcache will remove all Elements from cache "sampleCacheAsync" in the cluster.

29.1.2. Using the JMSCacheLoader

The JMSCacheLoader is a CacheLoader which loads objects into the cache by sending requests
to a JMS Queue.

The loader places an ObjectMessage of type JMSEventMessage on the getQueue with an Action
of type GET.

It is configured with the following String properties, loaderArgument .

The defaultLoaderArgument, or the loaderArgument if specified on the load request. To work with
the JMSCacheManagerPeerProvider this should be the name of the cache to load from. For
custom responders, it can be anything which has meaning to the responder.

A queue responder will respond to the request. You can either create your own or use the one
built-into the JMSCacheManagerPeerProviderFactory, which attempts to load the queue from its
cache.

-

-

-

-

-

-

-

-

-

-

-

-

The JMSCacheLoader uses JNDI to maintain message queue independence. Refer to the manual
for full configuration examples using ActiveMQ and Open Message Queue.

It is configured as per the following example:

 <cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"
 properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,
 providerURL=file:///tmp,
 replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
 replicationTopicBindingName=ehcache,
 getQueueConnectionFactoryBindingName=queueConnectionFactory,
 getQueueBindingName=ehcacheGetQueue,
 timeoutMillis=20000
 defaultLoaderArgument=/>

Valid properties are:

initialContextFactoryName (mandatory) - the name of the factory used to create the message

queue initial context.

providerURL (mandatory) - the JNDI configuration information for the service provider to use.

getQueueConnectionFactoryBindingName (mandatory) - the JNDI binding name for the

QueueConnectionFactory

getQueueBindingName (mandatory) - the JNDI binding name for the queue name used to do

make requests.

defaultLoaderArgument - (optional) - an application specific argument. If not supplied as a

cache.load() parameter this default value will be used. The argument is passed in the JMS

request as a StringProperty called loaderArgument.

timeoutMillis - time in milliseconds to wait for a reply.

securityPrincipalName - the JNDI java.naming.security.principal

securityCredentials - the JNDI java.naming.security.credentials

urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs

userName - the user name to use when creating the TopicConnection to the Message Queue

password - the password to use when creating the TopicConnection to the Message Queue

acknowledgementMode - the JMS Acknowledgement mode for both publisher and subscriber.

The available choices are AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE and

SESSION_TRANSACTED. The default is AUTO_ACKNOWLEDGE.

29.1.2.1. Example Configuration Using Active MQ

 <cache name="sampleCacheNorep"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="1000"
 timeToLiveSeconds="1000"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
 properties="replicateAsynchronously=false, replicatePuts=false,
 replicateUpdates=false, replicateUpdatesViaCopy=false,
 replicateRemovals=false, loaderArgument=sampleCacheNorep"
 propertySeparator=","/>
 <cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"
 properties="initialContextFactoryName=net.sf.ehcache.distribution.jms.
 TestActiveMQInitialContextFactory,
 providerURL=tcp://localhost:61616,
 replicationTopicConnectionFactoryBindingName=topicConnectionFactory,
 getQueueConnectionFactoryBindingName=queueConnectionFactory,
 replicationTopicBindingName=ehcache,
 getQueueBindingName=ehcacheGetQueue,
 timeoutMillis=10000"/>
 </cache>

-

-

-

29.1.2.2. Example Configuration Using Open MQ

 <cache name="sampleCacheNorep"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="100000"
 timeToLiveSeconds="100000"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
 properties="replicateAsynchronously=false, replicatePuts=false,
 replicateUpdates=false, replicateUpdatesViaCopy=false,
 replicateRemovals=false"
 propertySeparator=","/>
 <cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"
 properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,
 providerURL=file:///tmp,
 replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
 replicationTopicBindingName=ehcache,
 getQueueConnectionFactoryBindingName=queueConnectionFactory,
 getQueueBindingName=ehcacheGetQueue,
 timeoutMillis=10000,
 userName=test,
 password=test"/>
 </cache>

29.1.3. Configuring Clients for Message Queue Reliability

Ehcache replication and cache loading is designed to gracefully degrade if the message queue
infrastructure stops. Replicates and loads will fail. But when the message queue comes back,
these operations will start up again.

For this to work, the ConnectionFactory used with the specific message queue needs to be
configured correctly.

For example, with Open MQ, reconnection is configured as follows:

imqReconnect='true' - without this reconnect will not happen

imqPingInterval='5' - Consumers will not reconnect until they notice the connection is down.

The ping interval

does this. The default is 30. Set it lower if you want the Ehcache cluster to reform more quickly.

- Finally, unlimited retry attempts are recommended. This is also the default. For greater

reliability consider using a message queue cluster. Most message queues support clustering.

The cluster configuration is once again placed in the ConnectionFactory configuration.

29.1.4. Tested Message Queues

29.1.4.1. Sun Open MQ

This open source message queue is tested in integration tests. It works perfectly.

29.1.4.2. Active MQ

This open source message queue is tested in integration tests. It works perfectly other than
having a problem with temporary reply queues which prevents the use of JMSCacheLoader.
JMSCacheLoader is not used during replication.

29.1.4.3. Oracle AQ

Versions up to an including 0.4 do not work, due to Oracle not supporting the unified API (send)
for topics.

29.1.4.4. JBoss Queue

Works as reported by a user.

29.1.5. Known JMS Issues

29.1.5.1. Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 where it does not cleanup temporary
queues, even though they have been deleted. That bug appears to be long standing but was

-

-

though to have been fixed.

See:

http://www.nabble.com/Memory-Leak-Using-Temporary-Queues-td11218217.html#a11218217

http://issues.apache.org/activemq/browse/AMQ-1255 The JMSCacheLoader uses temporary

reply queues when loading. The Active MQ issue is readily reproduced in Ehcache integration

testing. Accordingly, use of the JMSCacheLoader with ActiveMQ is not recommended. Open

MQ tests fine. Active MQ works fine for replication.

29.1.5.2. WebSphere 5 and 6

Websphere Application Server prevents MessageListeners, which are not MDBs, from being
created in the container. While this is a general Java EE limitation, most other app servers either
are permissive or can be configured to be permissive. WebSphere 4 worked, but 5 and 6 enforce
the restriction.

Accordingly the JMS replicator cannot be used with WebSphere 5 and 6.

30. Ehcache Constructs

30.1. BlockingCache and SelfPopulatingCache

The net.sf.ehcache.constructs package contains some applied caching classes which use the
core classes to solve everyday caching problems.

30.1.1. Blocking Cache

Imagine you have a very busy web site with thousands of concurrent users. Rather than being
evenly distributed in what they do, they tend to gravitate to popular pages. These pages are not
static, they have dynamic data which goes stale in a few minutes. Or imagine you have collections
of data which go stale in a few minutes. In each case the data is extremely expensive to calculate.

Let's say each request thread asks for the same thing. That is a lot of work. Now, add a cache.
Get each thread to check the cache; if the data is not there, go and get it and put it in the cache.
Now, imagine that there are so many users contending for the same data that in the time it takes
the first user to request the data and put it in the cache, 10 other users have done the same thing.
The upstream system, whether a JSP or velocity page, or interactions with a service layer or
database are doing 10 times more work than they need to.

Enter the BlockingCache.

It is blocking because all threads requesting the same key wait for the first thread to complete.
Once the first thread has completed the other threads simply obtain the cache entry and return.

The BlockingCache can scale up to very busy systems. Each thread can either wait indefinitely, or
you can specify a timeout using the timeoutMillis constructor argument.

30.1.2. SelfPopulatingCache

You want to use the BlockingCache, but the requirement to always release the lock creates gnarly
code. You also want to think about what you are doing without thinking about the caching.

Enter the SelfPopulatingCache. The name SelfPopulatingCache is synonymous with Pull-through
cache, which is a common caching term. SelfPopulatingCache though always is in addition to a
BlockingCache.

SelfPopulatingCache uses a CacheEntryFactory , that given a key, knows how to populate the
entry.

Note: JCache inspired getWithLoader and getAllWithLoader directly in Ehcache which work with a
CacheLoader may be used as an alternative to SelfPopulatingCache.

-

-

-

-

31. CacheManager Event Listeners

31.1. CacheManager Event Listeners

CacheManager event listeners allow implementers to register callback methods that will be
executed when a CacheManager event occurs. Cache listeners implement the
CacheManagerEventListener interface.

The events include:

adding a Cache

removing a Cache

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on
what their listener is doing.

31.1.1. Configuration

One CacheManagerEventListenerFactory and hence one CacheManagerEventListener can be
specified per CacheManager instance.

The factory is configured as below:

 <cacheManagerEventListenerFactory class="" properties=""/>

The entry specifies a CacheManagerEventListenerFactory which will be used to create a
CacheManagerPeerProvider, which is notified when Caches are added or removed from the
CacheManager.

The attributes of CacheManagerEventListenerFactory are:

class - a fully qualified factory class name

properties - comma separated properties having meaning only to the factory. Callbacks to

listener methods are synchronous and unsynchronized. It is the responsibility of the

implementer to safely handle the potential performance and thread safety issues depending on

what their listener is doing. If no class is specified, or there is no

cacheManagerEventListenerFactory element, no listener is created. There is no default.

31.1.2. Implementing a

CacheManagerEventListenerFactory and

CacheManagerEventListener

CacheManagerEventListenerFactory is an abstract factory for creating cache manager listeners.
Implementers should provide their own concrete factory extending this abstract factory. It can then
be configured in ehcache.xml.

The factory class needs to be a concrete subclass of the abstract factory
CacheManagerEventListenerFactory, which is reproduced below:

 /**
 * An abstract factory for creating {@link CacheManagerEventListener}s. Implementers
should
 * provide their own concrete factory extending this factory. It can then be configured in
 * ehcache.xml
 *
 * @author Greg Luck
 * @version $Id: cachemanager_event_listeners.apt 1961 2010-03-02 19:03:27Z gluck $
 * @see "http://ehcache.org/documentation/cachemanager_event_listeners.html"
 */
 public abstract class CacheManagerEventListenerFactory {

 /**
 * Create a <code>CacheEventListener</code>
 *
 * @param properties implementation specific properties. These are configured as comma
 * separated name value pairs in ehcache.xml. Properties may be null
 * @return a constructed CacheManagerEventListener
 */
 public abstract CacheManagerEventListener
 createCacheManagerEventListener(Properties properties);
 }

The factory creates a concrete implementation of CacheManagerEventListener, which is
reproduced below:

 /**
 * Allows implementers to register callback methods that will be executed when a

 * <code>CacheManager</code> event occurs.
 * The events include:
 *
 * adding a <code>Cache</code>
 * removing a <code>Cache</code>
 *
 * <p/>
 * Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of
 * the implementer to safely handle the potential performance and thread safety issues
 * depending on what their listener is doing.
 * @author Greg Luck
 * @version $Id: cachemanager_event_listeners.apt 1961 2010-03-02 19:03:27Z gluck $
 * @since 1.2
 * @see CacheEventListener
 */
 public interface CacheManagerEventListener {

 /**
 * Called immediately after a cache has been added and activated.
 * <p/>
 * Note that the CacheManager calls this method from a synchronized method. Any attempt to
 * call a synchronized method on CacheManager from this method will cause a deadlock.
 * <p/>
 * Note that activation will also cause a CacheEventListener status change notification
 * from {@link net.sf.ehcache.Status#STATUS_UNINITIALISED} to
 * {@link net.sf.ehcache.Status#STATUS_ALIVE}. Care should be taken on processing that
 * notification because:
 *
 * the cache will not yet be accessible from the CacheManager.
 * the addCaches methods whih cause this notification are synchronized on the
 * CacheManager. An attempt to call {@link net.sf.ehcache.CacheManager#getCache(String)}
 * will cause a deadlock.
 *
 * The calling method will block until this method returns.
 * <p/>
 * @param cacheName the name of the <code>Cache</code> the operation relates to
 * @see CacheEventListener
 */
 void notifyCacheAdded(String cacheName);

 /**
 * Called immediately after a cache has been disposed and removed. The calling method will
 * block until this method returns.
 * <p/>
 * Note that the CacheManager calls this method from a synchronized method. Any attempt to

 * call a synchronized method on CacheManager from this method will cause a deadlock.
 * <p/>
 * Note that a {@link CacheEventListener} status changed will also be triggered. Any
 * attempt from that notification to access CacheManager will also result in a deadlock.
 * @param cacheName the name of the <code>Cache</code> the operation relates to
 */
 void notifyCacheRemoved(String cacheName);

 }

The implementations need to be placed in the classpath accessible to ehcache. Ehcache uses the
ClassLoader returned by Thread.currentThread().getContextClassLoader() to load classes.

-

-

-

-

32. Cache Event Listeners

32.1. Cache Event Listeners

Cache listeners allow implementers to register callback methods that will be executed when a
cache event occurs. Cache listeners implement the CacheEventListener interface.

The events include:

an Element has been put

an Element has been updated. Updated means that an Element exists in the Cache with the

same key as the Element being put.

an Element has been removed

an Element expires, either because timeToLive or timeToIdle have been reached.

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on
what their listener is doing.

Listeners are guaranteed to be notified of events in the order in which they occurred.

Elements can be put or removed from a Cache without notifying listeners by using the putQuiet
and removeQuiet methods.

new_in_2 In clustered environments event propagation can be configured to be propagated only
locally, only remotely, or both. The default is both, to be backwardly compatible.

32.1.1. Configuration

Cache event listeners are configured per cache. Each cache can have multiple listeners.

Each listener is configured by adding a cacheEventListenerFactory element as follows:

 <cache ...>
 <cacheEventListenerFactory class="" properties="" listenFor=""/>
 ...
 </cache>

-

-

-

-

-

-

The entry specifies a CacheManagerEventListenerFactory which is used to create a
CachePeerProvider, which then receives notifications.

The attributes of CacheManagerEventListenerFactory are:

class - a fully qualified factory class name

properties - an optional comma separated properties having meaning only to the factory.

listenFor - describes which events will be delivered in a clustered environment, defaults to 'all'.

These are the possible values:

all - the default is to deliver all local and remote events

local - deliver only events originating in the current node

remote - deliver only events originating in other nodes

Callbacks to listener methods are synchronous and unsynchronized. It is the

responsibility of the implementer to safely handle the potential performance and thread safety

issues depending on what their listener is doing.

32.1.2. Implementing a CacheEventListenerFactory and

CacheEventListener

CacheEventListenerFactory is an abstract factory for creating cache event listeners. Implementers
should provide their own concrete factory, extending this abstract factory. It can then be
configured in ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class
CacheEventListenerFactory, which is reproduced below:

 /**
 * An abstract factory for creating listeners. Implementers should provide their own
 * concrete factory extending this factory. It can then be configured in ehcache.xml
 *
 * @author Greg Luck
 * @version $Id: cache_event_listeners.apt 2918 2010-10-12 07:01:14Z gluck $
 */
 public abstract class CacheEventListenerFactory {

 /**
 * Create a <code>CacheEventListener</code>
 *
 * @param properties implementation specific properties. These are configured as comma
 * separated name value pairs in ehcache.xml
 * @return a constructed CacheEventListener
 */

 public abstract CacheEventListener createCacheEventListener(Properties properties);

 }

The factory creates a concrete implementation of the CacheEventListener interface, which is
reproduced below:

 /**
 * Allows implementers to register callback methods that will be executed when a cache event
 * occurs.
 * The events include:
 *
 * put Element
 * update Element
 * remove Element
 * an Element expires, either because timeToLive or timeToIdle has been reached.
 *
 * <p/>
 * Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of
 * the implementer to safely handle the potential performance and thread safety issues
 * depending on what their listener is doing.
 * <p/>
 * Events are guaranteed to be notified in the order in which they occurred.
 * <p/>
 * Cache also has putQuiet and removeQuiet methods which do not notify listeners.
 *
 * @author Greg Luck
 * @version $Id: cache_event_listeners.apt 2918 2010-10-12 07:01:14Z gluck $
 * @see CacheManagerEventListener
 * @since 1.2
 */
 public interface CacheEventListener extends Cloneable {

 /**
 * Called immediately after an element has been removed. The remove method will block until
 * this method returns.
 * <p/>
 * Ehcache does not chech for
 * <p/>
 * As the {@link net.sf.ehcache.Element} has been removed, only what was the key of the
 * element is known.
 * <p/>
 *
 * @param cache the cache emitting the notification
 * @param element just deleted
 */
 void notifyElementRemoved(final Ehcache cache, final Element element) throws
CacheException;

 /**
 * Called immediately after an element has been put into the cache. The
 * {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method
 * will block until this method returns.
 * <p/>
 * Implementers may wish to have access to the Element's fields, including value, so the
 * element is provided. Implementers should be careful not to modify the element. The
 * effect of any modifications is undefined.
 *
 * @param cache the cache emitting the notification
 * @param element the element which was just put into the cache.
 */
 void notifyElementPut(final Ehcache cache, final Element element) throws CacheException;

 /**
 * Called immediately after an element has been put into the cache and the element already
 * existed in the cache. This is thus an update.
 * <p/>
 * The {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method
 * will block until this method returns.
 * <p/>
 * Implementers may wish to have access to the Element's fields, including value, so the
 * element is provided. Implementers should be careful not to modify the element. The
 * effect of any modifications is undefined.
 *
 * @param cache the cache emitting the notification
 * @param element the element which was just put into the cache.
 */
 void notifyElementUpdated(final Ehcache cache, final Element element) throws
CacheException;

 /**
 * Called immediately after an element is <i>found</i> to be expired. The
 * {@link net.sf.ehcache.Cache#remove(Object)} method will block until this method returns.
 * <p/>
 * As the {@link Element} has been expired, only what was the key of the element is known.
 * <p/>
 * Elements are checked for expiry in Ehcache at the following times:
 *
 * When a get request is made
 * When an element is spooled to the diskStore in accordance with a MemoryStore
 * eviction policy
 * In the DiskStore when the expiry thread runs, which by default is
 * {@link net.sf.ehcache.Cache#DEFAULT_EXPIRY_THREAD_INTERVAL_SECONDS}
 *

 * If an element is found to be expired, it is deleted and this method is notified.
 *
 * @param cache the cache emitting the notification
 * @param element the element that has just expired
 * <p/>
 * Deadlock Warning: expiry will often come from the <code>DiskStore</code>
 * expiry thread. It holds a lock to the DiskStorea the time the
 * notification is sent. If the implementation of this method calls into a
 * synchronized <code>Cache</code> method and that subsequently calls into
 * DiskStore a deadlock will result. Accordingly implementers of this method
 * should not call back into Cache.
 */
 void notifyElementExpired(final Ehcache cache, final Element element);

 /**
 * Give the replicator a chance to cleanup and free resources when no longer needed
 */
 void dispose();

 /**
 * Creates a clone of this listener. This method will only be called by Ehcache before a
 * cache is initialized.
 * <p/>
 * This may not be possible for listeners after they have been initialized. Implementations
 * should throw CloneNotSupportedException if they do not support clone.
 * @return a clone
 * @throws CloneNotSupportedException if the listener could not be cloned.
 */
 public Object clone() throws CloneNotSupportedException;

 }

The implementations need to be placed in the classpath accessible to Ehcache.

See the chapter on Classloading for details on how classloading of these classes will be done.

32.1.3. FAQ

32.1.3.1. Can I add a listener to an already running cache?

Yes.

 cache.getCacheEventNotificationService().getCacheEventListeners().add(myListener);

./class_loading.html

33. Cache Exception Handlers

33.1. Cache Exception Handlers

By default, most cache operations will propagate a runtime CacheException on failure. An
interceptor, using a dynamic proxy, may be configured so that a CacheExceptionHandler can be
configured to intercept Exceptions. Errors are not intercepted.

Caches with ExceptionHandling configured are of type Ehcache. To get the exception handling
behaviour they must be referenced using CacheManager.getEhcache() , not
CacheManager.getCache() , which returns the underlying undecorated cache.

CacheExceptionHandlers may be set either declaratively in the ehcache.xml configuration file or
programmatically.

33.1.1. Declarative Configuration

Cache event listeners are configured per cache. Each cache can have at most one exception
handler.

An exception handler is configured by adding a cacheExceptionHandlerFactory element as shown
in the following example:

 <cache ...>
 <cacheExceptionHandlerFactory
 class="net.sf.ehcache.exceptionhandler.CountingExceptionHandlerFactory"
 properties="logLevel=FINE"/>
 </cache>

33.1.2. Implementing a CacheExceptionHandlerFactory

and CacheExceptionHandler

CacheExceptionHandlerFactory is an abstract factory for creating cache exception handlers.
Implementers should provide their own concrete factory, extending this abstract factory. It can
then be configured in ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class
CacheExceptionHandlerFactory, which is reproduced below:

 /**
 * An abstract factory for creating <code>CacheExceptionHandler</code>s at configuration
 * time, in ehcache.xml.
 * <p/>
 * Extend to create a concrete factory
 *
 * @author Greg Luck
 * @version $Id: cache_exception_handlers.apt 1512 2009-12-11 02:15:16Z gluck $
 */
 public abstract class CacheExceptionHandlerFactory {

 /**
 * Create an <code>CacheExceptionHandler</code>
 *
 * @param properties implementation specific properties. These are configured as comma
 * separated name value pairs in ehcache.xml
 * @return a constructed CacheExceptionHandler
 */
 public abstract CacheExceptionHandler createExceptionHandler(Properties properties);

 }

The factory creates a concrete implementation of the CacheExceptionHandler interface, which is
reproduced below:

 /**
 * A handler which may be registered with an Ehcache, to handle exception on Cache
operations.
 * <p/>
 * Handlers may be registered at configuration time in ehcache.xml, using a
 * CacheExceptionHandlerFactory, or * set at runtime (a strategy).
 * <p/>
 * If an exception handler is registered, the default behaviour of throwing the exception
 * will not occur. The handler * method <code>onException</code> will be called. Of course, if
 * the handler decides to throw the exception, it will * propagate up through the call stack.
 * If the handler does not, it won't.
 * <p/>
 * Some common Exceptions thrown, and which therefore should be considered when
implementing

 * this class are listed below:
 *
 * {@link IllegalStateException} if the cache is not
 * {@link net.sf.ehcache.Status#STATUS_ALIVE}
 * {@link IllegalArgumentException} if an attempt is made to put a null
 * element into a cache
 * {@link net.sf.ehcache.distribution.RemoteCacheException} if an issue occurs
 * in remote synchronous replication
 *
 *
 *
 *
 * @author Greg Luck
 * @version $Id: cache_exception_handlers.apt 1512 2009-12-11 02:15:16Z gluck $
 */
 public interface CacheExceptionHandler {

 /**
 * Called if an Exception occurs in a Cache method. This method is not called
 * if an <code>Error</code> occurs.
 *
 * @param Ehcache the cache in which the Exception occurred
 * @param key the key used in the operation, or null if the operation does not use a
 * key or the key was null
 * @param exception the exception caught
 */
 void onException(Ehcache ehcache, Object key, Exception exception);
 }

The implementations need to be placed in the classpath accessible to Ehcache.

See the chapter on Classloading for details on how classloading of these classes will be done.

33.1.3. Programmatic Configuration

The following example shows how to add exception handling to a cache then adding the cache
back into cache manager so that all clients obtain the cache handling decoration.

 CacheManager cacheManager = ...
 Ehcache cache = cacheManger.getCache("exampleCache");
 ExceptionHandler handler = new ExampleExceptionHandler(...);
 cache.setCacheLoader(handler);
 Ehcache proxiedCache = ExceptionHandlingDynamicCacheProxy.createProxy(cache);
 cacheManager.replaceCacheWithDecoratedCache(cache, proxiedCache);

./class_loading.html

-

-

-

-

34. Cache Loaders

34.1. Cache Loaders

A CacheLoader is an interface which specifies load and loadAll methods with a variety of
parameters.

CacheLoaders come from JCache, but are a frequently requested feature, so they have been
incorporated into the core Ehcache classes and can be configured in ehcache.xml.

CacheLoaders are invoked in the following Cache methods:

getWithLoader (synchronous)

getAllWithLoader (synchronous)

load (asynchronous)

loadAll (asynchronous)

They are also invoked in similar (though slightly differently named) JCache methods.

The methods will invoke a CacheLoader if there is no entry for the key or keys requested. By
implementing CacheLoader, an application form of loading can take place. The get... methods
follow the pull-through cache pattern. The load... methods are useful as cache warmers.

CacheLoaders are similar to the CacheEntryFactory used in SelfPopulatingCache. However
SelfPopulatingCache is a decorator to ehcache. The CacheLoader functionality is available right in
a Cache, Ehcache or JCache and follows a more industry standard convention.

CacheLoaders may be set either declaratively in the ehcache.xml configuration file or
programmatically. This becomes the default CacheLoader. Some of the methods invoking loaders
enable an override CacheLoader to be passed in as a parameter.

More than one cacheLoader can be registered, in which case the loaders form a chain which are
executed in order. If a loader returns null, the next in chain is called.

34.1.1. Declarative Configuration

cacheLoaderFactory - Specifies a CacheLoader, which can be used both asynchronously and
synchronously to load objects into a cache. More than one cacheLoaderFactory element can be
added, in which case the loaders form a chain which are executed in order. If a loader returns null,
the next in chain is called.

 <cache ...>
 <cacheLoaderFactory class="com.example.ExampleCacheLoaderFactory"
 properties="type=int,startCounter=10"/>
 </cache>

34.1.2. Implementing a CacheLoaderFactory and

CacheLoader

CacheLoaderFactory is an abstract factory for creating CacheLoaders. Implementers should
provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class
CacheLoaderFactory, which is reproduced below:

 /**
 * An abstract factory for creating cache loaders. Implementers should provide their own
 * concrete factory extending this factory.
 * <p/>
 * There is one factory method for JSR107 Cache Loaders and one for Ehcache ones. The
Ehcache
 * loader is a sub interface of the JSR107 Cache Loader.
 * <p/>
 * Note that both the JCache and Ehcache APIs also allow the CacheLoader to be set
 * programmatically.
 * @author Greg Luck
 * @version $Id: cache_loaders.apt 1512 2009-12-11 02:15:16Z gluck $
 */
 public abstract class CacheLoaderFactory {

 /**
 * Creates a CacheLoader using the JSR107 creational mechanism.
 * This method is called from {@link net.sf.ehcache.jcache.JCacheFactory}
 *
 * @param environment the same environment passed into
 * {@link net.sf.ehcache.jcache.JCacheFactory}.
 * This factory can extract any properties it needs from the environment.
 * @return a constructed CacheLoader
 */
 public abstract net.sf.jsr107cache.CacheLoader createCacheLoader(Map environment);

 /**
 * Creates a CacheLoader using the Ehcache configuration mechanism at the time
 * the associated cache is created.
 *
 * @param properties implementation specific properties. These are configured as comma
 * separated name value pairs in ehcache.xml
 * @return a constructed CacheLoader
 */
 public abstract net.sf.ehcache.loader.CacheLoader createCacheLoader(Properties
properties);

 /**
 * @param cache the cache this extension should hold a reference to,
 * and to whose lifecycle it should be bound.
 * @param properties implementation specific properties configured as delimiter
 * separated name value pairs in ehcache.xml
 * @return a constructed CacheLoader
 */
 public abstract CacheLoader createCacheLoader(Ehcache cache, Properties properties);

 }

The factory creates a concrete implementation of the CacheLoader interface, which is reproduced
below.

A CacheLoader is bound to the lifecycle of a cache, so that init() is called during cache
initialization, and dispose() is called on disposal of a cache.

 /**
 * Extends JCache CacheLoader with load methods that take an argument in addition to a key
 * @author Greg Luck
 * @version $Id: cache_loaders.apt 1512 2009-12-11 02:15:16Z gluck $
 */
 public interface CacheLoader extends net.sf.jsr107cache.CacheLoader {

 /**
 * Load using both a key and an argument.
 * <p/>
 * JCache will call through to the load(key) method, rather than this method,
 * where the argument is null.
 *
 * @param key the key to load the object for
 * @param argument can be anything that makes sense to the loader
 * @return the Object loaded
 * @throws CacheException
 */
 Object load(Object key, Object argument) throws CacheException;

 /**
 * Load using both a key and an argument.
 * <p/>
 * JCache will use the loadAll(key) method where the argument is null.
 *
 * @param keys the keys to load objects for
 * @param argument can be anything that makes sense to the loader
 * @return a map of Objects keyed by the collection of keys passed in.
 * @throws CacheException
 */
 Map loadAll(Collection keys, Object argument) throws CacheException;

 /**
 * Gets the name of a CacheLoader
 *
 * @return the name of this CacheLoader
 */
 String getName();

 /**
 * Creates a clone of this extension. This method will only be called by Ehcache before a
 * cache is initialized.
 * <p/>
 * Implementations should throw CloneNotSupportedException if they do not support clone
 * but that will stop them from being used with defaultCache.
 *
 * @return a clone
 * @throws CloneNotSupportedException if the extension could not be cloned.
 */
 public CacheLoader clone(Ehcache cache) throws CloneNotSupportedException;

 /**
 * Notifies providers to initialise themselves.
 * <p/>
 * This method is called during the Cache's initialise method after it has changed it's
 * status to alive. Cache operations are legal in this method.
 *
 * @throws net.sf.ehcache.CacheException
 */
 void init();

 /**
 * Providers may be doing all sorts of exotic things and need to be able to clean up on
 * dispose.
 * <p/>
 * Cache operations are illegal when this method is called. The cache itself is partly
 * disposed when this method is called.
 *
 * @throws net.sf.ehcache.CacheException
 */
 void dispose() throws net.sf.ehcache.CacheException;

 /**
 * @return the status of the extension
 */
 public Status getStatus();
 }

The implementations need to be placed in the classpath accessible to ehcache.

See the chapter on Classloading for details on how classloading of these classes will be done.

34.1.3. Programmatic Configuration

The following methods on Cache allow runtime interrogation, registration and unregistration of
loaders:

 /**
 * Register a {@link CacheLoader} with the cache. It will then be tied into the cache
 * lifecycle.
 * <p/>
 * If the CacheLoader is not initialised, initialise it.
 *
 * @param cacheLoader A Cache Loader to register
 */
 public void registerCacheLoader(CacheLoader cacheLoader) {
 registeredCacheLoaders.add(cacheLoader);
 }

 /**
 * Unregister a {@link CacheLoader} with the cache. It will then be detached from the cache
 * lifecycle.
 *
 * @param cacheLoader A Cache Loader to unregister
 */
 public void unregisterCacheLoader(CacheLoader cacheLoader) {
 registeredCacheLoaders.remove(cacheLoader);
 }

 /**
 * @return the cache loaders as a live list
 */
 public List<CacheLoader> getRegisteredCacheLoaders() {
 return registeredCacheLoaders;
 }

./class_loading.html

35. Cache Extensions

35.1. Cache Extensions

CacheExtensions are a general purpose mechanism to allow generic extensions to a Cache .

CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the lifecycle
methods.

CacheExtensions are created using the CacheExtensionFactory which has a code
createCacheCacheExtension() /code method which takes as a parameter a Cache and properties.
It can thus call back into any public method on Cache, including, of course, the load methods.

CacheExtensions are suitable for timing services, where you want to create a timer to perform
cache operations. The other way of adding Cache behaviour is to decorate a cache.

See @link net.sf.ehcache.constructs.blocking.BlockingCache for an example of how to do this.

Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things
such as registering a CacheEventListener or even a CacheManagerEventListener, all from within
a CacheExtension, creating more opportunities for customisation.

35.1.1. Declarative Configuration

Cache extension are configured per cache. Each cache can have zero or more.

A CacheExtension is configured by adding a cacheExceptionHandlerFactory element as shown in
the following example:

 <cache ...>
 <cacheExtensionFactory
class="com.example.FileWatchingCacheRefresherExtensionFactory"
 properties="refreshIntervalMillis=18000, loaderTimeout=3000,
 flushPeriod=whatever, someOtherProperty=someValue ..."/>

 </cache>

35.1.2. Implementing a CacheExtensionFactory and

CacheExtension

CacheExtensionFactory is an abstract factory for creating cache extension. Implementers should
provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class
CacheExtensionFactory, which is reproduced below:

 /**
 * An abstract factory for creating <code>CacheExtension</code>s. Implementers should
 * provide their own * concrete factory extending this factory. It can then be configured
 * in ehcache.xml.
 *
 * @author Greg Luck
 * @version $Id: cache_extensions.apt 1512 2009-12-11 02:15:16Z gluck $
 */
 public abstract class CacheExtensionFactory {

 /**
 * @param cache the cache this extension should hold a reference to, and to whose
 * lifecycle it should be bound.
 * @param properties implementation specific properties configured as delimiter separated
 * name value pairs in ehcache.xml
 */
 public abstract CacheExtension createCacheExtension(Ehcache cache, Properties
properties);

 }

The factory creates a concrete implementation of the CacheExtension interface, which is
reproduced below:

 /**
 * This is a general purpose mechanism to allow generic extensions to a Cache.
 * <p/>
 * CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the
 * lifecycle methods.
 * <p/>
 * CacheExtensions are created using the CacheExtensionFactory which has a

 * <code>createCacheCacheExtension()</code> method which takes as a parameter a
Cache and
 * properties. It can thus call back into any public method on Cache, including, of course,
 * the load methods.
 * <p/>
 * CacheExtensions are suitable for timing services, where you want to create a timer to
 * perform cache operations. The other way of adding Cache behaviour is to decorate a
cache.
 * See {@link net.sf.ehcache.constructs.blocking.BlockingCache} for an example of how to do
 * this.
 * <p/>
 * Because a CacheExtension holds a reference to a Cache, the CacheExtension can do
things
 * such as registering a CacheEventListener or even a CacheManagerEventListener, all from
 * within a CacheExtension, creating more opportunities for customisation.
 *
 * @author Greg Luck
 * @version $Id: cache_extensions.apt 1512 2009-12-11 02:15:16Z gluck $
 */
 public interface CacheExtension {

 /**
 * Notifies providers to initialise themselves.
 * <p/>
 * This method is called during the Cache's initialise method after it has changed it's
 * status to alive. Cache operations are legal in this method.
 *
 * @throws CacheException
 */
 void init();

 /**
 * Providers may be doing all sorts of exotic things and need to be able to clean up on
 * dispose.
 * <p/>
 * Cache operations are illegal when this method is called. The cache itself is partly
 * disposed when this method is called.
 *
 * @throws CacheException
 */
 void dispose() throws CacheException;

 /**
 * Creates a clone of this extension. This method will only be called by Ehcache before a
 * cache is initialized.
 * <p/>

 * Implementations should throw CloneNotSupportedException if they do not support clone
 * but that will stop them from being used with defaultCache.
 *
 * @return a clone
 * @throws CloneNotSupportedException if the extension could not be cloned.
 */
 public CacheExtension clone(Ehcache cache) throws CloneNotSupportedException;

 /**
 * @return the status of the extension
 */
 public Status getStatus();
 }

The implementations need to be placed in the classpath accessible to ehcache.

See the chapter on Classloading for details on how class loading of these classes will be done.

35.1.3. Programmatic Configuration

Cache Extensions may also be programmatically added to a Cache as shown.

 TestCacheExtension testCacheExtension = new TestCacheExtension(cache, ...);
 testCacheExtension.init();
 cache.registerCacheExtension(testCacheExtension);

./class_loading.html

-

-

-

36. Cache Server with SOAP and RESTful Web

Services

36.1. Cache Server

36.1.1. Introduction

Ehcache now comes with a Cache Server, available as a WAR for most web containers, or as a
standalone server. The Cache Server has two APIs: RESTful resource oriented, and SOAP. Both
support clients in any programming language.

(A Note on terminology: Leonard Richardson and Sam Ruby have done a great job of clarifying
the different Web Services architectures and distinguishing them from each other. We use their
taxonomy in describing web services. See http://www.oreilly.com/catalog/9780596529260/ .)

36.1.2. RESTful Web Services

Roy Fielding coined the acronym REST, denoting Representational State Transfer, in his PhD

thesis .

The Ehcache implementation strictly follows the RESTful resource-oriented architecture style.

Specifically:

The HTTP methods GET, HEAD, PUT/POST and DELETE are used to specify the method of

the operation. The URI does not contain method information.

The scoping information, used to identify the resource to perform the method on, is contained in

the URI path.

The RESTful Web Service is described by and exposes a WADL (Web Application Description

Language) file. It contains the URIs you can call, and what data to pass and get back. Use the

OPTIONS method to return the WADL. Roy is on the JSR311 expert group. JSR311 and

Jersey, the reference implementation, are used to deliver RESTful web services in Ehcache

server.

http://www.oreilly.com/catalog/9780596529260/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

36.1.2.1. RESTFul Web Services API

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically
has been configured in ehcache.xml or an IoC container. Multiple CacheManagers are not
supported.

Resources are identified using a URI template. The value in parentheses should be substituted
with a literal to specify a resource.

Response codes and response headers strictly follow HTTP conventions.

36.1.2.2. CacheManager Resource Operations

36.1.2.2.1. OPTIONS /{cache}}

Retrieves the WADL for describing the available CacheManager operations.

36.1.2.2.2. GET /

Lists the Caches in the CacheManager.

36.1.2.3. Cache Resource Operations

36.1.2.3.1. OPTIONS /{cache}}

Retrieves the WADL describing the available Cache operations.

36.1.2.3.2. HEAD /{cache}}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body
returned.

36.1.2.3.3. GET /{cache}

Gets a cache representation. This includes useful metadata such as the configuration and cache
statistics.

36.1.2.3.4. PUT /{cache}

Creates a Cache using the defaultCache configuration.

36.1.2.3.5. DELETE / {cache}

Deletes the Cache.

36.1.2.4. Element Resource Operations

36.1.2.4.1. OPTIONS /{cache}}

Retrieves the WADL describing the available Element operations.

36.1.2.4.2. HEAD /{cache}/{element}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body
returned.

36.1.2.4.3. GET /{cache}/{element}

Gets the element value.

36.1.2.4.4. HEAD /{cache}/{element}

Gets the element's metadata.

36.1.2.4.5. PUT /{cache}/{element}

Puts an element into the Cache.

The time to live of new Elements defaults to that for the cache. This may be overridden by setting
the HTTP request header ehcacheTimeToLiveSeconds . Values of 0 to 2147483647 are
accepted. A value of 0 means eternal.

36.1.2.4.6. DELETE / {cache}/{element}

Deletes the element from the cache.

The resource representation for all elements is * . DELETE/{cache}/* will call
<<<cache.removeAll() .

36.1.2.5. Resource Representations

We deal with resource representations rather than resources themselves.

36.1.2.5.1. Element Resource Representations

When Elements are PUT into the cache, a MIME Type should be set in the request header. The
MIME Type is preserved for later use.

The new MimeTypeByteArray is used to store the byte[]and the MimeType in the value field of
Element .

Some common MIME Types which are expected to be used by clients are:

text/plain Plain text

text/xml Extensible Markup Language. Defined in
RFC 3023

application/json JavaScript Object Notation JSON. Defined in
RFC 4627

application/x-java-serialized-object A serialized Java object

Because Ehcache is a distributed Java cache, in some configurations the Cache server may
contain Java objects that arrived at the Cache server via distributed replication. In this case no
MIME Type will be set and the Element will be examined to determine its MIME Type.

Because anything that can be PUT into the cache server must be Serializable, it can also be
distributed in a cache cluster i.e. it will be Serializable.

36.1.2.6. RESTful Code Samples

These are RESTful code samples in multiple languages.

36.1.2.6.1. Curl Code Samples

These samples use the popular curl command line utility.

36.1.2.6.1.1. OPTIONS

This example shows how calling OPTIONS causes Ehcache server to respond with the WADL for
that resource

 curl --request OPTIONS http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <application xmlns="http://research.sun.com/wadl/2006/10">
 <resources base="http://localhost:8080/ehcache/rest/">
 <resource path="sampleCache2/2">
 <method name="HEAD"><response><representation mediaType="
 ...
 </resource>
 </resources>
 </application>

36.1.2.6.1.2. HEAD

 curl --head http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

 HTTP/1.1 200 OK
 X-Powered-By: Servlet/2.5
 Server: GlassFish/v3
 Last-Modified: Sun, 27 Jul 2008 08:08:49 GMT
 ETag: "1217146129490"
 Content-Type: text/plain; charset=iso-8859-1
 Content-Length: 157
 Date: Sun, 27 Jul 2008 08:17:09 GMT

36.1.2.6.1.3. PUT

 echo "Hello World" | curl -S -T - http://localhost:8080/ehcache/rest/sampleCache2/3

The server will put Hello World into sampleCache2 using key 3 .

36.1.2.6.1.4. GET

 curl http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

 <?xml version="1.0"?>
 <oldjoke>
 <burns>Say <quote>goodnight</quote>,
 Gracie.</burns>
 <allen><quote>Goodnight,
 Gracie.</quote></allen>
 <applause/>

36.1.2.6.2. Ruby Code Samples

36.1.2.6.2.1. GET

 require 'rubygems'
 require 'open-uri'
 require 'rexml/document'

 response = open('http://localhost:8080/ehcache/rest/sampleCache2/2')
 xml = response.read
 puts xml

The server responds with:

 <?xml version="1.0"?>
 <oldjoke>
 <burns>Say <quote>goodnight</quote>,
 Gracie.</burns>
 <allen><quote>Goodnight,
 Gracie.</quote></allen>
 <applause/>
 </oldjoke>

36.1.2.6.3. Python Code Samples

36.1.2.6.3.1. GET

 import urllib2

 f = urllib2.urlopen('http://localhost:8080/ehcache/rest/sampleCache2/2')
 print f.read()

The server responds with:

 <?xml version="1.0"?>
 <oldjoke>
 <burns>Say <quote>goodnight</quote>,
 Gracie.</burns>
 <allen><quote>Goodnight,
 Gracie.</quote></allen>
 <applause/>
 </oldjoke>

36.1.2.6.4. Java Code Samples

36.1.2.6.4.1. Create and Get a Cache and Entry

 package samples;

 import java.io.InputStream;
 import java.io.OutputStream;
 import java.net.HttpURLConnection;
 import java.net.URL;

 /**
 * A simple example Java client which uses the built-in java.net.URLConnection.
 *
 * @author BryantR
 * @author Greg Luck
 */
 public class ExampleJavaClient {

 private static String TABLE_COLUMN_BASE =
 "http://localhost:8080/ehcache/rest/tableColumn";
 private static String TABLE_COLUMN_ELEMENT =
 "http://localhost:8080/ehcache/rest/tableColumn/1";

 /**
 * Creates a new instance of EHCacheREST
 */
 public ExampleJavaClient() {

 }

 public static void main(String[] args) {
 URL url;
 HttpURLConnection connection = null;
 InputStream is = null;
 OutputStream os = null;
 int result = 0;
 try {
 //create cache
 URL u = new URL(TABLE_COLUMN_BASE);
 HttpURLConnection urlConnection = (HttpURLConnection) u.openConnection();
 urlConnection.setRequestMethod("PUT");

 int status = urlConnection.getResponseCode();
 System.out.println("Status: " + status);
 urlConnection.disconnect();

 //get cache
 url = new URL(TABLE_COLUMN_BASE);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.connect();
 is = connection.getInputStream();
 byte[] response1 = new byte[4096];
 result = is.read(response1);
 while (result != -1) {
 System.out.write(response1, 0, result);
 result = is.read(response1);
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {
 }
 System.out.println("reading cache: " + connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();

 //create entry
 url = new URL(TABLE_COLUMN_ELEMENT);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestProperty("Content-Type", "text/plain");
 connection.setDoOutput(true);
 connection.setRequestMethod("PUT");
 connection.connect();
 String sampleData = "Ehcache is way cool!!!";

 byte[] sampleBytes = sampleData.getBytes();
 os = connection.getOutputStream();
 os.write(sampleBytes, 0, sampleBytes.length);
 os.flush();
 System.out.println("result=" + result);
 System.out.println("creating entry: " + connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();

 //get entry
 url = new URL(TABLE_COLUMN_ELEMENT);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.connect();
 is = connection.getInputStream();
 byte[] response2 = new byte[4096];
 result = is.read(response2);
 while (result != -1) {
 System.out.write(response2, 0, result);
 result = is.read(response2);
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {
 }
 System.out.println("reading entry: " + connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (os != null) try {
 os.close();
 } catch (Exception ignore) {
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {
 }
 if (connection != null) connection.disconnect();
 }
 }
 }

36.1.2.6.5. Scala Code Samples

36.1.2.6.5.1. GET

 import java.net.URL
 import scala.io.Source.fromInputStream

 object ExampleScalaGet extends Application {
 val url = new URL("http://localhost:8080/ehcache/rest/sampleCache2/2")
 fromInputStream(url.openStream).getLines.foreach(print)
 }

Run it with:

 scala -e ExampleScalaGet

The program outputs:

 <?xml version="1.0"?>
 <oldjoke>
 <burns>Say <quote>goodnight</quote>,
 Gracie.</burns>
 <allen><quote>Goodnight,
 Gracie.</quote></allen>
 <applause/>

36.1.2.6.6. PHP Code Samples

36.1.2.6.6.1. GET

 <?php

 $ch = curl_init();

 curl_setopt ($ch, CURLOPT_URL, "http://localhost:8080/ehcache/rest/sampleCache2/3");
 curl_setopt ($ch, CURLOPT_HEADER, 0);

 curl_exec ($ch);

 curl_close ($ch);
 ?>

The server responds with:

 Hello Ingo

36.1.2.6.6.2. PUT

 <?php
 $url = "http://localhost:8080/ehcache/rest/sampleCache2/3";
 $localfile = "localfile.txt";

 $fp = fopen ($localfile, "r");
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_VERBOSE, 1);
 curl_setopt($ch, CURLOPT_URL, $url);
 curl_setopt($ch, CURLOPT_PUT, 1);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
 curl_setopt($ch, CURLOPT_INFILE, $fp);
 curl_setopt($ch, CURLOPT_INFILESIZE, filesize($localfile));

 $http_result = curl_exec($ch);
 $error = curl_error($ch);
 $http_code = curl_getinfo($ch ,CURLINFO_HTTP_CODE);

 curl_close($ch);
 fclose($fp);

 print $http_code;
 print "

$http_result";
 if ($error) {
 print "

$error";
 }

 ?>

The server responds with:

 * About to connect() to localhost port 8080 (#0)
 * Trying ::1... * connected
 * Connected to localhost (::1) port 8080 (#0)
 > PUT /ehcache/rest/sampleCache2/3 HTTP/1.1

 Host: localhost:8080
 Accept: */*
 Content-Length: 11
 Expect: 100-continue

 < HTTP/1.1 100 Continue
 < HTTP/1.1 201 Created
 < Location: http://localhost:8080/ehcache/rest/sampleCache2/3
 < Content-Length: 0
 < Server: Jetty(6.1.10)
 <
 * Connection #0 to host localhost left intact
 * Closing connection #0

-

-

36.1.3. Creating Massive Caches with Load Balancers

and Partitioning

The RESTful Ehcache Server is designed to achieve massive scaling using data partitioning - all
from a RESTful interface. The largest Ehcache single instances run at around 20GB in memory.
The largest disk stores run at 100Gb each. Add nodes together, with cache data partitioned
across them, to get larger sizes. 50 nodes at 20GB gets you to 1 Terabyte.

Two deployment choices need to be made:

where is partitoning performed, and

is redundancy required?

These choices can be mixed and matched with a number of different deployment topologies.

36.1.3.1. Non-redundant, Scalable with client hash-based routing

This topology is the simplest. It does not use a load balancer. Each node is accessed directly by
the cache client using REST. No redundancy is provided.

The client can be implemented in any language because it is simply a HTTP client.

It must work out a partitioning scheme. Simple key hashing, as used by memcached, is sufficient.

Here is a Java code sample:

 String[] cacheservers = new String[]{"cacheserver0.company.com",
"cacheserver1.company.com",
 "cacheserver2.company.com", "cacheserver3.company.com",
"cacheserver4.company.com",
 "cacheserver5.company.com"};
 Object key = "123231";
 int hash = Math.abs(key.hashCode());
 int cacheserverIndex = hash % cacheservers.length;
 String cacheserver = cacheservers[cacheserverIndex];

36.1.3.2. Redundant, Scalable with client hash-based routing

Redundancy is added as shown in the above diagram by: Replacing each node with a cluster of
two nodes. One of the existing distributed caching options in Ehcache is used to form the cluster.
Options in Ehcache 1.5 are RMI and JGroups-based clusters. Ehcache-1.6 will add JMS as a
further option. Put each Ehcache cluster behind VIPs on a load balancer.

36.1.3.3. Redundant, Scalable with load balancer hash-based
routing

Many content-switching load balancers support URI routing using some form of regular
expressions.

So, you could optionally skip the client-side hashing to achieve partitioning in the load balancer
itself.

For example:

 /ehcache/rest/sampleCache1/[a-h]* => cluster1
 /ehcache/rest/sampleCache1/[i-z]* => cluster2

Things get much more sophisticated with F5 load balancers, which let you create iRules in the
TCL language. So rather than regular expression URI routing, you could implement key hashing-
based URI routing. Remember in Ehcache's RESTful server, the key forms the last part of the
URI. e.g. In the URI http://cacheserver.company.com/ehcache/rest/sampleCache1/3432 , 3432 is
the key.

You hash using the last part of the URI.

See
http://devcentral.f5.com/Default.aspx?tabid=63&PageID=153&ArticleID=135&articleType=ArticleVi
ew for how to implment a URI hashing iRule on F5 load balancers.

36.1.4. W3C (SOAP) Web Services

The W3C (http://www.w3.org/ is a standards body that defines Web Services as

 The World Wide Web is more and more used for application to application communication.
 The programmatic interfaces made available are referred to as Web services.

They provide a set of recommendations for achieving this. See http://www.w3.org/2002/ws/ .

An interoperability organisation, WS-I http://www.ws-i.org/ , seeks to achieve interoperabilty

between W3C Web Services. The W3C specifications for SOAP and WSDL are required to meet

the WS-I definition.

-

-

-

-

-

-

Ehcache is using Glassfish's libraries to provide it's W3C web services. The project known as
Metro follows the WS-I definition.

Finally, OASIS (http://oasis-open.org), defines a Web Services Security specification for SOAP:

WS-Security. The current version is 1.1. It provides three main security mechanisms: ability to

send security tokens as part of a message, message integrity, and message confidentiality.

Ehcache's W3C Web Services support the stricter WS-I definition and use the SOAP and WSDL
specfications.

Specifically:

The method of operation is in the entity-body of the SOAP envelope and a HTTP header.

POST is always used as the HTTP method.

The scoping information, used to identify the resource to perform the method on, is contained in

the SOAP entity-body. The URI path is always the same for a given Web Service - it is the

service "endpoint".

The Web Service is described by and exposes a WSDL (Web Services Description Language)

file. It contains the methods, their arguments and what data types are used.

The WS-Security SOAP extensions are supported

36.1.4.1. W3C Web Services API

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically
has been configured in ehcache.xml or an IoC container. Multiple CacheManagers are not
supported.

The API definition is as follows:

WSDL - EhcacheWebServiceEndpointService.wsdl

Types - EhcacheWebServiceEndpointService_schema1.xsd

36.1.4.2. Security

By default no security is configured. Because it is simply a Servlet 2.5 web application, it can be
secured in all the usual ways by configuration in the web.xml.

In addition the cache server supports the use of XWSS 3.0 to secure the Web Service. See

https://xwss.dev.java.net/ . All required libraries are packaged in the war for XWSS 3.0.

A sample, commented out server_security_config.xml is provided in the WEB-INF directory.
XWSS automatically looks for this configuration file.

http://ehcache.org/wsdl/EhcacheWebServiceEndpointService.wsdl
http://ehcache.org/wsdl/EhcacheWebServiceEndpointService_schema1.xsd
https://xwss.dev.java.net/

A simple example, based on an XWSS example,
net.sf.ehcache.server.soap.SecurityEnvironmentHandler , which looks for a password in a System
property for a given username is included. This is not recommended for production use but is
handy when you are getting started with XWSS.

To use XWSS:

Add configuration in accordance with XWSS to the server_security_config.xml file. Create a class
which implements the CallbackHandler interface and provide its fully qualified path in the
SecurityEnvironmentHandler element.

The integration test EhcacheWebServiceEndpoint test shows how to use the XWSS client side.
On the client side, configuration must be provided in a file called client_security_config.xml must
be in the root of the classpath.

To add client credentials into the SOAP request do:

 cacheService = new
EhcacheWebServiceEndpointService().getEhcacheWebServiceEndpointPort();
 //add security credentials
((BindingProvider)cacheService).getRequestContext().put(BindingProvider.USERNAME_PRO
PERTY,
 "Ron");
((BindingProvider)cacheService).getRequestContext().put(BindingProvider.PASSWORD_PRO
PERTY,
 "noR");
 String result = cacheService.ping();

36.1.5. Requirements

36.1.5.1. Java

Java 5 or 6

36.1.5.2. Web Container (WAR packaged version only)

The standalone server comes with its own embedded Glassfish web container.

The web container must support the Servlet 2.5 specification.

-

-

-

-

-

The following web container configuration have been tested:

Glassfish V2/V3

Tomcat 6

Jetty 6

36.1.6. Downloading

The server is available as follows:

36.1.6.1. Sourceforge

Download here .

There are two tarball archives in tar.gz format:

ehcache-server - this contains the WAR file which must be deployed in your own web

container.

ehcache-standalone-server - this contains a complete standalone directory structure with an

embedded Glassfish V3 web container together with shell scripts for starting and stopping.

36.1.6.2. Maven

The Ehcache Server is in the central Maven repository packaged as type war . Use the following
Maven pom snippet:

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-server</artifactId>
 <version>enter_version_here</version>
 <type>war</type>
 </dependency>

It is also available as a jaronly version, which makes it easier to embed. This version excludes all
META-INF and WEB-INF configuration files, and also excludes the ehcache.xml. You need to
provide these in your maven project.

 <dependency>

http://sourceforge.net/project/showfiles.php?group_id=93232

 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-server</artifactId>
 <version>enter_version_here</version>
 <type>jar</type>
 <classifier>jaronly</classifier>
 </dependency>

-

-

36.1.7. Installation

36.1.7.1. Installing the WAR

Use your Web Container's instructions to install the WAR or include the WAR in your project with
Maven's war plugin.

Web Container specific configuration is provided in the WAR as follows:

sun-web.xml - Glassfish V2/V3 configuration

jetty-web.xml - Jetty V5/V6 configuration Tomcat V6 passes all integration tests. It does not

require a specific configuration.

36.1.7.2. Configuring the Web Application

Expand the WAR.

Edit the web.xml.

36.1.7.2.1. Disabling the RESTful Web Service

Comment out the RESTful web service section.

36.1.7.2.2. Disabling the SOAP Web Service

Comment out the RESTful web service section.

36.1.7.2.3. Configuring Caches

The ehcache.xml configuration file is located in WEB-INF/classes/ehcache.xml.

Follow the instructions in this config file, or the core Ehcache instructions to configure.

36.1.7.2.4. SOAP Web Service Security

-

-

-

36.1.8. Installing the Standalone Server

The WAR also comes packaged with a standalone server, based on Glassfish V3 Embedded.

The quick start is:

Untar the download

bin/start.sh to start. By default it will listen on port 8080, with JMX listening on port 8081, will

have both RESTful and SOAP web services enabled, and will use a sample Ehcache

configuration from the WAR module.

bin/stop.sh to stop

36.1.8.1. Configuring the Standalone Server

Configuration is by editing the war/web.xml file as per the instructions for the WAR packaging.

36.1.8.2. Starting and Stopping the Standalone Server

36.1.8.2.1. Using Commons Daemon jsvc

jsvc creates a daemon which returns once the service is started. jsvc works on all common Unix-
based operating systems including Linux, Solaris and Mac OS X.

It creates a pid file in the pid directory.

This is a Unix shell script that starts the server as a daemon.

To use jsvc you must install the native binary jsvc from the Apache Commons Daemon project.
The source for this is distributed in the bin directory as jsvc.tar.gz. Untar it and follow the
instructions for building it or download a binary from the Commons Daemon project.

Convenience shell scripts are provided as follows:

start - daemon_start.sh

stop - daemon_stop.sh

jsvc is designed to integrate with Unix System 5 initialization scripts. (/etc/rc.d)

You can also send Unix signals to it. Meaningful ones for the Ehcache Standalone Server are:

No Meaning

1 HUP

2 INT

9 KILL

15 TERM

36.1.8.2.2. Executable jar

The server is also packaged as an executable jar for developer convenience which will work on all
operating systems.

A convenience shell script is provided as follows:

start - startup.sh

From the bin directory you can also invoke the following command directly:

 unix - java -jar ../lib/ehcache-standalone-server-0.7.jar 8080 ../war
 windows - java -jar ..\lib\ehcache-standalone-server-0.7.jar 8080 ..\war

36.1.9. Monitoring

The CacheServer registers Ehcache MBeans with the platform MBeanServer.

Remote monitoring of the MBeanServer is the responsibility of the Web Container or Application
Server vendor.

For example, some instructions for Tomcat are here:

https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX

See your Web Container documentation for how to do this for your web container.

https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX

36.1.9.1. Remotely Monitoring the Standalone Server with JMX

The standalone server automatically exposes the MBeanServer on a port 1 higher than the HTTP
listening port.

To connect with JConsole simply fire up JConsole, enter the host in the Remote field and portIn
the above example that is

 192.168.1.108:8686

Then click Connect .

To see the Ehcache MBeans, click on the Mbeans tab and expand the net.sf.ehcache tree node.

You will see something like the following.

Of course, from there you can hook the Cache Server up to your monitoring tool of choice. See
the chapter on JMX Management and Monitoring for more information.

36.1.10. Download

Download the ehcache-standalone-server from

http://sourceforge.net/projects/ehcache/files/ehcache-server .

36.1.11. FAQ

http://sourceforge.net/projects/ehcache/files/ehcache-server

1.

2.

3.

4.

36.1.11.1. Does Cache Server work with WebLogic?

Yes (we have tested 10.3.2), but the SOAP libraries are not compatible. Either comment out the
SOAP service from web.xml or do the following:

Unzip ehcache-server.war to a folder called ehcache

Remove the following jars from WEB-INF/lib: jaxws-rt-2.1.4.jar metro-webservices-api-1.2.jar

metro-webservices-rt-1.2.jar metro-webservices-tools-1.2.jar

Deploy the folder to WebLogic.

Use the soapUI GUI in WebLogic to add a project from: http:// hostname : port

/ehcache/soap/EhcacheWebServiceEndpoint?wsdl

-

-

-

37. Using ColdFusion with Ehcache

Using Coldfusion and Ehcache

37.1. Using Ehcache with ColdFusion

37.1.1. Which version of Ehcache comes with which
version of ColdFusion?

ColdFusion now ships with Ehcache. Here are the versions shipped:

ColdFusion 9.0.1 includes Ehcache 2.0 out-of-the-box

ColdFusion 9 includes Ehcache 1.6 out-of-the-box

ColdFusion 8 caching was not built on Ehcache, but Ehcache can easily be integrated with a

CF8 application (see below).

37.1.2. Which version of Ehcache should I use if I want a
distributed cache?

Ehcache is designed so that applications written to use it can easily scale out. A standalone cache
(the default in ColdFusion 9) can easily be distributed. A distributed cache solves database
bottleneck problems, cache drift (where the data cached in individual application server nodes
becomes out of sync), and also (when using the recommended 2-tier Terracotta distributed cache)
provides the ability to have a highly available, coherent in-memory cache that is far larger than
can fit in any single JVM heap. See http://ehcache.org/documentation/distributed_caching.html

for details.

Note: Ehcache 1.7 and higher support the Terracotta distributed cache out of the box. Due to
Ehcache's API backward compatibility, it is easy to swap out older versions of ehcache with newer
ones to leverage the features of new releases.

37.1.3. Using Ehcache with ColdFusion 9 and 9.0.1

The ColdFusion community has actively engaged with Ehcache and have put out lots of great
blogs. Here are three to get you started.

For a short introduction - check out Raymond Camden's blog:

http://ehcache.org/documentation/distributed_caching.html

http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements

For more in-depth analysis read Rob Brooks-Bilson's awesome 9 part Blog Series:

http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-

ColdFusion-9--Part-1-Why-Cache

14 days of ColdFusion caching, by Aaron West, covering a different topic each day:

http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--

Caching-a-Full-Page

37.1.4. Switching from a local cache to a distributed cache
with ColdFusion 9.0.1

1. Download the Terracotta kit. For the quickest results, use Terracotta 3.2.1. Download it here:

http://www.terracotta.org/dl/oss-download-destination?name=terracotta-3.2.1-

installer.jar&bucket=tcdistributions&file=terracotta-3.2.1-installer.jar

Install the kit with 'java -jar terracotta-3.2.1-installer.jar'. We will refer to the directory you installed
it into as TCHOME. Similarly, we will refer to the location of ColdFusion as CFHOME. These
instructions assume you are working with a standalone server install of ColdFusion, if working with
a EAR/WAR install you will need to modify the steps accordingly (file locations may vary,
additional steps may be need to rebuild the EAR/WAR).

Before integrating the distributed cache with ColdFusion, you may want to follow the simple self-
contained tutorial which uses one of the samples in the kit to demonstrate distributed caching:

http://www.terracotta.org/start/distributed-cache-tutorial

2. Copy TCHOME/ehcache/ehcache-terracotta-2.0.0.jar into CFHOME/lib

3. Edit the CFHOME/lib/ehcache.xml to add the necessary two lines of config to turn on distributed
caching

 <terracottaConfig url="localhost:9510"/>
 <defaultCache
 ...
 >
 <terracotta clustered="true" />
 </defaultCache>

4. Edit jvm.config (typically in CFHOME/runtime/bin) properties to ensure that
coldfusion.classPath (set with -Dcoldfusion.classPath= in java.args) DOES NOT include any
relative paths (ie ../) - ie replace the relative paths with full paths [This is to work around a known

http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.terracotta.org/dl/oss-download-destination?name=terracotta-3.2.1-installer.jar&bucket=tcdistributions&file=terracotta-3.2.1-installer.jar
http://www.terracotta.org/dl/oss-download-destination?name=terracotta-3.2.1-installer.jar&bucket=tcdistributions&file=terracotta-3.2.1-installer.jar
http://www.terracotta.org/start/distributed-cache-tutorial

issue in ehcache-terracotta-2.0.0.jar].

5. Start the Terracotta server

 $TCHOME/bin/start-tc-server.sh

 start-tc-server.bat

Note: In production, you would run your servers on a set of separate machines for fault tolerance
and performance.

6. Start ColdFusion, access your application, and see the distributed cache in action.

7. This is just the tip of the iceberg & you'll probably have lots of questions. Drop us an email to
info@terracottatech.com to let us know how you got on, and if you have questions you'd like
answers to.

37.1.5. Using Ehcache with ColdFusion 8

To integrate Ehcache with ColdFusion 8, first add the ehcache-core jar (and its dependent jars) to
your web application lib directory.

The following code demonstrates how to call Ehcache from ColdFusion 8. It will cache a CF object
in Ehcache and the set expiration time to 30 seconds. If you refresh the page many times within
30 seconds, you will see the data from cache. After 30 seconds, you will see a cache miss, then
the code will generate a new object and put in cache again.

 <CFOBJECT type="JAVA" class="net.sf.ehcache.CacheManager" name="cacheManager">
 <cfset cache=cacheManager.getInstance().getCache("MyBookCache")>
 <cfset myBookElement=#cache.get("myBook")#>
 <cfif IsDefined("myBookElement")>
 <cfoutput>
 myBookElement: #myBookElement#

 </cfoutput>
 <cfif IsStruct(myBookElement.getObjectValue())>
 Cache Hit<p/>
 <!-- Found the object from cache -->
 <cfset myBook = #myBookElement.getObjectValue()#>
 </cfif>
 </cfif>
 <cfif IsDefined("myBook")>
 <cfelse>

 Cache Miss
 <!-- object not found in cache, go ahead create it -->
 <cfset myBook = StructNew()>
 <cfset a = StructInsert(myBook, "cacheTime", LSTimeFormat(Now(), 'hh:mm:sstt'), 1)>
 <cfset a = StructInsert(myBook, "title", "EhCache Book", 1)>
 <cfset a = StructInsert(myBook, "author", "Greg Luck", 1)>
 <cfset a = StructInsert(myBook, "ISBN", "ABCD123456", 1)>
 <CFOBJECT type="JAVA" class="net.sf.ehcache.Element" name="myBookElement">
 <cfset myBookElement.init("myBook", myBook)>
 <cfset cache.put(myBookElement)>
 </cfif>
 <cfoutput>
 Cache time: #myBook["cacheTime"]#

 Title: #myBook["title"]#

 Author: #myBook["author"]#

 ISBN: #myBook["ISBN"]#
 </cfoutput>

38. Explicit Locking API

38.1. Explicit Locking API

This package contains an implementation of an Ehcache which provides for explicit locking, using
READ and WRITE locks.

It is possible to get more control over Ehcache's locking behaviour.

The initial version (0.2) works with Ehcache when used with the Terracotta Server Array. Version
0.3 works both with Terracotta and standalone when combined with Ehcache 2.1 or later.

38.1.1. Locking Modes

38.1.1.1. Standalone Ehcache

When using the Ehcache APIs in standalone ehcache core there is no direct control over locking.
The last write wins. This is akin to the READ_UNCOMMITTED isolation level.

However the Explicit locking API uses the lock manager, which as of Ehcache 2.1 has been
extended to support local caching.

38.1.1.2. Standard Ehcache clustered with Terracotta

In this case the cache is always coherent, akin to READ_COMMITTED isolation level. This
package simply gives you more control over when locks are acquired and released. In regular
Ehcache if you get an object to read or write it can be changed underneath you while you are
performing your application level operations on the object.

38.1.1.3. Explicit Locking Ehcache clustered with Terracotta

With this module you can first get the lock for the key, then perform your app level operations
preventing anyone else from writing to the object. When the app level operations are completed
you put the Element back in the cache and release the lock so that others can now access it.

Here is a brief example:

 String key = "123";
 Foo val = new Foo();
 cache.acquireWriteLockOnKey(key);
 try {
 cache.put(new Element(key, val));
 } finally {
 cache.releaseWriteLockOnKey(key);
 }
 ...sometime later

 String key = "123";
 cache.acquireWriteLockOnKey(key);
 try {
 Object cachedVal = cache.get(key).getValue();
 cachedVal.setSomething("abc");
 cache.put(new Element(key, cachedVal));
 } finally {
 cache.releaseWriteLockOnKey(key);
 }

38.1.2. How it works

A READ lock does not prevent other READers from also acquiring a READ lock and reading. A
READ lock cannot be obtained if there is an outstanding WRITE lock - it will queue.

A WRITE lock cannot be obtained while there are outstanding READ locks - it will queue.

In each case the lock should be released after use to avoid locking problems. The lock release
should be in a finally block.

If before each read you acquire a READ lock and then before each write you acquire a WRITE
lock, then an isolation level akin to READ_COMMITTED is achieved.

38.1.3. Download

The Explicit Locking API is in the ehcache-explicitlocking module. Download here .

The open source Terracotta Server Array kit (which includes ehcache-core and ehcache-

http://sourceforge.net/projects/ehcache/files/ehcache-explicitlocking

terracotta) can be downloaded here . terracotta_community_login

http://www.terracotta.org/dl/oss-sign-up

-

-

-

39. Write-through and write-behind caching with

CacheWriters

39.1. Write-through and Write-behind Caching with

the CacheWriter

new_in_2 Write-through caching is a caching pattern where writes to the cache cause writes to an
underlying resource. The cache acts as a facade to the underlying resource. With this pattern, it
often makes sense to read through the cache too.

Write-behind caching uses the same client API, however the write happens asynchronously.

Ehcache-2.0 introduces write-through and write-behind caching.

While any resource can sit behind the facade of a w-t cache, such as a file system, or a web
service client, the common one is a database. To simplify the discussion, we will use database as
the example resource.

39.1.1. Potential Benefits of Write-Behind

The big potential benefit of write-behind is database offload. This can be achieved in a number of
ways:

time shifting - moving writes to a specific time or time interval. For example writes could be

batched up and written overnight, or at 5 minutes past the hour, so as to avoid periods of peak

contention.

rate limiting - spreading writes out to flatten peaks. Say a Point of Sale network has an end-of-

day procedure where data gets written up to a central server. All POS nodes in the same time

zone will write all at once. A very large peak will occur. Using rate limiting, writes could be

limited to 100 TPS, and the queue of writes are whittled down over several hours

conflation - consolidation writes so as to result in fewer transactions. Say there is an amount in

a database row which is updated by 5 writes, incrementing it from 10 to 20 to 31 to 40 to 45.

Using conflation the 5 transactions are replaced by one which simply updates the value from 10

to 45. These benefits must be weighed against the limitations and constraints imposed.

39.1.2. Limitations & Constraints of Write-Behind

-

-

39.1.2.1. Transaction Boundaries

If the cache participates in a JTA transaction (ehcache-2.0 and higher) (i.e. it is an XAResource)
then the Cache can be made consistent with the database as the write to the database and
commit or rollback happens with the transaction boundary.

In write-behind, the write to the resource happens after the write to the cache. The transaction
boundary is the write to the outstanding queue, not the write behind. In write-through mode,
commit can get called and both the Cache and the underlying resource, e.g. the database can get
committed at once.

Because the database is being written to outside of the transaction, there is always a risk that a
failure on the eventual write will occur. While this can be mitigated with retry counts and delays,
compensating actions may be required.

39.1.2.2. Time delay

The obvious implication of asynchronous writes is that there is a delay between when the cache is
updated and when the database is updated. This introduces an inconsistency between the cache
and the database, where the cache holds the correct value and the database will be eventually
consistent with the cache. The data passed into the CacheWriter methods is a snapshot of the
cache entry at the time of the write to operation.

A read against the database will result in incorrect data being loaded.

39.1.2.3. Applications Tolerant of Inconsistency

The application must be tolerant of this inconsistency, as per the following are examples:

The database is logging transactions and only appends are done.

Reading is done by a part of the application that does not write, so there is no way that data

can be corrupted. The application is tolerant of delays. E.g. a news application where the

reader displays the articles that are written.

Note that in practice, if other applications are writing to the database, then a cache can often be
inconsistent with the database.

39.1.2.4. Node time synchronisation

Ideally node times should be synchronised. The write-behind queue is generally written to the

-

-

underlying resource in timestamp order, based on the timestamp of the cache operation, although
there is no guaranteed ordering.

The ordering will be more consistent if all nodes are using the same time. This can easily be
achieved by configuring your system clock to synchronise with a time authority using Network
Time Protocol.

39.1.2.5. No ordering guarantees

The items on the write-behind queue are generally in order, but this isn't guaranteed. In certain
situation and more particularly in clustered usage, the items can be processed out of order.
Additionally, when batching is used, write and delete collections are aggregated separately and
can be processed inside the CacheWriter in a different order that the order that was used by the
queue.

Your application must be tolerant of item reordering or you need to compensate for this in your
implementation of the CacheWriter. Possible examples here are:

Working with versioning in the cache elements.

Verifications with the underlying to cache to check if the scheduled write behind operation is still

relevant.

39.1.3. Using a combined Read-Through and Write-Behind
Cache

For applications that are not tolerant of inconsistency, the simplest solution is for the application to
always read through the same cache that it writes through. Provided all database writes are
through the cache, consistency is guaranteed. And in the distributed caching scenario, using
Terracotta clustering extends the same guarantee to the cluster.

If using transactions, the cache is the XAResource, and a commit is a commit to the cache.

The cache effectively becomes the System Of Record ("SOR"). Terracotta provides HA and
durability and can easily act as the SOR. The database then becomes a backup to the SOR.

There are some practical problems that come up when using this approach: caching of a partial
dataset and expiry and eviction limitations

39.1.3.1. Lazy Loading

The question arises: Does the entire data set need to be loaded in the cache on startup? The
answer is no, because a read-through cache uses a CacheLoader which loads data into the cache

on demand. In this way the cache be populated lazily.

39.1.3.2. Caching of a Partial Dataset

If the entire dataset cannot fit in the cache, then some reads will miss the cache and fall through to
the CacheLoader which will in turn hit the database. If a write has occurred but has not yet hit the
database due to write-behind, then the database will be inconsistent.

The simplest solution is to ensure that the entire dataset is in the cache. This then places some
implications on cache configuration in the areas of expiry and eviction.

39.1.3.2.1. Eviction

Eviction occurs when the maximum elements for the cache have been exceeded. Ensure that the
maxElementsInMemory and, if using the DiskStore or Terracotta clustering, the
maxElementsOnDisk exceeds the required size, so that eviction does not not occur.

39.1.3.2.2. Expiry

Even if all of the dataset can fit in the cache, it could be evicted if Elements expire. Accordingly,
both timeToLive and timeToIdle should be set to eternal to prevent this from happening.

39.1.4. Ehcache Versions

Both Ehcache standalone and with Terracotta Server Array (Ehcache EX and FX) are supported.

39.1.4.1. Ehcache DX (Standalone Ehcache)

The write-behind queue is stored locally in memory. It supports all configuration options, but any
data in the queue will be lost on JVM shutdown.

39.1.4.2. Ehcache EX and FX

39.1.4.2.1. Durable HA write-behind Queue

EX and FX when used with the Terracotta Server Array will store the queue on the Terracotta
Server Array and can thus be configured for durability and HA. The data is still kept in the
originating node for performance.

39.1.4.2.2. Cluster wide queue processing

In a cluster each node will have a CacheWriter configured. These will process their local work, but
if there is no local work, they will poll the other nodes to see if there is outstanding work and
process part of that work.

This means that workload is balanced across the cluster, and that the write-behind queue will be
serviced as long as there is one Ehcache L1 instance in the cluster.

39.1.5. Configuration

There are many configuration options. See the CacheWriterConfiguration for properties that may
be set and their effect.

Below is an example of how to configure the cache writer in XML:

 <cache name="cacheName" eternal="false" maxElementsInMemory="1000"
overflowToDisk="false">
 <cacheWriter writeMode="write_behind" maxWriteDelay="8" rateLimitPerSecond="5"
 writeCoalescing="true" writeBatching="true" writeBatchSize="20"
 retryAttempts="2" retryAttemptDelaySeconds="2">
 <cacheWriterFactory class="com.company.MyCacheWriterFactory"
 properties="just.some.property=test; another.property=test2"
propertySeparator=";"/>
 </cacheWriter>
 </cache>

Further examples:

 <cache name="writeThroughCache1" eternal="false" maxElementsInMemory="1000"
overflowToDisk="false"/>

 <cache name="writeThroughCache2" eternal="false" maxElementsInMemory="1000"
overflowToDisk="false">
 <cacheWriter/>
 </cache>

 <cache name="writeThroughCache3" eternal="false" maxElementsInMemory="1000"
overflowToDisk="false">
 <cacheWriter writeMode="write_through" notifyListenersOnException="true"
maxWriteDelay="30"
 rateLimitPerSecond="10" writeCoalescing="true" writeBatching="true"
writeBatchSize="8"
 retryAttempts="20" retryAttemptDelaySeconds="60"/>
 </cache>

 <cache name="writeThroughCache4" eternal="false" maxElementsInMemory="1000"
overflowToDisk="false">
 <cacheWriter writeMode="write_through" notifyListenersOnException="false"
maxWriteDelay="0"
 rateLimitPerSecond="0" writeCoalescing="false" writeBatching="false"
writeBatchSize="1"
 retryAttempts="0" retryAttemptDelaySeconds="0">
 <cacheWriterFactory
class="net.sf.ehcache.writer.WriteThroughTestCacheWriterFactory"/>
 </cacheWriter>
 </cache>

 <cache name="writeBehindCache5" eternal="false" maxElementsInMemory="1000"
overflowToDisk="false">
 <cacheWriter writeMode="write-behind" notifyListenersOnException="true"
maxWriteDelay="8" rateLimitPerSecond="5"
 writeCoalescing="true" writeBatching="false" writeBatchSize="20"
 retryAttempts="2" retryAttemptDelaySeconds="2">
 <cacheWriterFactory class="net.sf.ehcache.writer.WriteThroughTestCacheWriterFactory"
 properties="just.some.property=test; another.property=test2"
propertySeparator=";"/>
 </cacheWriter>
 </cache>

-

-

This configuration can also be achieved through the Cache constructor in Java, like this:

 Cache cache = new Cache(
 new CacheConfiguration("cacheName", 10)
 .cacheWriter(new CacheWriterConfiguration()
 .writeMode(CacheWriterConfiguration.WriteMode.WRITE_BEHIND)
 .maxWriteDelay(8)
 .rateLimitPerSecond(5)
 .writeCoalescing(true)
 .writeBatching(true)
 .writeBatchSize(20)
 .retryAttempts(2)
 .retryAttemptDelaySeconds(2)
 .cacheWriterFactory(new CacheWriterConfiguration.CacheWriterFactoryConfiguration()
 .className("com.company.MyCacheWriterFactory")
 .properties("just.some.property=test; another.property=test2")
 .propertySeparator(";"))));

Instead of relying on a CacheWriterFactoryConfiguration>> to create a <<<CacheWriter , it's also
possible to explicitly register a CacheWriter instance from within Java code. This allows you to
refer to local resources like database connections or file handles.

 Cache cache = manager.getCache("cacheName");
 MyCacheWriter writer = new MyCacheWriter(jdbcConnection);
 cache.registerCacheWriter(writer);

39.1.5.1. Configuration Attributes

The CacheWriterFactory supports the following attributes:

39.1.5.1.1. All modes

write-mode [write-through | write-behind] - whether to run in write-behind or write-through

mode. The default is write-through.

39.1.5.1.2. write-through mode only

notifyListenersOnException - whether to notify listeners when a an exception occurs on a storer

operation. Defaults to false.

-

-

-

-

-

-

-

39.1.5.1.3. write-behind mode only

maxWriteDelaySeconds the maximum number of seconds to wait before writing behind.

Defaults to 0. If set to a value greater than 0, it permits operations to build up in the queue to

enable effective coalescing and batching optimisations.

rateLimitPerSecond the maximum number of store operations to allow per second. If

writeBatching is enabled,

writeCoalescing whether to use write coalescing. Defaults to false. If set to true, if multiple

operations on the same key are present in the write-behind queue, only the latest write is done,

as the others are redundant. This can dramatically reduce load on the underlying resource.

writeBatching whether to batch write operations. Defaults to false. If set to true, storeAll and

deleteAll will be called rather than store and delete being called for each key. Resources such

as databases can perform more efficiently if updates are batched, thus reducing load.

writeBatchSize the number of operations to include in each batch. Defaults to 1. If there are

less entries in the write-behind queue than the batch size, the queue length size is used. Note

that batching is split across operations. So, if the batch size is 10 and there were 5 puts and 5

deletes, then the CacheWriter will be invoked then, not after 10 puts and 10 deletes.

retryAttempts the number of times to attempt. Defaults to 1.

retryAttemptDelaySeconds the number of seconds to wait before retrying.

39.1.6. API

CacheLoaders are exposed for API use through the cache.getWithLoader(...) method.
CacheWriters are exposed with cache.putWithWriter(...) and cache.removeWithWriter(...)
methods.

For example, following is the method signature for cache.putWithWriter(...) .

 /**
 * Put an element in the cache writing through a CacheWriter. If no CacheWriter has been
 * set for the cache, then this method has the same effect as cache.put().
 * <p/>
 * Resets the access statistics on the element, which would be the case if it has previously
 * been gotten from a cache, and is now being put back.
 * <p/>
 * Also notifies the CacheEventListener, if the writer operation succeeds, that:
 *
 * the element was put, but only if the Element was actually put.
 * if the element exists in the cache, that an update has occurred, even if the element
 * would be expired if it was requested
 *

 *
 * @param element An object. If Serializable it can fully participate in replication and the
 * DiskStore.
 * @throws IllegalStateException if the cache is not {@link
net.sf.ehcache.Status#STATUS_ALIVE}
 * @throws IllegalArgumentException if the element is null
 * @throws CacheException
 */
 void putWithWriter(Element element) throws IllegalArgumentException, IllegalStateException,
 CacheException;

See the Cache JavaDoc for the complete API.

39.1.7. SPI

The Ehcache write-through SPI is the CacheWriter interface. Implementers perform writes to the
underlying resource in their implementation.

 /**
 * A CacheWriter is an interface used for write-through and write-behind caching to a
 * underlying resource.
 * <p/>
 * If configured for a cache, CacheWriter's methods will be called on a cache operation.
 * A cache put will cause a CacheWriter write
 * and a cache remove will cause a writer delete.
 * <p>
 * Implementers should create an implementation which handles storing and deleting to an
 * underlying resource.
 * </p>
 * <h4>Write-Through</h4>
 * In write-through mode, the cache operation will occur and the writer operation will occur
 * before CacheEventListeners are notified. If
 * the write operation fails an exception will be thrown. This can result in a cache which
 * is inconsistent with the underlying resource.
 * To avoid this, the cache and the underlying resource should be configured to participate
 * in a transaction. In the event of a failure
 * a rollback can return all components to a consistent state.
 * <p/>
 * <h4>Write-Behind</h4>
 * In write-behind mode, writes are written to a write-behind queue. They are written by a
 * separate execution thread in a configurable
 * way. When used with Terracotta Server Array, the queue is highly available. In addition
 * any node in the cluster may perform the
 * write-behind operations.
 * <p/>
 * <h4>Creation and Configuration</h4>
 * CacheWriters can be created using the CacheWriterFactory.
 * <p/>
 * The manner upon which a CacheWriter is actually called is determined by the
 * {@link net.sf.ehcache.config.CacheWriterConfiguration} that is set up for cache
 * that is using the CacheWriter.
 * <p/>
 * See the CacheWriter chapter in the documentation for more information on how to use
writers.

 *
 * @author Greg Luck
 * @author Geert Bevin
 * @version $Id: $
 */
 public interface CacheWriter {

 /**
 * Creates a clone of this writer. This method will only be called by ehcache before a
 * cache is initialized.
 * <p/>
 * Implementations should throw CloneNotSupportedException if they do not support clone
 * but that will stop them from being used with defaultCache.
 *
 * @return a clone
 * @throws CloneNotSupportedException if the extension could not be cloned.
 */
 public CacheWriter clone(Ehcache cache) throws CloneNotSupportedException;

 /**
 * Notifies writer to initialise themselves.
 * <p/>
 * This method is called during the Cache's initialise method after it has changed it's
 * status to alive. Cache operations are legal in this method.
 *
 * @throws net.sf.ehcache.CacheException
 */
 void init();

 /**
 * Providers may be doing all sorts of exotic things and need to be able to clean up on
 * dispose.
 * <p/>
 * Cache operations are illegal when this method is called. The cache itself is partly
 * disposed when this method is called.
 */
 void dispose() throws CacheException;

 /**
 * Write the specified value under the specified key to the underlying store.
 * This method is intended to support both key/value creation and value update for a
 * specific key.
 *
 * @param element the element to be written
 */

 void write(Element element) throws CacheException;

 /**
 * Write the specified Elements to the underlying store. This method is intended to
 * support both insert and update.
 * If this operation fails (by throwing an exception) after a partial success,
 * the convention is that entries which have been written successfully are to be removed
 * from the specified mapEntries, indicating that the write operation for the entries left
 * in the map has failed or has not been attempted.
 *
 * @param elements the Elements to be written
 */
 void writeAll(Collection<Element> elements) throws CacheException;

 /**
 * Delete the cache entry from the store
 *
 * @param entry the cache entry that is used for the delete operation
 */
 void delete(CacheEntry entry) throws CacheException;

 /**
 * Remove data and keys from the underlying store for the given collection of keys, if
 * present. If this operation fails * (by throwing an exception) after a partial success,
 * the convention is that keys which have been erased successfully are to be removed from
 * the specified keys, indicating that the erase operation for the keys left in the collection
 * has failed or has not been attempted.
 *
 * @param entries the entries that have been removed from the cache
 */
 void deleteAll(Collection<CacheEntry> entries) throws CacheException;
 }

39.1.8. FAQ

39.1.8.1. What happens if an exception occurs when the writer is
called?

In the clustered async implementation inside the Terracotta Toolkit this is implemented as such;

 try {
 processItems();
 } catch (final Throwable e) {
 errorHandler.onError(ProcessingBucket.this, e);
 continue;
 }

This works since there's a concept of error handlers that isn't present in the non-clustered write
behind implementation in Ehcache core. The default error handler simply logs the exceptions that
occurred.

In standalone Ehcache, users should be careful to catch Exceptions. One solution is to put the
item back on the queue with a call to cache.write() .

40. OpenJPA Caching

40.1. OpenJPA Caching Provider

Ehcache easily integrates with the OpenJPA persistence framework.

40.1.1. Installing

To use it, add a Maven dependency for ehcache-openjpa.

 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-openjpa</artifactId>
 <version>0.1</version>

or download from downloads.

40.1.2. Configuration

Set OpenJPAs openjpa.QueryCache to ehcache and openjpa.DataCacheManager to ehcache .
Thats it!

See http://openjpa.apache.org/builds/1.0.2/apache-openjpa-

1.0.2/docs/manual/ref_guide_caching.html for more on caching in OpenJPA.

40.1.3. Default Cache

As with Hibernate, Ehcache's OpenJPA module (from 0.2) uses the defaultCache configured in
ehcache.xml to create caches.

For production, we recommend configuring a cache configuration in ehcache.xml for each cache,
so that it may be correctly tuned.

http://openjpa.apache.org/
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html

-

-

-

-

-

41. Grails Caching

41.1. Configuring a Grails Application for Clustering

41.1.1. Problem

You would like to enable clustered caching in your Grails application.

41.1.2. Solution

Ehcache supports two modes of clustering support for Grails applications:

Clustered Hibernate 2nd Level Cache

Clustered Sessions

This recipe will tell you how to configure grails to use a clustered Hibernate 2nd Level Cache.

41.1.3. Configure Grails for Clustered Hibernate 2nd Level
Cache

These steps assume that you have:

Terracotta version 2.1.0 or later installed to $TERRACOTTA_HOME

Grails installed

A Grails application

41.1.3.1. Step 1 - Configure the hibernate configuration for 2nd
level caching

Grails should set your Hibernate configuration properly by default. Just in case you should make
sure it is set properly in your application.

Edit the grails-app/conf/DataSource.groovy file and make sure your settings match the following:

 hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=true
 cache.provider_class='org.hibernate.cache.EhCacheProvider'
 }

-

-

-

-

41.1.3.2. Step 2 - Configure caching strategy for your domain
classes

For each domain class that you would like to cache configure its caching stragegy.

To define the caching strategy, add a static mapping section to your domain class definition file.
Set cache usage to one of:

read-only ,

read-write ,

transactional , or

nonstrict-read-write .

You can also use the shortcut cache true . For more information on cache element settings, see
the Grails documentation for GORM Mapping.

Here is an example domain class called "Event" configured for caching:

 package events

 class Event {
 static mapping = {
 cache true
 }

 Date date
 String title
 }

To use transactional caching, use the transactional strategy instead:

 package events

 class Event {
 static mapping = {
 cache usage: 'transactional'
 }

 Date date
 String title

http://www.grails.org/GORM+-+Mapping+DSL

41.1.3.3. Step 3 - Configure Grails to use the latest version of
Ehcache/Terracotta

By default Grails uses an older version of Ehcache. You should configure it to use the version of
Ehcache and Terracotta you have installed.

(Note: make sure your version of Ehcache is at least version 2.1.0 or later.)

To configure the version of Ehcache used by Grails, edit the grails-app/conf/BuildConfig.groovy
like so:

 grails.project.dependency.resolution = {
 // inherit Grails' default dependencies
 inherits("global") {
 // uncomment to disable ehcache
 // excludes 'ehcache'
 runtime 'net.sf.ehcache:ehcache-core:2.1.0'
 runtime 'net.sf.ehcache:ehcache-terracotta:2.1.0'
 }

 ... (rest of file here)

41.1.3.4. Step 4 - Configure Ehcache to use Terracotta clustering

Grails also provides a default Ehcache configuration file which you will need to edit to enable
Terracotta clustering.

Edit the grails-app/conf/ehcache.xml file and add the Terracotta configuration like so:

 <ehcache>
 <terracottaConfig url="localhost:9510"/>
 <defaultCache
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="false">
 <terracotta/>
 </defaultCache>
 </ehcache>

41.1.3.5. Step 5 - Start a Terracotta Server

Ehcache Terracotta clustering requires that at least one Terracotta Server is running.

Start the Terracotta server now:

 $ $TERRACOTTA_HOME/bin/start-tc-server.sh

41.1.3.6. Step 6 - Run your application

 $ grails run-app

You can monitor the behavior of your application using the Terracotta Developer Console. Run it
now and it will show you useful statistics about of your clustered Grails application!

 $ $TERRACOTTA_HOME/bin/dev-console.sh

41.1.4. More Information

See full documentation for Grails cache settings at Grails GORM Mapping DSL .

http://www.grails.org/GORM+-+Mapping+DSL

-

-

42. JSR107 (JCACHE) Support

42.1. JSR107 (JCACHE) Support

42.1.1. JSR107 Implementation

Ehcache provides a preview implementation of JSR107 via the net.sf.cache.jcache package.

WARNING: JSR107 is still being drafted with the Ehcache maintainer as Co Spec Lead. This
package will continue to change until JSR107 is finalised. No attempt will be made to maintain
backward compatiblity between versions of the package. It is therefore recommended to use
Ehcache's proprietary API directly.

42.1.2. Using JCACHE

42.1.2.1. Creating JCaches

JCaches can be created in two ways:

as an Ehcache decorator

from JCache's CacheManager

42.1.2.1.1. Creating a JCache using an Ehcache decorator

manager in the following sample is an net.sf.ehcache.CacheManager

 net.sf.jsr107cache.Cache cache = new JCache(manager.getCache("sampleCacheNoIdle"),
null);

42.1.2.1.2. Creating a JCache from an existing Cache in Ehcache's

CacheManager

This is the recommended way of using JCache. Caches can be configured in ehcache.xml and
wrapped as JCaches with the getJCache method of CacheManager.

manager in the following sample is an net.sf.ehcache.CacheManager

 net.sf.jsr107cache.Cache cache = manager.getJCache("sampleCacheNoIdle");

42.1.2.1.3. Adding a JCache to Ehcache's CacheManager

manager in the following sample is an net.sf.ehcache.CacheManager

 Ehcache Ehcache = new net.sf.ehcache.Cache(...);
 net.sf.jsr107cache.Cache cache = new JCache(ehcache);
 manager.addJCache(cache);

42.1.2.1.4. Creating a JCache using the JCache CacheManager

Warning: The JCache CacheManager is unworkable and will very likely be dropped in the final
JCache as a Class. It will likely be replaced with a CacheManager interface.

The JCache CacheManager only works as a singleton. You obtain it with getInstance

The CacheManager uses a CacheFactory to create Caches. The CacheFactory is specified using
the Service Provider Interface mechanism introduced in JDK1.3.

The factory is specified in the META-INF/services/net.sf.jsr107cache.CacheFactory resource file.
This would normally be packaged in a jar. The default value for the Ehcache implementation is
net.sf.ehcache.jcache.JCacheFactory

The configuration for a cache is assembled as a map of properties. Valid properties can be found
in the JavaDoc for the JCacheFactory.createCache() method.

See the following full example.

 CacheManager singletonManager = CacheManager.getInstance();
 CacheFactory cacheFactory = singletonManager.getCacheFactory();
 assertNotNull(cacheFactory);

http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service%20Provider
http://ehcache.org/xref/net/sf/ehcache/jcache/JCacheFactory.html#74

 Map config = new HashMap();
 config.put("name", "test");
 config.put("maxElementsInMemory", "10");
 config.put("memoryStoreEvictionPolicy", "LFU");
 config.put("overflowToDisk", "true");
 config.put("eternal", "false");
 config.put("timeToLiveSeconds", "5");
 config.put("timeToIdleSeconds", "5");
 config.put("diskPersistent", "false");
 config.put("diskExpiryThreadIntervalSeconds", "120");

 Cache cache = cacheFactory.createCache(config);
 singletonManager.registerCache("test", cache);

42.1.2.2. Getting a JCache

Once a cache is registered in CacheManager, you get it from there.

The following example shows how to get a Cache.

 manager = CacheManager.getInstance();
 Ehcache Ehcache = new net.sf.ehcache.Cache("UseCache", 10,
 MemoryStoreEvictionPolicy.LFU,
 false, null, false, 10, 10, false, 60, null);
 manager.registerCache("test", new JCache(ehcache, null));
 Cache cache = manager.getCache("test");

42.1.2.3. Using a JCache

The JavaDoc is the best place to learn how to use a JCache.

The main point to remember is that JCache implements Map and that is the best way to think
about it.

JCache also has some interesting asynchronous methods such as load and loadAll which can be
used to preload the JCache.

42.1.3. Problems and Limitations in the early draft of
JSR107

If you are used to the richer API that Ehcache provides, you need to be aware of some problems
and limitations in the draft specification.

You can generally work around these by getting the Ehcache backing cache. You can then access
the extra features available in ehcache.

Of course the biggest limitation is that JSR107 (as of Augut 2007) is a long way from final.

 /**
 * Gets the backing Ehcache
 */
 public Ehcache getBackingCache() {
 return cache;

http://ehcache.org/apidocs/net/sf/ehcache/jcache/JCache.html

 }

-

-

-

-

-

The following is both a critique of JCache and notes on the Ehcache implementation. As a
member of the JSR107 Expert Group these notes are also intended to be used to improve the
specification.

42.1.3.1. net.sf.jsr107cache.CacheManager

CacheManager does not have the following features:

shutdown the CacheManager - there is no way to free resources or persist. Implementations

may utilise a shutdown hook, but that does not work for application server redeployments,

where a shutdown listener must be used.

List caches in the CacheManager. There is no way to iterate over, or get a list of caches.

remove caches from the CacheManager - once its there it is there until JVM shutdown. This

does not work well for dynamic creation, destruction and recreation of caches.

CacheManager does not provide a standard way to configure caches. A Map can be populated

with properties and passed to the factory, but there is no way a configuration file can be

configured. This should be standardised so that declarative cache configuration, rather than

programmatic, can be achieved.

42.1.3.2. net.sf.jsr107cache.CacheFactory

A property is specified in the resource services/net.sf.jsr107cache.CacheFactory for a
CacheFactory.

The factory then resolves the CacheManager which must be a singleton.

A singleton CacheManager works in simple scenarios. But there are many where you want
multiple CacheManagers in an application. Ehcache supports both singleton creation semantics
and instances and defines the way both can coexist.

The singleton CacheManager is a limitation of the specification.

(Alternatives: Some form of annotation and injection scheme)

Pending a final JSR107 implementation, the Ehcache configuration mechanism is used to create
JCaches from ehcache.xml config.

42.1.3.3. net.sf.jsr107cache.Cache

The spec is silent on whether a Cache can be used in the absence of a CacheManager.

Requiring a CacheManager makes a central place where concerns affecting all caches can be

-

-

-

-

-

-

-

-

managed, not just a way of looking them up. For example, configuration for persistence and

distribution.

Cache does not have a lifecycle. There is no startup and no shutdown. There is no way, other

than a shutdown hook, to free resources or perform persistence operations. Once again this will

not work for redeployment of applications in an app server.

There is no mechanism for creating a new cache from a default configuration such as a public

void registerCache(String cacheName) on CacheManager. This feature is considered

indispensable by frameworks such as Hibernate.

Cache does not have a getName() method. A cache has a name; that is how it is retrieved from

the CacheManager. But it does not know its own name. This forces API users to keep track of

the name themselves for reporting exceptions and log messages.

Cache does not support setting a TTL override on a put. e.g. put(Object key, Object value, long

timeToLive) . This is a useful feature.

The spec is silent on whether the cache accepts null keys and elements. Ehcache allows all

implementations. i.e.

 cache.put(null, null);
 assertNull(cache.get(null));
 cache.put(null, "value");
 assertEquals("value", cache.get(null));
 cache.put("key", null);
 assertEquals(null, cache.get("key"));

null is effectively a valid key. However because null id not an instance of Serializable null-keyed

entries will be limited to in-process memory.

The load(Object key) , loadAll(Collection keys) and getAll(Collection collection) methods specify

in the javadoc that they should be asynchronous. Now, most load methods work off a database

or some other relatively slow resource (otherwise there would be no need to have a cache in

the first place). To avoid running out of threads, these load requests need to be queued and

use a finite number of threads. The Ehcache implementation does that. However, due to the

lack of lifecycle management, there is no immediate way to free resources such as thread

pools.

The load method ignores a request if the element is already loaded in for that key.

get and getAll are inconsistent. getAll throws CacheException, but get does not. They both

should.

 /**
 * Returns a collection view of the values contained in this map. The
 * collection is backed by the map, so changes to the map are reflected in
 * the collection, and vice-versa. If the map is modified while an
 * iteration over the collection is in progress (except through the
 * iterator's own <tt>remove</tt> operation), the results of the

 * iteration are undefined. The collection supports element removal,
 * which removes the corresponding mapping from the map, via the
 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt> operations.
 * It does not support the add or <tt>addAll</tt> operations.
 * <p/>
 *
 * @return a collection view of the values contained in this map.
 */
 public Collection values() {

-

-

-

-

-

It is not practical or desirable to support this contract. Ehcache has multiple maps for storage of

elements so there is no single backing map. Allowing changes to propagate from a change in

the collection maps would break the public interface of the cache and introduce subtle

threading issues. The Ehcache implementation returns a new collection which is not connected

to internal structures in ehcache.

42.1.3.4. net.sf.jsr107cache.CacheEntry

getHits() returns int. It should return long because production cache systems have entries hit

more than Integer.MAX_VALUE times. Once you get to Integer.MAX_VALUE the counter rolls

over. See the following test:

 @Test public void testIntOverflow() {
 long value = Integer.MAX_VALUE;
 value += Integer.MAX_VALUE;
 value += 5;
 LOG.info("" + value);
 int valueAsInt = (int) value;
 LOG.info("" + valueAsInt);
 assertEquals(3, valueAsInt);
 }

getCost() requirs the CacheEntry to know where it is. If it is in a DiskStore then its cost of

retrieval could be higher than if it is in heap memory. Ehcache elements do not have this

concept, and it is not implemented. i.e. getCost always returns 0. Also, if it is in the DiskStore,

when you retrieve it is in then in the MemoryStore and its retrieval cost is a lot lower. I do not

see the point of this method.

getLastUpdateTime() is the time the last "update was made". JCACHE does not support

updates, only puts

42.1.3.5. net.sf.jsr107cache.CacheStatistics

getObjectCount() is a strange name. How about getSize()? If a cache entry is an object graph

each entry will have more than one "object" in it. But the cache size is what is really meant, so

why not call it that?

Once again getCacheHits and getCacheMisses should be longs.

 public interface CacheStatistics {

 public static final int STATISTICS_ACCURACY_NONE = 0;
 public static final int STATISTICS_ACCURACY_BEST_EFFORT = 1;
 public static final int STATISTICS_ACCURACY_GUARANTEED = 2;

 public int getStatisticsAccuracy();

 public int getObjectCount();

 public int getCacheHits();

 public int getCacheMisses();

 public void clearStatistics();

-

-

-

-

-

There is a getStatisticsAccuracy() method but not a corresponding setStatisticsAccuracy

method on Cache, so that you can alter the accuracy of the Statistics returned. Ehcache

supports this behaviour.

There is no method to estimate memory use of a cache. Ehcache serializes each Element to a

byte[] one at a time and adds the serialized sizes up. Not perfect but better than nothing and

works on older JDKs.

CacheStatistics is obtained using cache.getCacheStatistics() It then has getters for values. In

this way it feels like a value object. The Ehcache implementation is Serializable so that it can

act as a DTO. However it also has a clearStatistics() method. This method clear counters on

the Cache. Clearly CacheStatistics must hold a reference to Cache to enable this to happen.

But what if you are really using it as a value object and have serialized it? The Ehcache

implementation marks the Cache reference as transient . If clearStatistics() is called when the

cache reference is no longer there, an IllegalStateException is thrown. A much better solution

would be to move clearStatistics() to Cache.

42.1.3.6. net.sf.jsr107cache.CacheListener

 /**
 * Interface describing various events that can happen as elements are added to
 * or removed from a cache
 */
 public interface CacheListener {
 /** Triggered when a cache mapping is created due to the cache loader being consulted */
 public void onLoad(Object key);

 /** Triggered when a cache mapping is created due to calling Cache.put() */
 public void onPut(Object key);

 /** Triggered when a cache mapping is removed due to eviction */
 public void onEvict(Object key);

 /** Triggered when a cache mapping is removed due to calling Cache.remove() */
 public void onRemove(Object key);

 public void onClear();
 }

Listeners often need not just the key, but the cache Entry itself. This listener interface is

extremely limiting.

There is no onUpdate notification method. These are mapped to JCACHE's onPut notification.

-

-

There is no onExpired notification method. These are mapped to JCACHE's onEvict

notification.

42.1.3.7. net.sf.jsr107cache.CacheLoader

JCache can store null values against a key. In this case, on JCache# get or getAll should an

implementation attempt to load these values again? They might have been null in the system

the CacheLoader loads from, but now aren't. The Ehcache implementation will still return nulls,

which is probably the correct behaviour. This point should be clarified.

42.1.4. Other Areas

42.1.4.1. JMX

JSR107 is silent on JMX which has been included in the JDK since 1.5.

43. Tomcat Issues and Best Practices

43.1. Tomcat Issues and Best Practices

Ehcache is probably used most commonly with Tomcat. This chapter documents some known
issues with Tomcat and recommended practices.

Ehcache's own caching and gzip filter integration tests run against Tomcat 5.5 and Tomcat 6.
Tomcat will continue to be tested against ehcache. Accordingly Tomcat is tier one for ehcache.

43.1.1. Tomcat Known Issues

Because Tomcat is so widely used, over time a list of known issues has been compiled. These
issues and their solutions are listed below.

43.1.1.1. Problem rejoining a cluster after a reload

If I restart/reload a web application in Tomcat that has a CacheManager that is part of a cluster,
the CacheManager is unable to rejoin the cluster. If I set logging for net.sf.ehcache.distribution to
FINE I see the following exception: "FINE: Unable to lookup remote cache peer for Removing
from peer list. Cause was: error unmarshalling return; nested exception is: java.io.EOFException.

The Tomcat and RMI class loaders do not get along that well. Move ehcache.jar to
$TOMCAT_HOME/common/lib. This fixes the problem. This issue happens with anything that
uses RMI, not just ehcache.

43.1.1.2. In development, there appear to be class loader
memory leak as I continually redeploy my web application.

There are lots of causes of memory leaks on redeploy. Moving Ehcache out of the WAR and into
$TOMCAT/common/lib fixes this leak.

43.1.1.3. net.sf.ehcache.CacheException: Problem starting
listener for RMICachePeer ...

I get net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer ...
java.rmi.UnmarshalException: error unmarshalling arguments; nested exception is:
java.net.MalformedURLException: no protocol: Files/Apache. What is going on?

This issue occurs to any RMI listener started on Tomcat whenever Tomcat has spaces in its
installation path.

It is is a JDK bug which can be worked around in Tomcat.

See http://archives.java.sun.com/cgi-bin/wa?A2=ind0205&L=rmi-users&P=797 and
http://www.ontotext.com/kim/doc/sys-doc/faq-howto-bugs/known-bugs.html.

The workaround is to remove the spaces in your tomcat installation path.

43.1.1.4. Multiple Host Entries in Tomcat's server.xml stops
replication from occurring

The presence of multiple Host entries in Tomcat's server.xml prevents replication from occuring.
The issue is with adding multiple hosts on a single Tomcat connector. If one of the hosts is
localhost and another starts with v, then the caching between machines when hitting localhost
stops working correctly.

The workaround is to use a single Host entry or to make sure they don't start with "v".

Why this issue occurs is presently unknown, but is Tomcat specific.

-

-

-

-

-

44. Glassfish How To

44.1. Glassfish How To & FAQ

The maintainer uses Ehcache in production with Glassfish. This chapter provides a Glassfish
HOWTO.

44.1.1. Versions

Ehcache has been tested with and is used in production with Glassfish V1, V2 and V3.

In particular:

Ehcache 1.4 - 1.7 has been tested with Glassfish 1 and 2.

Ehcache 2.0 has been tested with Glassfish 3.

44.1.2. HowTo

44.1.2.1. HowTo Get A Sample Application using Ehcache
packaged and Deployed to Glassfish

Ehcache comes with a sample web application which is used to test the page caching. The page
caching is the only area that is sensitive to the Application Server. For Hibernate and general
caching, it is only dependent on your Java version.

From a checkout of Ehcache run the following from the core directory:

You need:

a Glassfish installation.

a GLASSFISH_HOME environment variable defined.

$GLASSFISH_HOME/bin added to your PATH Do the following:

 # To package and deploy to domain1:
 ant deploy-default-web-app-glassfish

 # Start domain1:
 asadmin start-domain domain1

 # Stop domain1:
 asadmin stop-domain domain1

 # Overwrite the config with our own which changes the port to 9080:
 ant glassfish-configuration

 # Start domain1:
 asadmin start-domain domain1

You can then run the web tests in the web package or point your browser at

http://localhost:9080 . See for a quickstart to Glassfish.

44.1.2.2. How to get around the EJB Container restrictions on
thread creation

When Ehcache is running in the EJB Container, for example for Hibernate caching, it is in
technical breach of the EJB rules. Some app servers let you override this restriction.

I am not exactly sure how this in done in Glassfish. For a number of reasons we run Glassfish
without the Security Manager, and we do not have any issues.

In domain.xml ensure that the following is not included.

 <jvm-options>-Djava.security.manager</jvm-options>

44.1.3. Glassfish FAQ

44.1.3.1. Ehcache page caching versions below Ehcache 1.3 get
an IllegalStateException in Glassfish.

This issue was fixed in Ehcache 1.3.

44.1.3.2. I get a Could not ungzip. Heartbeat will not be working.
Not in GZIP format reported from PayloadUtil exception when
using Ehcache with my Glassfish cluster. Why?

Ehcache and Glassfish clustering have nothing to do with each other. The error is caused
because Ehcache has received a multicast message from the Glassfish cluster. Ensure that
Ehcache clustering has its own unique multicast address different to Glassfish.

-

-

-

45. Google App Engine Caching

45.1. Google App Engine Caching

45.1.1. Using Ehcache on Google App Engine (GAE)

The ehcache-googleappengine module combines the speed of Ehcache with the scale of Google's
memcache and provide the best of both worlds:

Speed - Ehcache cache operations take a few microseconds, versus around 60ms for Google's

provided client-server cache, memcacheg.

Cost - Because it uses way less resources, it is also cheaper.

Object Storage - Ehcache in-process cache works with Objects that are not Serializable.

45.1.2. Compatibility

Ehcache is compatible and works with Google App Engine.

Google App Engine provides a constrained runtime which restricts networking, threading and file
system access.

45.1.3. Limitations

All features of Ehcache can be used except for the DiskStore and replication. Having said that,
there are workarounds for these limitations. See the Recipes section below.

As of June 2009, Google App Engine appears to be limited to a heap size of 100MB. (See

http://gregluck.com/blog/archives/2009/06/the_limitations.html for the evidence of this).

45.1.4. Dependencies

Version 2.3 and higher of Ehcache are compatible with Google App Engine.

Older versions will not work.

http://gregluck.com/blog/archives/2009/06/the_limitations.html

-

-

-

-

-

-

-

-

45.1.5. Configuring ehcache.xml

Make sure the following elements are commented out:

diskStore path="java.io.tmpdir"/

cacheManagerPeerProviderFactory class= ../

cacheManagerPeerListenerFactory class= ../ Within each cache element, ensure that:

overFlowToDisk=false or overFlowToDisk is omitted

diskPersistent=false or diskPersistent is omitted

no replicators are added

there is no bootstrapCacheLoaderFactory

there is no Terracotta configuration Copy and past this one to get started.

 <?xml version="1.0" encoding="UTF-8"?>

 <Ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd" >

 <cacheManagerEventListenerFactory class="" properties=""/>

 <defaultCache
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="false"
 diskPersistent="false"
 memoryStoreEvictionPolicy="LRU"
 />

 <!--Example sample cache-->
 <cache name="sampleCache1"
 maxElementsInMemory="10000"
 maxElementsOnDisk="1000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 memoryStoreEvictionPolicy="LFU"
 />
 </ehcache>

45.1.6. Recipes

45.1.6.1. Setting up Ehcache as a local cache in front of
memcacheg

The idea here is that your caches are set up in a cache hierarchy. Ehcache sits in front and
memcacheg behind. Combining the two lets you elegantly work around limitations imposed by
Googe App Engine. You get the benefits of the s speed of Ehcache together with the umlimited
size of memcached.

Ehcache contains the hooks to easily do this.

To update memcached, use a CacheEventListener .

To search against memcacheg on a local cache miss, use cache.getWithLoader() together with a
CacheLoader for memcacheg.

45.1.6.2. Using memcacheg in place of a DiskStore

In the CacheEventListener , ensure that when notifyElementEvicted() is called, which it will be
when a put exceeds the MemoryStore's capacity, that the key and value are put into memcacheg.

45.1.6.3. Distributed Caching

Configure all notifications in CacheEventListener to proxy throught to memcacheg.

Any work done by one node can then be shared by all others, with the benefit of local caching of
frequently used data.

45.1.6.4. Dynamic Web Content Caching

Google App Engine provides acceleration for files declared static in appengine-web.xml.

e.g.

 <static-files>
 <include path="/**.png" />
 <exclude path="/data/**.png" />
 </static-files>

You can get acceleration for dynamic files using Ehcache's caching filters as you usually would.

See the Web Caching chapter.

45.1.7. Google App Engine FAQ

45.1.7.1. I get an error java.lang.NoClassDefFoundError:
java.rmi.server.UID is a restricted class

You are using a version of Ehcache prior to 1.6.

45.1.8. Sample application

The easiest way to get started is to play with a simple sample app. We provide a simple Rails
application which stores an integer value in a cache along with increment and decrement
operations.

The sample app shows you how to use ehcache as a caching plugin and how to use it directly
from the Rails caching API.

Checkout https://svn.terracotta.org/repo/forge/projects/ehcache-jruby-demo/

terracotta_community_login a Maven-based performance comparisons between different store

configurations.

./web_caching.html
https://svn.terracotta.org/repo/forge/projects/ehcache-jruby-demo/

1.

2.

3.

1.

2.

3.

4.

46. Building From Source

46.1. Building from Source

These instructions work for each of the modules, except for JMS Replication, which requires
installation of a message queue. See that module for details.

46.1.1. Building an Ehcache distribution from source

To build Ehcache from source:

Check the source out from the subversion repository.

Ensure you have a valid JDK and Maven 2 installation.

From within the ehcache/core directory, type mvn -Dmaven.test.skip=true install

46.1.2. Running Tests for Ehcache

To run the test suite for Ehcache:

Check the source out from the subversion repository.

Ensure you have a valid JDK and Maven 2 installation.

From within the ehcache/core directory, type mvn test

If some performance tests fail , add a -D net.sf.ehcache.speedAdjustmentFactor=x System

property to your command line, where x is how many times your machine is slower than the

reference machine. Try setting it to 5 for a start.

46.1.3. Deploying Maven Artifacts

Ehcache has a repository and snapshot repository at oss.sonatype.org.

The repository is synced with the Maven Central Repository.

To deploy:

 mvn deploy

-

-

-

-

-

-

-

This will fail because SourceForge has disabled ssh exec. You need to create missing directories
manually using sftp access sftp gregluck,ehcache@web.sourceforge.net

46.1.4. Building the Site

(These instructions are for project maintainers)

You need the following unix utilities installed:

maven 2.2.1

a latex distribution (e.g. Tex Live 2008)

ghostscript

pdftk

aptconvert

netpbm

xfig You also need a yDoc license. With all that, build the site as below:

 mvn -Dmaven.test.skip=true package site

The site needs to be deployed from the target/site directory using: rsync -v -r * ehcache-

stage.terracotta.lan:/export1/ehcache.org sudo -u maven -H /usr/local/bin/syncEHcache.sh

46.1.5. Deploying a release

46.1.5.1. Maven Release

 mvn deploy

46.1.5.2. Sourceforge Release

 mvn assembly:assembly

then manually upload to SourceForge

sftp gregluck@frs.sourceforge.net

and complete the file release process

47. FAQ

47.1. Frequently Asked Questions

47.1.1. Does Ehcache run on JDK1.3 / JDK1.4 ?

Older versions run on 1.3. Ehcache 1.5 runs on 1.4. Ehcache 1.6 required JDK 1.5.

47.1.2. Can you use more than one instance of Ehcache in
a single VM?

As of ehcache-1.2, yes. Create your CacheManager using new CacheManager(...) and keep hold
of the reference. The singleton approach accessible with the getInstance(...) method is still
available too. Remember that Ehcache can supports hundreds of caches within one
CacheManager. You would use separate CacheManagers where you want quite different
configurations.

The Hibernate EhCacheProvider has also been updated to support this behaviour.

47.1.3. Can you use Ehcache with Hibernate and outside
of Hibernate at the same time?

Yes. You use 1 instance of Ehcache and 1 ehcache.xml. You configure your caches with
Hibernate names for use by Hibernate. You can have other caches which you interact with directly
outside of Hibernate.

That is how I use Ehcache in the original project it was developed in. For Hibernate we have about
80 Domain Object caches, 10 StandardQueryCaches, 15 Domain Object Collection caches.

We have around 5 general caches we interact with directly using BlockingCacheManager. We
have 15 general caches we interact with directly using SelfPopulatingCacheManager. You can
use one of those or you can just use CacheManager directly.

I have updated the documentation extensively over the last few days. Check it out and let me

know if you have any questions. See the tests for example code on using the caches directly.
Look at CacheManagerTest, CacheTest and SelfPopulatingCacheTest.

47.1.4. What happens when maxElementsInMemory is
reached? Are the oldest items are expired when new ones
come in?

When the maximum number of elements in memory is reached, the least recently used ("LRU")
element is removed. Used in this case means inserted with a put or accessed with a get.

If the overflowToDisk cache attribute is false, the LRU Element is discarded. If true, it is
transferred asynchronously to the DiskStore.

47.1.5. Is it thread safe to modify Element values after
retrieval from a Cache?

Remember that a value in a cache element is globally accessible from multiple threads. It is
inherently not thread safe to modify the value. It is safer to retrieve a value, delete the cache
element and then reinsert the value.

The UpdatingCacheEntryFactory does work by modifying the contents of values in place in the

cache. This is outside of the core of Ehcache and is targeted at high performance

CacheEntryFactories for SelfPopulatingCaches.

47.1.6. Can non-Serializable objects be stored in a cache?

As of ehcache-1.2, they can be stored in caches with MemoryStores.

Elements attempted to be replicated or overflowed to disk will be removed and a warning logged if
not Serializable.

47.1.7. Why is there an expiry thread for the DiskStore but
not for the MemoryStore?

Because the memory store has a fixed maximum number of elements, it will have a maximum
memory use equal to the number of elements * the average size. When an element is added
beyond the maximum size, the LRU element gets pushed into the DiskStore.

http://ehcache.org/apidocs/net/sf/ehcache/constructs/blocking/UpdatingCacheEntryFactory.html

While we could have an expiry thread to expire elements periodically, it is far more efficient to only
check when we need to. The tradeoff is higher average memory use.

The expiry thread keeps the disk store clean. There is hopefully less contention for the DiskStore's
locks because commonly used values are in the MemoryStore. We mount our DiskStore on Linux
using RAMFS so it is using OS memory. While we have more of this than the 2GB 32 bit process
size limit it is still an expensive resource. The DiskStore thread keeps it under control.

If you are concerned about cpu utilisation and locking in the DiskStore, you can set the
diskExpiryThreadIntervalSeconds to a high number - say 1 day. Or you can effectively turn it off
by setting the diskExpiryThreadIntervalSeconds to a very large value.

47.1.8. What elements are mandatory in ehcache.xml?

The documentation has been updated with comprehensive coverage of the schema for Ehcache
and all elements and attributes, including whether they are mandatory. See the Declarative

Configuration chapter.

47.1.9. Can I use Ehcache as a memory cache only?

Yes. Just set the overflowToDisk attribute of cache to false.

47.1.10. Can I use Ehcache as a disk cache only?

As of Ehcache 2.0 this is not possible. You can set the maxElementsInMemory to 1, but setting
the max size to 0 now gives an infinite capacity.

47.1.11. Where is the source code? The source code is
distributed in the root directory of the download.

It is called ehcache-x.x.zip. It is also available from SourceForge online or through SVN .

47.1.12. How do you get statistics on an Element without
affecting them?

http://ehcache.org/documentation/#mozTocId258426
http://ehcache.org/documentation/#mozTocId258426
http://ehcache.svn.sourceforge.net/viewvc/ehcache/
http://sourceforge.net/svn/?group_id=93232

Use the Cache.getQuiet() method. It returns an Element without updating statistics.

47.1.13. How do you get WebSphere to work with
ehcache?

It has been reported that IBM Websphere 5.1 running on IBM JDK1.4 requires commons-

collection.jar in its classpath even though Ehcache will not use it for JDK1.4 and JDK5. (This is for

versions of Ehcache lower than 1.6)

47.1.14. Do you need to call
CacheManager.getInstance().shutdown() when you finish
with ehcache?

Yes, it is recommended. If the JVM keeps running after you stop using ehcache, you should call
CacheManager.getInstance().shutdown() so that the threads are stopped and cache memory
released back to the JVM. Calling shutdown also insures that your persistent disk stores get
written to disk in a consistent state and will be usable the next time they are used.

If the CacheManager does not get shutdown it should not be a problem. There is a shutdown hook
which calls the shutdown on JVM exit. This is explained in the documentation here .

47.1.15. Can you use Ehcache after a
CacheManager.shutdown()?

Yes. When you call CacheManager.shutdown() is sets the singleton in CacheManager to null. If
you try an use a cache after this you will get a CacheException.

You need to call CacheManager.create(). It will create a brand new one good to go. Internally the
CacheManager singleton gets set to the new one. So you can create and shutdown as many
times as you like.

There is a test which expliciyly confirms this behaviour. See
CacheManagerTest#testCreateShutdownCreate()

47.1.16. I have created a new cache and its status is
STATUS_UNINITIALISED. How do I initialise it?

http://ehcache.org/apidocs/net/sf/ehcache/Cache.html#getQuiet%28java.io.Serializable%29
http://sourceforge.net/tracker/index.php?func=detail&amp;aid=1025128&amp;group_id=93232&amp;atid=603559
http://ehcache.org/documentation/#mozTocId183156

You need to add a newly created cache to a CacheManager before it gets intialised. Use code like
the following:

 CacheManager manager = CacheManager.create();
 Cache myCache = new Cache("testDiskOnly", 0, true, false, 5, 2);
 manager.addCache(myCache);

47.1.17. Is there a simple way to disable Ehcache when
testing?

Yes. There is a System Property based method of disabling ehcache. If disabled no elements will
be added to a cache. Set the property "net.sf.ehcache.disabled=true" to disable ehcache.

This can easily be done using -Dnet.sf.ehcache.disabled=true > in the command line.

47.1.18. How do I dynamically change Cache attributes at
runtime?

You can't but you can achieve the same result as follows:

Cache cache = new Cache("test2", 1, true, true, 0, 0, true, 120, ...);
cacheManager.addCache(cache);

See the JavaDoc for the full parameters, also reproduced here:

Having created the new cache, get a list of keys using cache.getKeys, then get each one and put
it in the new cache. None of this will use much memory because the new cache element have
values that reference the same data as the original cache. Then use
cacheManager.removeCache("oldcachename") to remove the original cache.

47.1.19. I get
net.sf.ehcache.distribution.RemoteCacheException: Error
doing put to remote peer. Message was: Error
unmarshaling return header; nested exception is:
java.net.SocketTimeoutException: Read timed out. What
does this mean.

It typically means you need to increase your socketTimeoutMillis. This is the amount of time a
sender should wait for the call to the remote peer to complete. How long it takes depends on the
network and the size of the Elements being replicated.

The configuration that controls this is the socketTimeoutMillis setting in
cacheManagerPeerListenerFactory. 120000 seems to work well for most scenarios.

 <cacheManagerPeerListenerFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"
 properties="hostName=fully_qualified_hostname_or_ip,
 port=40001,
 socketTimeoutMillis=120000"/>

47.1.20. Should I use this directive when doing distributed
caching? cacheManagerEventListenerFactory class=""
properties=""/

No. It is unrelated. It is for listening to changes in your local CacheManager.

47.1.21. What is the minimum config to get distributed
caching going?

The minimum configuration you need to get distributed caching going is:

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
 properties="peerDiscovery=automatic,
 multicastGroupAddress=230.0.0.1,
 multicastGroupPort=4446"/>

 <cacheManagerPeerListenerFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>

and then at least one cache declaration with

 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>>>>

in it. An example cache is:

 <cache name="sampleDistributedCache1"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="100"
 timeToLiveSeconds="100"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
 </cache>

Each server in the cluster can have the same config.

47.1.22. How can I see if distributed caching is working?

You should see the listener port open on each server.

You can use the distributed debug tool to see what is going on. (See

http://ehcache.org/documentation/remotedebugger.html).

47.1.23. Why can't I run multiple applications using
Ehcache on one machine?

Because of an RMI bug, in JDKs before JDK1.5 such as JDK1.4.2, Ehcache is limited to one
CacheManager operating in distributed mode per virtual machine. (The bug limits the number of
RMI registries to one per virtual machine). Because this is the expected deployment configuration,
however, there should be no practical effect. The tell tail error is java.rmi.server.ExportException:
internal error: ObjID already in use

On JDK1.5 and higher it is possible to have multiple CacheManagers per VM each participating in
the same or different clusters. Indeed the replication tests do this with 5 CacheManagers on the
same VM all run from JUnit.

47.1.24. How many threads does Ehcache use, and how
much memory does that consume?

http://ehcache.org/documentation/remotedebugger.html

-

-

-

The amount of memory consumed per thread is determined by the Stack Size. This is set using -
Xss. The amount varies by OS. It is 512KB for Linux. I tend to override the default and set it to
100kb.

The threads are created per cache as follows:

DiskStore expiry thread - if DiskStore is used

DiskStore spool thread - if DiskStore is used

Replication thread - if asynchronous replication is configured. If you are not doing any of the

above, no extra threads are created

47.1.25. I am using Tomcat 5, 5.5 or 6 and I am having a
problem. What can I do?

Tomcat is such a common deployment option for applications using Ehcache that there is a
chapter on known issues and recommended practices.

See the Using Ehcache with Tomcat chapter. (http://ehcache.org/documentation/tomcat.html)

47.1.26. I am using Java 6 and getting a
java.lang.VerifyError on the Backport Concurrent classes.
Why?

The backport-concurrent library is used in Ehcache to provide java.util.concurrency facilities for
Java 4 - Java 6. Use either the Java 4 version which is compatible with Java 4-6 or use the
version for your JDK.

47.1.27. How do I get a memory only cache to persist to
disk between VM restarts?

While disk persistence between restarts is a feature of the DiskStore only, you can get the same
behaviour for a memory only cache by setting up a cache with maxElementsInMemory set to
Integer.MAX_VALUE, 2147483647 and diskPersistent set to true.

You can manually call flush() to flush to disk. It is a good idea to set clearOnFlush to false so that
the MemoryStore is not cleared each time. You can then call flush() to persist whenever you wish.

http://ehcache.org/documentation/tomcat.html

-

-

47.1.28. I get a javax.servlet.ServletException: Could not
initialise servlet filter when using
SimplePageCachingFilter. Why?

If you use this default implementation, the cache name is called "SimplePageCachingFilter". You
need to define a cache with that name in ehcache.xml. If you override CachingFilter you are
required to set your own cache name.

47.1.29. I see, in my application's log:

 WARN CacheManager ... Creating a new instance of CacheManager using the
diskStorePath
 "C:\temp\tempcache" which is already used by an existing CacheManager.

This means, that for some reason, your application is trying to create a second or more instance
of Ehcache's CacheManager with the same configuration. Ehcache is automatically resolving the
Disk path conflict, which works fine.

To eliminate the warning:

Use a separate configuration per instance

If you only want one instance use the singleton creation methods i.e

CacheManager.getInstance() . In Hibernate there is a special provider for this called

net.sf.ehcache.hibernate.SingletonEhCacheProvider . See the Hibernate page for details.

47.1.30. How do I add a CacheReplicator to a cache that
already exists? The cache event listening works but it does
not get plumbed into the peering mechanism.

The current API does not have a CacheManager event for cache configuration change. You can
however make it work by calling the notifyCacheAdded event.

 getCache().getCacheManager().getCacheManagerEventListenerRegistry()
 .notifyCacheAdded("cacheName");

47.1.31. I am using the RemoteDebugger to monitor
cluster messages but all I see is "Cache size: 0"

If you see nothing happening, but cache operations should be going through, enable trace
(LOG4J) or finest (JDK) level logging on code net.sf.ehcache.distribution /code in the logging
configuration being used by the debugger. A large volume of log messages will appear. The
normal problem is that the CacheManager has not joined the cluster. Look for the list of cache
peers.

Finally, the debugger in ehcache-1.5 has been improved to provide far more information on the
caches that are replicated and events which are occurring.

47.1.32. With distributed replication on Ubuntu or Debian, I
see the following warning,

 WARN [Replication Thread] RMIAsynchronousCacheReplicator.flushReplicationQueue(324)
 | Unable to send message to remote peer.
 Message was: Connection refused to host: 127.0.0.1; nested exception is:

 java.net.ConnectException: Connection refused

 java.rmi.ConnectException: Connection refused to host: 127.0.0.1; nested exception is:

 java.net.ConnectException: Connection refused

This is caused by a 2008 change to the Ubuntu/Debian linux default network configuration.

Essentially, this java call: InetAddress.getLocalHost(); always returns the loopback address, which
is 127.0.0.1. Why? Because in these recent distros, a system call of $ hostname always returns
an address mapped onto the loopback device. Which causes ehcache's RMI Peer creation logic to
always assign the loopback address, which causes the error you are seeing.

All you need to do is crack open the network config and make sure that the hostname of the
machine returns a valid network address accessible by other peers on the network.

47.1.33. I see log messages about SoftReferences. What
are these about and how do I stop getting the messages?

-

-

-

-

Ehcache uses SoftReferences with asynchronous RMI based replication, so that replicating
caches do not run out of memory if the network is interrupted. Elements scheduled for replication
will be collected instead. If this is happening, you will see warning messages from the replicator. It
is also possible that a SoftReference can be reclaimed during the sending in which case you will
see a debug level message in the receiving CachePeer.

Some things you can do to fix them:

Set -Xms equal to -Xms. SoftReferences are also reclaimed in preference to increasing the

heap size, which is a problem when an application is warming up.

Set the -Xmx to a high enough value so that SoftReferences do not get reclaimed. Having done

the above, SoftReferences will then only be reclaimed if there is some interruption to replication

and the message queue gets dangerously high.

47.1.34. My Hibernate Query caches entries are
replicating but the other caches in the cluster are not using
them.

This is a Hibernate 3 bug. See http://opensource.atlassian.com/projects/hibernate/browse/HHH-
3392 for tracking. It is fixed in 3.3.0.CR2 which was released in July 2008.

47.1.35. Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 where it does not cleanup temporary
queues, even though they have been deleted. That bug appears to be long standing but was
though to have been fixed.

See:

http://www.nabble.com/Memory-Leak-Using-Temporary-Queues-td11218217.html#a11218217

http://issues.apache.org/activemq/browse/AMQ-1255 The JMSCacheLoader uses temporary

reply queues when loading. The Active MQ issue is readily reproduced in Ehcache integration

testing. Accordingly, use of the JMSCacheLoader with ActiveMQ is not recommended. Open

MQ tests fine.

47.1.36. Is Ehcache compatible with Google App Engine?

Version 1.6 is compatible. See the Google App Engine Howto

./googleappengine.html

47.1.37. Can my app server use JMS Replication?

Some App Servers do not permit the creation of message listeners. This issue has been reported
on Websphere 5. Websphere 4 did allow it. Tomcat allows it. Glassfish Allows it. Jetty allows it.

Usually there is a way to turn off strict EJB compliance checks in your app server. See your
vendor documentation.

47.1.38. Why does Ehcache 1.6 use more memory than
1.5?

ConcurrentHashMap does not provide an eviction mechanism. We add that ourselves. For caches
larger than 5000 elements, we create an extra ArrayList equal to the size of the cache which holds
keys. This can be an issue with larger keys. An optimisation which cache clients can use is:

 http://www.codeinstructions.com/2008/09/instance-pools-with-weakhashmap.html

 To reduce the number of key instances in memory to just one per logical
 key, all puts to the underlying ConcurrentHashMap could be replaced by
 map.put(pool.replace(key), value), as well as keyArray.set(index,
 pool.replace(key))

 You can take this approach when producing the keys before handing them over to
EhCache.

Even with this approach there is still some added overhead consumed by a reference consumed
by each ArrayList element.

Update: Ehcache 2.0 will introduce a new implementation for MemoryStore based on a custom
ConcurrentHashMap. This version provides fast iteration and does away with the need for the
keyArray thus bringing memory use back down to pre 1.6 levels. And with other memory
optimisations made to Element in 1.7, memory use will actually be considerably lower than pre 1.6
levels.

47.1.39. What does this mean? "Caches cannot be added
by name when default cache config is not specified in the
config. Please add a default cache config in the
configuration."

From Ehcache 2.4, we have made the defaultCache optional. When you try to add a cache by
name, CacheManager.add(String name) ,

	1. Preface
	1.1. Preface
	1.1.1. Version
	1.1.2. Audience
	1.1.3. Acknowledgements

	2. Introduction
	2.1. Introduction
	2.1.1. About Caches
	2.1.2. Why caching works
	2.1.2.1. Locality of Reference
	2.1.2.2. The Long Tail

	2.1.3. Will an Application Benefit from Caching?
	2.1.3.1. Speeding up CPU bound Applications
	2.1.3.2. Speeding up I/O bound Applications
	2.1.3.3. Increased Application Scalability

	2.1.4. How much will an application speed up with Caching?
	2.1.4.1. The short answer
	2.1.4.2. Applying Amdahl's Law
	2.1.4.2.1. Persistent Object Relational Caching
	2.1.4.2.2. Web Page Caching
	2.1.4.2.3. Web Page Fragment Caching

	2.1.4.3. Cache Efficiency
	2.1.4.4. Cluster Efficiency
	2.1.4.5. A cache version of Amdahl's law
	2.1.4.6. Web Page example

	3. Getting Started
	3.1. Getting Started
	3.1.1. General Purpose Caching
	3.1.2. Hibernate
	3.1.3. Distributed Caching
	3.1.4. Java EE Servlet Caching
	3.1.5. RESTful and SOAP Caching with the Cache Server
	3.1.6. JCache style caching
	3.1.7. Spring, Cocoon, Acegi and other frameworks

	4. Features
	4.1. Features
	4.1.1. Fast and Light Weight
	4.1.1.1. Fast
	4.1.1.2. Simple
	4.1.1.3. Small foot print
	4.1.1.4. Minimal dependencies

	4.1.2. Scalable
	4.1.2.1. Provides Memory and Disk stores for scalabilty into gigabytes
	4.1.2.2. Scalable to hundreds of caches
	4.1.2.3. Tuned for high concurrent load on large multi-cpu servers
	4.1.2.4. Multiple CacheManagers per virtual machine
	4.1.2.5. Scalable to hundreds of nodes with Terracotta

	4.1.3. Flexible
	4.1.3.1. Supports Object or Serializable caching
	4.1.3.2. Support cache-wide or Element-based expiry policies
	4.1.3.3. Provides LRU, LFU and FIFO cache eviction policies
	4.1.3.4. Provides Memory and Disk stores
	4.1.3.5. Dynamic, Runtime Configuration of Caches

	4.1.4. Standards Based
	4.1.4.1. Full implementation of JSR107 JCACHE API

	4.1.5. Extensible
	4.1.5.1. Listeners may be plugged in
	4.1.5.2. Peer Discovery, Replicators and Listeners may be plugged in
	4.1.5.3. Cache Extensions may be plugged in
	4.1.5.4. Cache Loaders may be plugged in
	4.1.5.5. Cache Exception Handlers may be plugged in

	4.1.6. Application Persistence
	4.1.6.1. Persistent disk store which stores data between VM restarts
	4.1.6.2. Flush to disk on demand

	4.1.7. Listeners
	4.1.7.1. CacheManager listeners
	4.1.7.2. Cache event listeners

	4.1.8. JMX Enabled
	4.1.9. Distributed Caching
	4.1.9.1. Clustered Caching with Terracotta
	4.1.9.2. Replicated Caching via RMI, JGroups, or JMS
	4.1.9.3. Reliable Delivery
	4.1.9.4. Peer Discovery
	4.1.9.5. Extensible
	4.1.9.6. Bootstrapping from Peers

	4.1.10. Cache Server
	4.1.10.1. RESTful cache server
	4.1.10.2. SOAP cache server
	4.1.10.3. comes as a WAR or as a complete server

	4.1.11. Java EE and Applied Caching
	4.1.11.1. Blocking Cache to avoid duplicate processing for concurrent operations
	4.1.11.2. SelfPopulating Cache for pull through caching of expensive operations
	4.1.11.3. Java EE Gzipping Servlet Filter
	4.1.11.4. Cacheable Commands
	4.1.11.5. Works with Hibernate
	4.1.11.6. Works with Google App Engine
	4.1.11.7. Transactional support through JTA

	4.1.12. High Quality
	4.1.12.1. High Test Coverage
	4.1.12.2. Automated Load, Limit and Performance System Tests
	4.1.12.3. Specific Concurrency Testing
	4.1.12.4. Production tested
	4.1.12.5. Fully documented
	4.1.12.6. Trusted by Popular Frameworks
	4.1.12.7. Conservative Commit policy
	4.1.12.8. Full public information on the history of every bug
	4.1.12.9. Responsiveness to serious bugs

	4.1.13. Open Source Licensing
	4.1.13.1. Apache 2.0 license

	5. Concepts
	5.1. Key Ehcache Concepts
	5.1.1. Definitions
	5.1.2. Key Ehcache Classes
	5.1.2.1. CacheManager
	5.1.2.1.1. CacheManager Creation Modes
	5.1.2.1.1.1. Singleton Mode
	5.1.2.1.1.2. Instance Mode
	5.1.2.1.1.3. Mixed Singleton and Instance Mode

	5.1.2.2. Ehcache
	5.1.2.3. Element

	5.1.3. Cache Usage Patterns
	5.1.3.1. cache-aside
	5.1.3.2. cache-as-sor
	5.1.3.3. read-through
	5.1.3.4. write-through
	5.1.3.5. write-behind
	5.1.3.6. cache-as-sor example
	5.1.3.7. Copy Cache

	6. Configuration
	6.1. Cache Configuration
	6.1.1. Dynamically Changing Cache Configuration
	6.1.2. copyOnRead and copyOnWrite cache configuration
	6.1.3. Special System Properties
	6.1.3.1. net.sf.ehcache.disabled
	6.1.3.2. net.sf.ehcache.use.classic.lru

	6.1.4. ehcache.xsd
	6.1.5. ehcache-failsafe.xml
	6.1.6. Update Checker
	6.1.6.1. By System Property
	6.1.6.2. By Configuration

	6.1.7. ehcache.xml and other configuration files

	7. Cache Eviction Algorithms
	7.1. Cache Eviction Algorithms
	7.1.1. Provided MemoryStore Eviction Algorithms
	7.1.1.1. Less Recently Used (LRU)
	7.1.1.2. Less Frequently Used (LFU)
	7.1.1.3. First In First Out (FIFO)

	7.1.2. Plugging in your own Eviction Algorithm
	7.1.3. DiskStore Eviction Algorithms

	8. Storage Options
	8.1. Storage Options
	8.1.1. Memory Store
	8.1.1.1. Memory Use, Spooling and Expiry Strategy

	8.1.2. Off-Heap Store
	8.1.2.1. Suitable Element Types

	8.1.3. DiskStore
	8.1.3.1. DiskStore s are Optional
	8.1.3.1.1. Turning off disk stores

	8.1.3.2. Suitable Element Types
	8.1.3.3. Storage
	8.1.3.3.1. Files
	8.1.3.3.2. Storage Location
	8.1.3.3.3. diskStore Element

	8.1.3.4. Expiry
	8.1.3.5. Eviction
	8.1.3.6. Serializable Objects
	8.1.3.7. Safety
	8.1.3.8. Persistence

	8.1.4. Some Configuration Examples

	9. Samples
	9.1. Recipes and Code Samples
	9.2. Recipes
	9.3. Code Samples
	9.3.1. Using the CacheManager
	9.3.1.1. Singleton versus Instance
	9.3.1.2. Ways of loading Cache Configuration
	9.3.1.3. Adding and Removing Caches Programmatically
	9.3.1.4. Shutdown the CacheManager

	9.3.2. Creating Caches Programmatically
	9.3.2.1. Creating a new cache from defaults
	9.3.2.2. Creating a new cache with custom parameters

	9.3.3. Using Caches
	9.3.3.1. Obtaining a reference to a Cache
	9.3.3.2. Performing CRUD operations
	9.3.3.3. Disk Persistence on demand
	9.3.3.4. Obtaining Cache Sizes
	9.3.3.5. Obtaining Statistics of Cache Hits and Misses
	9.3.3.6. Dynamically Modifying Cache Configurations
	9.3.3.7. JTA

	9.3.4. Using Distributed Caches
	9.3.4.1. Terracotta Example

	9.3.5. Cache Statistics and Monitoring
	9.3.5.1. Registering CacheStatistics in an MBeanServer

	9.3.6. More examples
	9.3.6.1. JCache Examples
	9.3.6.2. Cache Server Examples
	9.3.6.3. Browse the JUnit Tests

	10. Dependencies
	10.1. Java Requirements and Dependencies
	10.1.1. Java Requirements
	10.1.2. Mandatory Dependencies
	10.1.3. Maven Snippet

	11. Logging
	11.1. Logging
	11.1.1. SLF4J Logging
	11.1.1.1. Concrete Logging Implementation Use in Maven
	11.1.1.2. Concrete Logging Implemenation Use in the Download Kit

	11.1.2. Recommended Logging Levels

	12. RMI Replication Remote Debugger
	12.1. Remote Network debugging and monitoring for Distributed Caches
	12.1.1. Introduction
	12.1.2. Packaging
	12.1.3. Limitations
	12.1.4. Usage
	12.1.4.1. Output
	12.1.4.2. Providing more Detailed Logging
	12.1.4.3. Yes, but I still have a cluster problem

	13. Garbage Collection
	13.1. Tuning Garbage Collection
	13.1.1. Detecting Garbage Collection Problems
	13.1.2. Garbage Collection Tuning
	13.1.3. Distributed Caching Garbage Collection Tuning

	14. JMX
	14.1. JMX Management and Monitoring
	14.1.1. Terracotta Monitoring Products
	14.1.2. JMX Overview
	14.1.3. MBeans
	14.1.4. JMX Remoting
	14.1.5. ObjectName naming scheme
	14.1.6. The Management Service
	14.1.7. JConsole Example
	14.1.8. Hibernate statistics
	14.1.9. JMX Tutorial

	15. JTA & Transactions
	15.1. Transactions in Ehcache
	15.1.1. Introduction
	15.1.1.1. All or nothing
	15.1.1.2. Change Visibility

	15.1.2. When to use transactional modes
	15.1.2.1. Transactional modes are a powerful extension of Ehcache allowing you to perform atomic operations on your caches and potentially other data stores, eg: to keep your cache in sync with your database.

	15.1.3. Configuration
	15.1.3.1. Considerations when using clustered caches with Terracotta

	15.1.4. Global Transactions
	15.1.4.1. Implementation

	15.1.5. Failure Recovery
	15.1.5.1. Recovery
	15.1.5.1.1. xa Mode
	15.1.5.1.2. xa_strict Mode

	15.1.6. Sample Apps
	15.1.6.1. XA Sample App
	15.1.6.2. XA Banking Application
	15.1.6.3. Examinator

	15.1.7. Transaction Managers
	15.1.7.1. Automatically Detected Transaction Managers
	15.1.7.2. Configuring a Transaction Manager

	15.1.8. Local Transactions
	15.1.8.1. Configuration
	15.1.8.2. Isolation Level
	15.1.8.3. Transaction Timeouts
	15.1.8.4. Sample Code
	15.1.8.5. What can go wrong
	15.1.8.5.1. JVM crash between begin and commit

	15.1.9. Performance
	15.1.9.1. Managing Contention
	15.1.9.2. What granularity of locking is used?
	15.1.9.3. Performance Comparisons

	15.1.10. FAQ
	15.1.10.1. Is IBM Websphere Transaction Manager supported?
	15.1.10.2. How do transactions interact with Write-behind and Write-through caches?
	15.1.10.3. Are Hibernate Transactions supported?
	15.1.10.4. How do I make WebLogic 10 work with Ehcache JTA?

	16. Ehcache Monitor
	16.1. Ehcache Monitor
	16.1.1. Installation And Configuration
	16.1.2. Recommended Deployment Topology
	16.1.2.1. Probe

	17. Bulk Loading
	17.1. Bulk Loading
	17.1.1. Uses
	17.1.2. API
	17.1.2.1. setNodeCoherence(boolean mode)
	17.1.2.2. isNodeCoherent()
	17.1.2.3. isClusterCoherent()
	17.1.2.4. waitUntilClusterCoherent()

	17.1.3. Speed Improvement
	17.1.4. FAQ
	17.1.4.1. Why does the bulk loading mode only apply to Terracotta clusters?
	17.1.4.2. How does bulk load with RMI distributed caching work?

	17.1.5. Performance Tips
	17.1.5.1. When to use Multiple Put Threads
	17.1.5.2. Bulk Loading on Multiple Nodes
	17.1.5.3. Why not run in bulk load mode all the time

	17.1.6. Download
	17.1.7. Further Information

	18. Class Loading
	18.1. Class loading and Class Loaders
	18.1.1. Plugin class loading
	18.1.2. Loading of ehcache.xml resources
	18.1.3. Classloading with Terracotta clustering

	19. Performance Considerations
	19.1. Performance Considerations
	19.1.1. DiskStore
	19.1.2. Replication
	19.1.3. Statistics

	20. Cache Decorators
	20.1. Cache Decorators
	20.1.1. Creating a Decorator
	20.1.1.1. Programmatically
	20.1.1.2. By Configuration

	20.1.2. Adding decorated caches to the CacheManager
	20.1.2.1. Using CacheManager.replaceCacheWithDecoratedCache()
	20.1.2.2. Using CacheManager.addDecoratedCache()

	20.1.3. Built-in Decorators
	20.1.3.1. BlockingCache
	20.1.3.2. SelfPopulatingCache
	20.1.3.3. Caches with Exception Handling

	21. Hibernate Caching
	21.1. Hibernate Second Level Cache
	21.1.1. Overview
	21.1.2. Downloading and Installing Ehcache
	21.1.3. Maven
	21.1.4. Configure Ehcache as the Second Level Cache Provider
	21.1.4.1. Hibernate 3.3 and higher
	21.1.4.2. Hibernate 3.0 - 3.2

	21.1.5. Enable Second Level Cache and Query Cache Settings
	21.1.6. Optional
	21.1.6.1. Ehcache Configuration Resource Name
	21.1.6.2. Set the Hibernate cache provider programmatically

	21.1.7. Putting it all together
	21.1.8. Configure Hibernate Entities to use Second Level Caching
	21.1.8.1. Definition of the different cache strategies
	21.1.8.1.1. read-only
	21.1.8.1.2. nonstrict-read-write
	21.1.8.1.3. read-write

	21.1.9. Configure ehcache.xml
	21.1.9.1. Domain Objects
	21.1.9.2. Hibernate
	21.1.9.3. Collections
	21.1.9.4. Hibernate CacheConcurrencyStrategy
	21.1.9.5. Queries
	21.1.9.6. StandardQueryCache
	21.1.9.7. UpdateTimestampsCache
	21.1.9.8. Named Query Caches
	21.1.9.9. Using Query Caches
	21.1.9.10. Hibernate CacheConcurrencyStrategy

	21.1.10. Demo Apps
	21.1.10.1. Hibernate Tutorial
	21.1.10.2. Examinator

	21.1.11. Performance Tips
	21.1.11.1. Session.load
	21.1.11.2. Session.find and Query.find
	21.1.11.3. Session.iterate and Query.iterate

	21.1.12. How to Scale
	21.1.13. Configuring Ehcache for distributed caching using Terracotta
	21.1.14. Configuring Ehcache replication using RMI, JGroups, or JMS
	21.1.14.1. Configuring for RMI Replication
	21.1.14.2. Configuring for JGroups Replication
	21.1.14.3. Configuring for JMS Replication

	21.1.15. FAQ
	21.1.15.1. Should I use the provider in the Hibernate distribution or in Ehcache?
	21.1.15.2. What is the relationship between the Hibernate and Ehcache projects?
	21.1.15.3. Does Ehcache support the new Hibernate 3.3 2nd level caching SPI?
	21.1.15.4. Does Ehcache support the transactional strategy?
	21.1.15.5. Is Ehcache Cluster Safe?
	21.1.15.6. How are Hibernate Entities keyed?
	21.1.15.7. Can you use Identity mode with the Terracotta Server Array
	21.1.15.8. I get org.hibernate.cache.ReadWriteCache - An item was expired by the cache while it was locked error messages. What is it?
	21.1.15.9. I get java.lang.ClassCastException: org.hibernate.cache.ReadWriteCache$Item incompatible with net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcacheAccessStrategy$Lockable

	22. JDBC Caching
	22.1. Hibernate Second Level Cache
	22.1.1. Overview
	22.1.2. Downloading and Installing Ehcache
	22.1.3. Maven
	22.1.4. Configure Ehcache as the Second Level Cache Provider
	22.1.4.1. Hibernate 3.3 and higher
	22.1.4.2. Hibernate 3.0 - 3.2

	22.1.5. Enable Second Level Cache and Query Cache Settings
	22.1.6. Optional
	22.1.6.1. Ehcache Configuration Resource Name
	22.1.6.2. Set the Hibernate cache provider programmatically

	22.1.7. Putting it all together
	22.1.8. Configure Hibernate Entities to use Second Level Caching
	22.1.8.1. Definition of the different cache strategies
	22.1.8.1.1. read-only
	22.1.8.1.2. nonstrict-read-write
	22.1.8.1.3. read-write

	22.1.9. Configure ehcache.xml
	22.1.9.1. Domain Objects
	22.1.9.2. Hibernate
	22.1.9.3. Collections
	22.1.9.4. Hibernate CacheConcurrencyStrategy
	22.1.9.5. Queries
	22.1.9.6. StandardQueryCache
	22.1.9.7. UpdateTimestampsCache
	22.1.9.8. Named Query Caches
	22.1.9.9. Using Query Caches
	22.1.9.10. Hibernate CacheConcurrencyStrategy

	22.1.10. Demo Apps
	22.1.10.1. Hibernate Tutorial
	22.1.10.2. Examinator

	22.1.11. Performance Tips
	22.1.11.1. Session.load
	22.1.11.2. Session.find and Query.find
	22.1.11.3. Session.iterate and Query.iterate

	22.1.12. How to Scale
	22.1.13. Configuring Ehcache for distributed caching using Terracotta
	22.1.14. Configuring Ehcache replication using RMI, JGroups, or JMS
	22.1.14.1. Configuring for RMI Replication
	22.1.14.2. Configuring for JGroups Replication
	22.1.14.3. Configuring for JMS Replication

	22.1.15. FAQ
	22.1.15.1. Should I use the provider in the Hibernate distribution or in Ehcache?
	22.1.15.2. What is the relationship between the Hibernate and Ehcache projects?
	22.1.15.3. Does Ehcache support the new Hibernate 3.3 2nd level caching SPI?
	22.1.15.4. Does Ehcache support the transactional strategy?
	22.1.15.5. Is Ehcache Cluster Safe?
	22.1.15.6. How are Hibernate Entities keyed?
	22.1.15.7. Can you use Identity mode with the Terracotta Server Array
	22.1.15.8. I get org.hibernate.cache.ReadWriteCache - An item was expired by the cache while it was locked error messages. What is it?
	22.1.15.9. I get java.lang.ClassCastException: org.hibernate.cache.ReadWriteCache$Item incompatible with net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcacheAccessStrategy$Lockable

	23. Shutting down Ehcache
	23.1. Shutting Down Ehcache
	23.1.1. ServletContextListener
	23.1.2. The Shutdown Hook
	23.1.2.1. When to use the shutdown hook
	23.1.2.2. What the shutdown hook does
	23.1.2.3. When a shutdown hook will run, and when it will not

	23.1.3. Dirty Shutdown

	24. Web Caching
	24.1. Web Caching
	24.1.1. SimplePageCachingFilter
	24.1.2. Keys
	24.1.3. Configuring the cacheName
	24.1.4. Concurrent Cache Misses
	24.1.5. Gzipping
	24.1.6. Caching Headers
	24.1.7. Init-Params
	24.1.8. Re-entrance
	24.1.9. SimplePageFragmentCachingFilter
	24.1.10. Example web.xml configuration
	24.1.11. CachingFilter Exceptions
	24.1.11.1. FilterNonReentrantException
	24.1.11.2. AlreadyGzippedException
	24.1.11.3. ResponseHeadersNotModifiableException

	25. Distributed Caching
	25.1. Distributed and Replicated Caching
	25.1.1. Distributed Caching
	25.1.2. Replicated Caching
	25.1.2.1. Using a Cache Server
	25.1.2.2. Notification Strategies
	25.1.2.3. Potential Issues with Replicated Caching
	25.1.2.3.1. Potential for Inconsistent Data
	25.1.2.3.1.1. Synchronous Delivery
	25.1.2.3.1.2. Put and Update via Invalidation

	25.1.2.3.2. Use of Time To Idle

	26. Distributed Caching with Terracotta Server Arrays
	26.1. Distributed Caching With Terracotta
	26.1.1. Architecture
	26.1.2. Worked Example
	26.1.3. Terracotta Configuration
	26.1.3.1. CacheManager Configuration
	26.1.3.2. Programmatic Configuration
	26.1.3.3. Terracotta Server Configuration
	26.1.3.3.1. Specification of a source of configuration
	26.1.3.3.2. Specification using embedded tc-config

	26.1.3.4. Enabling Terracotta clustering per cache

	26.1.4. Copy On Read
	26.1.5. Behaviour differences with CacheEventListener s when using Terracotta Clustering
	26.1.5.1. Cache listeners
	26.1.5.2. Overflow to Disk

	26.1.6. Cluster Topology new_in_2
	26.1.7. Terracotta Cluster Events new_in_2
	26.1.7.1. Example Code
	26.1.7.2. Uses for Cluster Events

	26.1.8. More Information
	26.1.9. Development Setup
	26.1.9.1. Maven
	26.1.9.1.1. Setting up for Integration Testing
	26.1.9.1.2. Interactive Testing

	26.1.10. FAQ
	26.1.10.1. I get a net.sf.ehcache.CacheException: Terracotta cache classes are not available, you are missing jar(s) most likely
	26.1.10.2. When I start ehcache I get "WARN - Can't connect to server[localhost:9510:s1]. Retrying..."
	26.1.10.3. Is expiry the same in Terracotta?
	26.1.10.4. I have TTL/TTI not configured or set to 0 (eternal) and have created Elements with a specific TTL which is being ignored. Why?
	26.1.10.5. I have set maxElementsOnDisk to a fixed number, but my Terracotta L2 keeps growing.
	26.1.10.6. DCV2 Eviction Algorithm
	26.1.10.7. Changing configuration
	26.1.10.8. What Eviction strategies are supported?
	26.1.10.9. What Stores are available and how are they configured?
	26.1.10.10. When do Elements overflow?
	26.1.10.11. How does Element equality work in Serialization mode?
	26.1.10.12. How does Element equality work in Identity mode?
	26.1.10.13. What is the recommended way to write to a database?
	26.1.10.14. If updates to a database bypass the Terracotta clustered application, then how is that coherent?
	26.1.10.15. Do CacheEventListeners work?
	26.1.10.16. What are the JMX statistics available in the Terracotta Developer Console?
	26.1.10.17. What classloader is used to deserialize clustered objects in valueMode="serialization"?
	26.1.10.18. What versions of Ehcache and Terracotta work together?
	26.1.10.19. What happens when an L1 (i.e. an Ehcache node) disconnects from the L2 (i.e. the Terracotta Server Array)?

	27. Replicated Caching with RMI
	27.1. RMI Replicated Caching
	27.1.1. Suitable Element Types
	27.1.2. Configuring the Peer Provider
	27.1.2.1. Peer Discovery
	27.1.2.2. Automatic Peer Discovery
	27.1.2.2.1. Example

	27.1.2.3. Manual Peer Discovery
	27.1.2.3.1. Example

	27.1.3. Configuring the CacheManagerPeerListener
	27.1.4. Configuring Cache Replicators
	27.1.5. Configuring Bootstrap from a Cache Peer
	27.1.6. Full Example
	27.1.7. Common Problems
	27.1.7.1. Tomcat on Windows
	27.1.7.2. Multicast Blocking
	27.1.7.3. Multicast Not Propagating Far Enough or Propagating Too Far

	28. Replicated Caching with JGroups
	28.1. Replicated Caching using JGroups
	28.1.1. Suitable Element Types
	28.1.2. Peer Discovery
	28.1.3. Configuration
	28.1.4. Example configuration using UDP Multicast
	28.1.5. Example configuration using TCP Unicast
	28.1.6. Protocol considerations.
	28.1.7. Configuring CacheReplicators
	28.1.8. Complete Sample configuration
	28.1.9. Common Problems

	29. Replicated Caching with JMS
	29.1. Replicated Caching using JMS
	29.1.1. Ehcache Replication and External Publishers
	29.1.1.1. Configuration
	29.1.1.1.1. Message Queue Configuration
	29.1.1.1.2. Ehcache Configuration
	29.1.1.1.2.1. Configuring the JMSCacheManagerPeerProviderFactory
	29.1.1.1.2.2. Example Configurations
	29.1.1.1.2.3. Configuring the JMSCacheManagerPeerProviderFactory for Active MQ
	29.1.1.1.2.4. Configuring the JMSCacheManagerPeerProviderFactory for Open MQ
	29.1.1.1.2.5. Configuring the JMSCacheReplicatorFactory

	29.1.1.2. External JMS Publishers
	29.1.1.2.1. Required Message Properties
	29.1.1.2.1.1. cacheName Property
	29.1.1.2.1.2. action Property
	29.1.1.2.1.3. mimeType Property
	29.1.1.2.1.4. key Property

	29.1.1.2.2. Code Samples
	29.1.1.2.3. PUT a Java Object into an Ehcache JMS Cluster
	29.1.1.2.4. PUT XML into an Ehcache JMS Cluster
	29.1.1.2.5. PUT arbitrary bytes into an Ehcache JMS Cluster
	29.1.1.2.6. REMOVE
	29.1.1.2.7. REMOVE_ALL

	29.1.2. Using the JMSCacheLoader
	29.1.2.1. Example Configuration Using Active MQ
	29.1.2.2. Example Configuration Using Open MQ

	29.1.3. Configuring Clients for Message Queue Reliability
	29.1.4. Tested Message Queues
	29.1.4.1. Sun Open MQ
	29.1.4.2. Active MQ
	29.1.4.3. Oracle AQ
	29.1.4.4. JBoss Queue

	29.1.5. Known JMS Issues
	29.1.5.1. Active MQ Temporary Destinatons
	29.1.5.2. WebSphere 5 and 6

	30. Ehcache Constructs
	30.1. BlockingCache and SelfPopulatingCache
	30.1.1. Blocking Cache
	30.1.2. SelfPopulatingCache

	31. CacheManager Event Listeners
	31.1. CacheManager Event Listeners
	31.1.1. Configuration
	31.1.2. Implementing a CacheManagerEventListenerFactory and CacheManagerEventListener

	32. Cache Event Listeners
	32.1. Cache Event Listeners
	32.1.1. Configuration
	32.1.2. Implementing a CacheEventListenerFactory and CacheEventListener
	32.1.3. FAQ
	32.1.3.1. Can I add a listener to an already running cache?

	33. Cache Exception Handlers
	33.1. Cache Exception Handlers
	33.1.1. Declarative Configuration
	33.1.2. Implementing a CacheExceptionHandlerFactory and CacheExceptionHandler
	33.1.3. Programmatic Configuration

	34. Cache Loaders
	34.1. Cache Loaders
	34.1.1. Declarative Configuration
	34.1.2. Implementing a CacheLoaderFactory and CacheLoader
	34.1.3. Programmatic Configuration

	35. Cache Extensions
	35.1. Cache Extensions
	35.1.1. Declarative Configuration
	35.1.2. Implementing a CacheExtensionFactory and CacheExtension
	35.1.3. Programmatic Configuration

	36. Cache Server with SOAP and RESTful Web Services
	36.1. Cache Server
	36.1.1. Introduction
	36.1.2. RESTful Web Services
	36.1.2.1. RESTFul Web Services API
	36.1.2.2. CacheManager Resource Operations
	36.1.2.2.1. OPTIONS /{cache}}
	36.1.2.2.2. GET /

	36.1.2.3. Cache Resource Operations
	36.1.2.3.1. OPTIONS /{cache}}
	36.1.2.3.2. HEAD /{cache}}
	36.1.2.3.3. GET /{cache}
	36.1.2.3.4. PUT /{cache}
	36.1.2.3.5. DELETE / {cache}

	36.1.2.4. Element Resource Operations
	36.1.2.4.1. OPTIONS /{cache}}
	36.1.2.4.2. HEAD /{cache}/{element}
	36.1.2.4.3. GET /{cache}/{element}
	36.1.2.4.4. HEAD /{cache}/{element}
	36.1.2.4.5. PUT /{cache}/{element}
	36.1.2.4.6. DELETE / {cache}/{element}

	36.1.2.5. Resource Representations
	36.1.2.5.1. Element Resource Representations

	36.1.2.6. RESTful Code Samples
	36.1.2.6.1. Curl Code Samples
	36.1.2.6.1.1. OPTIONS
	36.1.2.6.1.2. HEAD
	36.1.2.6.1.3. PUT
	36.1.2.6.1.4. GET

	36.1.2.6.2. Ruby Code Samples
	36.1.2.6.2.1. GET

	36.1.2.6.3. Python Code Samples
	36.1.2.6.3.1. GET

	36.1.2.6.4. Java Code Samples
	36.1.2.6.4.1. Create and Get a Cache and Entry

	36.1.2.6.5. Scala Code Samples
	36.1.2.6.5.1. GET

	36.1.2.6.6. PHP Code Samples
	36.1.2.6.6.1. GET
	36.1.2.6.6.2. PUT

	36.1.3. Creating Massive Caches with Load Balancers and Partitioning
	36.1.3.1. Non-redundant, Scalable with client hash-based routing
	36.1.3.2. Redundant, Scalable with client hash-based routing
	36.1.3.3. Redundant, Scalable with load balancer hash-based routing

	36.1.4. W3C (SOAP) Web Services
	36.1.4.1. W3C Web Services API
	36.1.4.2. Security

	36.1.5. Requirements
	36.1.5.1. Java
	36.1.5.2. Web Container (WAR packaged version only)

	36.1.6. Downloading
	36.1.6.1. Sourceforge
	36.1.6.2. Maven

	36.1.7. Installation
	36.1.7.1. Installing the WAR
	36.1.7.2. Configuring the Web Application
	36.1.7.2.1. Disabling the RESTful Web Service
	36.1.7.2.2. Disabling the SOAP Web Service
	36.1.7.2.3. Configuring Caches
	36.1.7.2.4. SOAP Web Service Security

	36.1.8. Installing the Standalone Server
	36.1.8.1. Configuring the Standalone Server
	36.1.8.2. Starting and Stopping the Standalone Server
	36.1.8.2.1. Using Commons Daemon jsvc
	36.1.8.2.2. Executable jar

	36.1.9. Monitoring
	36.1.9.1. Remotely Monitoring the Standalone Server with JMX

	36.1.10. Download
	36.1.11. FAQ
	36.1.11.1. Does Cache Server work with WebLogic?

	37. Using ColdFusion with Ehcache
	37.1. Using Ehcache with ColdFusion
	37.1.1. Which version of Ehcache comes with which version of ColdFusion?
	37.1.2. Which version of Ehcache should I use if I want a distributed cache?
	37.1.3. Using Ehcache with ColdFusion 9 and 9.0.1
	37.1.4. Switching from a local cache to a distributed cache with ColdFusion 9.0.1
	37.1.5. Using Ehcache with ColdFusion 8

	38. Explicit Locking API
	38.1. Explicit Locking API
	38.1.1. Locking Modes
	38.1.1.1. Standalone Ehcache
	38.1.1.2. Standard Ehcache clustered with Terracotta
	38.1.1.3. Explicit Locking Ehcache clustered with Terracotta

	38.1.2. How it works
	38.1.3. Download

	39. Write-through and write-behind caching with CacheWriters
	39.1. Write-through and Write-behind Caching with the CacheWriter
	39.1.1. Potential Benefits of Write-Behind
	39.1.2. Limitations & Constraints of Write-Behind
	39.1.2.1. Transaction Boundaries
	39.1.2.2. Time delay
	39.1.2.3. Applications Tolerant of Inconsistency
	39.1.2.4. Node time synchronisation
	39.1.2.5. No ordering guarantees

	39.1.3. Using a combined Read-Through and Write-Behind Cache
	39.1.3.1. Lazy Loading
	39.1.3.2. Caching of a Partial Dataset
	39.1.3.2.1. Eviction
	39.1.3.2.2. Expiry

	39.1.4. Ehcache Versions
	39.1.4.1. Ehcache DX (Standalone Ehcache)
	39.1.4.2. Ehcache EX and FX
	39.1.4.2.1. Durable HA write-behind Queue
	39.1.4.2.2. Cluster wide queue processing

	39.1.5. Configuration
	39.1.5.1. Configuration Attributes
	39.1.5.1.1. All modes
	39.1.5.1.2. write-through mode only
	39.1.5.1.3. write-behind mode only

	39.1.6. API
	39.1.7. SPI
	39.1.8. FAQ
	39.1.8.1. What happens if an exception occurs when the writer is called?

	40. OpenJPA Caching
	40.1. OpenJPA Caching Provider
	40.1.1. Installing
	40.1.2. Configuration
	40.1.3. Default Cache

	41. Grails Caching
	41.1. Configuring a Grails Application for Clustering
	41.1.1. Problem
	41.1.2. Solution
	41.1.3. Configure Grails for Clustered Hibernate 2nd Level Cache
	41.1.3.1. Step 1 - Configure the hibernate configuration for 2nd level caching
	41.1.3.2. Step 2 - Configure caching strategy for your domain classes
	41.1.3.3. Step 3 - Configure Grails to use the latest version of Ehcache/Terracotta
	41.1.3.4. Step 4 - Configure Ehcache to use Terracotta clustering
	41.1.3.5. Step 5 - Start a Terracotta Server
	41.1.3.6. Step 6 - Run your application

	41.1.4. More Information

	42. JSR107 (JCACHE) Support
	42.1. JSR107 (JCACHE) Support
	42.1.1. JSR107 Implementation
	42.1.2. Using JCACHE
	42.1.2.1. Creating JCaches
	42.1.2.1.1. Creating a JCache using an Ehcache decorator
	42.1.2.1.2. Creating a JCache from an existing Cache in Ehcache's CacheManager
	42.1.2.1.3. Adding a JCache to Ehcache's CacheManager
	42.1.2.1.4. Creating a JCache using the JCache CacheManager

	42.1.2.2. Getting a JCache
	42.1.2.3. Using a JCache

	42.1.3. Problems and Limitations in the early draft of JSR107
	42.1.3.1. net.sf.jsr107cache.CacheManager
	42.1.3.2. net.sf.jsr107cache.CacheFactory
	42.1.3.3. net.sf.jsr107cache.Cache
	42.1.3.4. net.sf.jsr107cache.CacheEntry
	42.1.3.5. net.sf.jsr107cache.CacheStatistics
	42.1.3.6. net.sf.jsr107cache.CacheListener
	42.1.3.7. net.sf.jsr107cache.CacheLoader

	42.1.4. Other Areas
	42.1.4.1. JMX

	43. Tomcat Issues and Best Practices
	43.1. Tomcat Issues and Best Practices
	43.1.1. Tomcat Known Issues
	43.1.1.1. Problem rejoining a cluster after a reload
	43.1.1.2. In development, there appear to be class loader memory leak as I continually redeploy my web application.
	43.1.1.3. net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer ...
	43.1.1.4. Multiple Host Entries in Tomcat's server.xml stops replication from occurring

	44. Glassfish How To
	44.1. Glassfish How To & FAQ
	44.1.1. Versions
	44.1.2. HowTo
	44.1.2.1. HowTo Get A Sample Application using Ehcache packaged and Deployed to Glassfish
	44.1.2.2. How to get around the EJB Container restrictions on thread creation

	44.1.3. Glassfish FAQ
	44.1.3.1. Ehcache page caching versions below Ehcache 1.3 get an IllegalStateException in Glassfish.
	44.1.3.2. I get a Could not ungzip. Heartbeat will not be working. Not in GZIP format reported from PayloadUtil exception when using Ehcache with my Glassfish cluster. Why?

	45. Google App Engine Caching
	45.1. Google App Engine Caching
	45.1.1. Using Ehcache on Google App Engine (GAE)
	45.1.2. Compatibility
	45.1.3. Limitations
	45.1.4. Dependencies
	45.1.5. Configuring ehcache.xml
	45.1.6. Recipes
	45.1.6.1. Setting up Ehcache as a local cache in front of memcacheg
	45.1.6.2. Using memcacheg in place of a DiskStore
	45.1.6.3. Distributed Caching
	45.1.6.4. Dynamic Web Content Caching

	45.1.7. Google App Engine FAQ
	45.1.7.1. I get an error java.lang.NoClassDefFoundError: java.rmi.server.UID is a restricted class

	45.1.8. Sample application

	46. Building From Source
	46.1. Building from Source
	46.1.1. Building an Ehcache distribution from source
	46.1.2. Running Tests for Ehcache
	46.1.3. Deploying Maven Artifacts
	46.1.4. Building the Site
	46.1.5. Deploying a release
	46.1.5.1. Maven Release
	46.1.5.2. Sourceforge Release

	47. FAQ
	47.1. Frequently Asked Questions
	47.1.1. Does Ehcache run on JDK1.3 / JDK1.4 ?
	47.1.2. Can you use more than one instance of Ehcache in a single VM?
	47.1.3. Can you use Ehcache with Hibernate and outside of Hibernate at the same time?
	47.1.4. What happens when maxElementsInMemory is reached? Are the oldest items are expired when new ones come in?
	47.1.5. Is it thread safe to modify Element values after retrieval from a Cache?
	47.1.6. Can non-Serializable objects be stored in a cache?
	47.1.7. Why is there an expiry thread for the DiskStore but not for the MemoryStore?
	47.1.8. What elements are mandatory in ehcache.xml?
	47.1.9. Can I use Ehcache as a memory cache only?
	47.1.10. Can I use Ehcache as a disk cache only?
	47.1.11. Where is the source code? The source code is distributed in the root directory of the download.
	47.1.12. How do you get statistics on an Element without affecting them?
	47.1.13. How do you get WebSphere to work with ehcache?
	47.1.14. Do you need to call CacheManager.getInstance().shutdown() when you finish with ehcache?
	47.1.15. Can you use Ehcache after a CacheManager.shutdown()?
	47.1.16. I have created a new cache and its status is STATUS_UNINITIALISED. How do I initialise it?
	47.1.17. Is there a simple way to disable Ehcache when testing?
	47.1.18. How do I dynamically change Cache attributes at runtime?
	47.1.19. I get net.sf.ehcache.distribution.RemoteCacheException: Error doing put to remote peer. Message was: Error unmarshaling return header; nested exception is: java.net.SocketTimeoutException: Read timed out. What does this mean.
	47.1.20. Should I use this directive when doing distributed caching? cacheManagerEventListenerFactory class="" properties=""/
	47.1.21. What is the minimum config to get distributed caching going?
	47.1.22. How can I see if distributed caching is working?
	47.1.23. Why can't I run multiple applications using Ehcache on one machine?
	47.1.24. How many threads does Ehcache use, and how much memory does that consume?
	47.1.25. I am using Tomcat 5, 5.5 or 6 and I am having a problem. What can I do?
	47.1.26. I am using Java 6 and getting a java.lang.VerifyError on the Backport Concurrent classes. Why?
	47.1.27. How do I get a memory only cache to persist to disk between VM restarts?
	47.1.28. I get a javax.servlet.ServletException: Could not initialise servlet filter when using SimplePageCachingFilter. Why?
	47.1.29. I see, in my application's log:
	47.1.30. How do I add a CacheReplicator to a cache that already exists? The cache event listening works but it does not get plumbed into the peering mechanism.
	47.1.31. I am using the RemoteDebugger to monitor cluster messages but all I see is "Cache size: 0"
	47.1.32. With distributed replication on Ubuntu or Debian, I see the following warning,
	47.1.33. I see log messages about SoftReferences. What are these about and how do I stop getting the messages?
	47.1.34. My Hibernate Query caches entries are replicating but the other caches in the cluster are not using them.
	47.1.35. Active MQ Temporary Destinatons
	47.1.36. Is Ehcache compatible with Google App Engine?
	47.1.37. Can my app server use JMS Replication?
	47.1.38. Why does Ehcache 1.6 use more memory than 1.5?
	47.1.39. What does this mean? "Caches cannot be added by name when default cache config is not specified in the config. Please add a default cache config in the configuration."

