
..

Ehcache
v. 2.4
User Guide

..

Terracotta, Inc. 2011-05-05

T a b l e o f C o n t e n t s i

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Table of Contents
...

1 Table of Contents . i

2 Preface . 1

3 Introduction . 2

4 Getting Started . 9

5 Dependencies . 11

6 Cache Concepts . 12

7 Configuration . 17

8 Storage Options . 24

9 Cache Consistency Options . 31

10 Cache Eviction Algorithms . 39

11 Big Memory:Off-Heap Store . 42

12 JDBC Caching . 52

13 Spring Caching with Ehcache . 56

14 Code Samples . 58

15 Class loading and Class Loaders . 65

16 Tuning Garbage Collection . 67

17 Cache Decorators . 68

18 Hibernate Caching . 71

19 Web Caching . 83

20 Using ColdFusion with Ehcache . 88

21 Cache Topologies . 91

22 Distributed Caching .

23 Replicated Caching With RMI . 94

24 Replicated Caching With JGroups . 100

25 Replicated Caching With JMS . 104

26 Shutting Down Ehcache . 115

26 Logging . 117

26 Remote Network replication debugging: RMI Replicated Caches 118

26 JMX Management And Monitoring . 120

26 JTA And Transactions . 127

26 Search . 135

26 Ehcache Monitor . 145

26 Bulk Loading .

26 CacheManager Event Listeners . 151

26 Cache Event Listeners . 154

26 Cache Exception Handlers . 158

26 Cache Extensions . 161

26 Cache Loaders . 164

T a b l e o f C o n t e n t s ii

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

26 Write-through and write-behind caching with CacheWriters 168

26 Cache Server with SOAP and RESTful Web Services 177

26 Explicit Locking API . 195

26 BlockingCache and SelfPopulatingCache . 198

26 OpenJPA Caching . 199

26 Grails Caching . 200

26 JRuby Caching . 202

26 Glassfish HowTo . 206

26 Google App Engine Caching . 208

26 Tomcat Issues and Best Practices . 211

26 JSR107 (JCACHE) Support . 212

26 Building From Source . 218

26 FAQ . 220

1 P r e f a c e 1

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

1 Preface
...

1.1 Preface
This is a book about Ehcache, a widely used open source Java cache. Ehcache has grown in size and
scope since it was introduced in October 2003. As people used it they often noticed it was missing
a feature they wanted. Over time, the features that were repeatedly asked for, and make sense for a
Cache, have been added.

Ehcache is now used for Hibernate caching, data access object caching, security credential caching,
web caching, SOAP and RESTful server caching, application persistence and distributed caching.

In August 2009, Ehcache was acquired by Terracotta, Inc. and has been continously enhanced since
then.

1.1.1 Version

This book is for Ehcache version 2.4.1.

1.1.2 Audience

The intended audience for this book is developers who use ehcache. It should be able to be used to
start from scratch, get up and running quickly, and also be useful for the more complex options.

Ehcache is about performance and load reduction of underlying resources. Another natural audience is
performance specialists.

It is also intended for application and enterprise architects. Some of the features of ehcache, such
as distributed caching and Java EE caching, are alternatives to be considered along with other ways
of solving those problems. This book discusses the trade-offs in Ehcache's approach to help make a
decision about appropriateness of use.

1.1.3 Acknowledgements

Ehcache has had many contributions in the form of forum discussions, feature requests, bug reports,
patches and code commits.

Rather than try and list the many hundreds of people who have contributed to Ehcache in some way it
is better to link to the web site where contributions are acknowledged in the following ways:

• Bug reports and features requests appear in the changes report here:
• Patch contributors generally end up with an author tag in the source they contributed to.
• Team members appear on the team list page here:

http://ehcache.org/changes-report.html

2 I n t r o d u c t i o n 2

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

2 Introduction
...

2.1 Introduction
Ehcache is a cache library. Before getting into ehcache, it is worth stepping back and thinking about
caching generally.

2.1.1 About Caches

Wiktionary defines a cache as A store of things that will be required in future, and can be retrieved
rapidly. That is the nub of it.

In computer science terms, a cache is a collection of temporary data which either duplicates data
located elsewhere or is the result of a computation. Once in the cache, the data can be repeatedly
accessed inexpensively.

2.1.2 Why caching works

2.1.2.1 Locality of Reference

While Ehcache concerns itself with Java objects, caching is used throughout computing, from CPU
caches to the DNS system. Why? Because many computer systems exhibit locality of reference. Data
that is near other data or has just been used is more likely to be used again.

2.1.2.2 The Long Tail

Chris Anderson, of Wired Magazine, coined the term The Long Tail to refer to Ecommerce systems.
The idea that a small number of items may make up the bulk of sales, a small number of blogs might
get the most hits and so on. While there is a small list of popular items, there is a long tail of less
popular ones.

The Long Tail

The Long Tail is itself a vernacular term for a Power Law probability distribution. They don't just
appear in ecommerce, but throughout nature. One form of a Power Law distribution is the Pareto
distribution, commonly know as the 80:20 rule.

2 I n t r o d u c t i o n 3

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

This phenomenon is useful for caching. If 20% of objects are used 80% of the time and a way can be
found to reduce the cost of obtaining that 20%, then the system performance will improve.

2.1.3 Will an Application Benefit from Caching?

The short answer is that it often does, due to the effects noted above.

The medium answer is that it often depends on whether it is CPU bound or I/O bound. If an
application is I/O bound then then the time taken to complete a computation depends principally on
the rate at which data can be obtained. If it is CPU bound, then the time taken principally depends on
the speed of the CPU and main memory.

While the focus for caching is on improving performance, it it also worth realizing that it reduces
load. The time it takes something to complete is usually related to the expense of it. So, caching often
reduces load on scarce resources.

2.1.3.1 Speeding up CPU bound Applications

CPU bound applications are often sped up by:

• improving algorithm performance
• parallelizing the computations across multiple CPUs (SMP) or multiple machines (Clusters).
• upgrading the CPU speed.

The role of caching, if there is one, is to temporarily store computations that may be reused
again.

An example from Ehcache would be large web pages that have a high rendering cost. Another
caching of authentication status, where authentication requires cryptographic transforms.

2.1.3.2 Speeding up I/O bound Applications

Many applications are I/O bound, either by disk or network operations. In the case of databases they
can be limited by both.

There is no Moore's law for hard disks. A 10,000 RPM disk was fast 10 years ago and is still fast.
Hard disks are speeding up by using their own caching of blocks into memory.

Network operations can be bound by a number of factors:

• time to set up and tear down connections
• latency, or the minimum round trip time
• throughput limits
• marshalling and unmarhshalling overhead

The caching of data can often help a lot with I/O bound applications. Some examples of Ehcache
uses are:

• Data Access Object caching for Hibernate
• Web page caching, for pages generated from databases.

2.1.3.3 Increased Application Scalability

The flip side of increased performance is increased scalability. Say you have a database which can do
100 expensive queries per second. After that it backs up and if connections are added to it it slowly
dies.

In this case, caching may be able to reduce the workload required. If caching can cause 90 of that 100
to be cache hits and not even get to the database, then the database can scale 10 times higher than
otherwise.

2 I n t r o d u c t i o n 4

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

2.1.4 How much will an application speed up with Caching?

2.1.4.1 The short answer

The short answer is that it depends on a multitude of factors being:

• how many times a cached piece of data can and is reused by the application
• the proportion of the response time that is alleviated by caching

In applications that are I/O bound, which is most business applications, most of the response time
is getting data from a database. Therefore the speed up mostly depends on how much reuse a
piece of data gets.

In a system where each piece of data is used just once, it is zero. In a system where data is reused
a lot, the speed up is large.

The long answer, unfortunately, is complicated and mathematical. It is considered next.

2.1.4.2 Applying Amdahl's Law

Amdahl's law, after Gene Amdahl, is used to find the system speed up from a speed up in part of the
system.

 1 / ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

The following examples show how to apply Amdahl's law to common situations. In the interests of
simplicity, we assume:

• a single server
• a system with a single thing in it, which when cached, gets 100% cache hits and lives forever.

2.Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1000 times faster from cache than from a
database.

A typical Hibernate query will return a list of IDs from the database, and then attempt to load each. If
Session.iterate() is used Hibernate goes back to the database to load each object.

Imagine a scenario where we execute a query against the database which returns a hundred IDs and
then load each one.

The query takes 20% of the time and the roundtrip loading takes the rest (80%). The database query
itself is 75% of the time that the operation takes. The proportion being sped up is thus 60% (75% *
80%).

The expected system speedup is thus:

 1 / ((1 - .6) + .6 / 1000)
 = 1 / (.4 + .006)
 = 2.5 times system speedup

2.Web Page Caching

An observed speed up from caching a web page is 1000 times. Ehcache can retrieve a page from its
SimplePageCachingFilter in a few ms.

Because the web page is the end result of a computation, it has a proportion of 100%.

The expected system speedup is thus:

 1 / ((1 - 1) + 1 / 1000)
 = 1 / (0 + .001)
 = 1000 times system speedup

2 I n t r o d u c t i o n 5

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

2.Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liveness requirements vary in different parts of
the page. Here the SimplePageFragmentCachingFilter can be used.

Let's say we have a 1000 fold improvement on a page fragment that taking 40% of the page render
time.

The expected system speedup is thus:

 1 / ((1 - .4) + .4 / 1000)
 = 1 / (6 + .004)
 = 1.6 times system speedup

2.1.4.3 Cache Efficiency

In real life cache entrie do not live forever. Some examples that come close are "static" web pages or
fragments of same, like page footers, and in the database realm, reference data, such as the currencies
in the world.

Factors which affect the efficiency of a cache are:

liveness

how live the data needs to be. The less live the more it can be cached

proportion of data cached

what proportion of the data can fit into the resource limits of the machine. For 32 bit Java
systems, there was a hard limit of 2GB of address space. While now relaxed, garbage
collection issues make it harder to go a lot large. Various eviction algorithms are used to
evict excess entries.

Shape of the usage distribution

If only 300 out of 3000 entries can be cached, but the Pareto distribution applies, it may
be that 80% of the time, those 300 will be the ones requested. This drives up the average
request lifespan.

Read/Write ratio

The proportion of times data is read compared with how often it is written. Things such
as the number of rooms left in a hotel will be written to quite a lot. However the details of
a room sold are immutable once created so have a maximum write of 1 with a potentially
large number of reads.
Ehcache keeps these statistics for each Cache and each element, so they can be measured
directly rather than estimated.

2.1.4.4 Cluster Efficiency

Also in real life, we generally do not find a single server?

Assume a round robin load balancer where each hit goes to the next server.

The cache has one entry which has a variable lifespan of requests, say caused by a time to live. The
following table shows how that lifespan can affect hits and misses.

 Server 1 Server 2 Server 3 Server 4
 M M M M
 H H H H
 H H H H
 H H H H

2 I n t r o d u c t i o n 6

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 H H H H

The cache hit ratios for the system as a whole are as follows:

Entry
Lifespan Hit Ratio Hit Ratio Hit Ratio Hit Ratio
in Hits 1 Server 2 Servers 3 Servers 4 Servers
2 1/2 0/2 0/2 0/2
4 3/4 2/4 1/4 0/4
10 9/10 8/10 7/10 6/10
20 19/20 18/20 17/20 16/10
50 49/50 48/50 47/20 46/50

The efficiency of a cluster of standalone caches is generally:

 (Lifespan in requests - Number of Standalone Caches) / Lifespan in requests

Where the lifespan is large relative to the number of standalone caches, cache efficiency is not much
affected.

However when the lifespan is short, cache efficiency is dramatically affected.

(To solve this problem, Ehcache supports distributed caching, where an entry put in a local cache is
also propagated to other servers in the cluster.)

2.1.4.5 A cache version of Amdahl's law

From the above we now have:

 1 / ((1 - Proportion Sped Up * effective cache efficiency) +
 (Proportion Sped Up * effective cache efficiency)/ Speed up)

effective cache efficiency = cache efficiency * cluster efficiency

2.1.4.6 Web Page example

Applying this to the earlier web page cache example where we have cache efficiency of 35% and
average request lifespan of 10 requests and two servers:

 cache efficiency = .35
 cluster efficiency = .(10 - 1) / 10
 = .9
 effective cache efficiency = .35 * .9
 = .315
 1 / ((1 - 1 * .315) + 1 * .315 / 1000)
 = 1 / (.685 + .000315)
 = 1.45 times system speedup

What if, instead the cache efficiency is 70%; a doubling of efficiency. We keep to two servers.

 cache efficiency = .70
 cluster efficiency = .(10 - 1) / 10
 = .9
 effective cache efficiency = .70 * .9
 = .63
 1 / ((1 - 1 * .63) + 1 * .63 / 1000)
 = 1 / (.37 + .00063)
 = 2.69 times system speedup

What if, instead the cache efficiency is 90%; a doubling of efficiency. We keep to two servers.

 cache efficiency = .90

2 I n t r o d u c t i o n 7

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 cluster efficiency = .(10 - 1) / 10
 = .9
 effective cache efficiency = .9 * .9
 = .81
 1 / ((1 - 1 * .81) + 1 * .81 / 1000)
 = 1 / (.19 + .00081)
 = 5.24 times system speedup

Why is the reduction so dramatic? Because Amdahl's law is most sensitive to the proportion of the
system that is sped up.

2 I n t r o d u c t i o n 8

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

3 G e t t i n g S t a r t e d 9

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

3 Getting Started
...

3.1 Getting Started
Firstly, if you have not downloaded Ehcache, you can download it here.

Ehcache can be used directly. It can also be used with the popular Hibernate Object/Relational tool.
Finally, it can be used for Java EE Servlet Caching.

This quick guide gets you started on each of these. The rest of the documentation can be explored for
a deeper understanding.

3.1.1 General Purpose Caching

• Make sure you are using a supported Java version.
• Place the Ehcache jar into your classpath.
• Ensure that any libraries required to satisfy dependencies are also in the classpath.
• Configure ehcache.xml and place it in your classpath.
• Optionally, configure an appropriate logging level.

See the Code Samples chapter for more information on direct interaction with ehcache.

3.1.2 Hibernate

• Perform the same steps as for General Purpose Caching.
• Create caches in ehcache.xml.

See the Hibernate Caching chapter for more information.

3.1.3 Distributed Caching

Ehcache supports distributed caching with two lines of configuration.

• Download the ehcache-distribution package.
• Add ehcache-core jar to your classpath
• Add ehcache-terracotta jar to your classpath
• Add a 'terracotta' element to your 'cache' stanza(s) in ehcache.xml
• Add a 'terracottaConfig' element to your 'ehcache' stanza in ehcache.xml.
• See the Distributed Caching With Terracotta chapter for more information.

3.1.4 Java EE Servlet Caching

• Perform the same steps as for General Purpose Caching.
• Configure a cache for your web page in ehcache.xml.
• To cache an entire web page, either use SimplePageCachingFilter or create your own subclass of

CachingFilter
• To cache a jsp:Include or anything callable from a RequestDispatcher, either use

SimplePageFragmentCachingFilter or create a subclass of PageFragmentCachingFilter.
• Configure the web.xml. Declare the filters created above and create filter mapping associating

the filter with a URL.
See the Web Caching chapter for more information.

http://www.terracotta.org/dl/ehcache-oss-sign-up
http://www.terracotta.org/dl/ehcache-oss-sign-up

3 G e t t i n g S t a r t e d 10

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

3.1.5 RESTful and SOAP Caching with the Cache Server

• Download the ehcache-standalone-server from https://sourceforge.net/projects/ehcache/files/
ehcache-server.

• cd to the bin directory
• Type startup.sh to start the server with the log in the foreground.

By default it will listen on port 8080, will have both RESTful and SOAP web services enabled,
and will use a sample Ehcache configuration from the WAR module.

• See the code samples in the Cache Server chapter. You can use Java or any other programming
language to the use the Cache Server.
See the Cache Server chapter for more information.

3.1.6 JCache style caching

Ehcache contains an early draft implementation of JCache contained in the net.sf.ehcache.jcache
package.

See the JSR107 chapter for usage.

3.1.7 Spring, Cocoon, Acegi and other frameworks

Usually, with these, you are using Ehcache without even realising it. The first steps in getting more
control over what is happening are:

• discover the cache names used by the framework
• create your own ehcache.xml with settings for the caches and place it in the application

classpath.

https://sourceforge.net/projects/ehcache/files/ehcache-server
https://sourceforge.net/projects/ehcache/files/ehcache-server

4 D e p e n d e n c i e s 11

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

4 Dependencies
...

4.1 Java Requirements and Dependencies

4.1.1 Java Requirements

Current Ehcache releases require Java 1.5 and 1.6 at runtime.

Ehcache 1.5 requires Java 1.4.

The ehcache-monitor module, which provides management and monitoring, will work with Ehcache
1.2.3 but only for Java 1.5 or higher.

4.1.2 Mandatory Dependencies

Ehcache core 1.6 through to 1.7.0 has no dependencies.

Ehcache core 1.7.1 depends on SLF4J (http://www.slf4j.org), an increasingly commonly used
logging framework which provides a choice of concrete logging implementation. See the chapter on
Logging for configuration details.

Other modules have dependencies as specified in their maven poms.

4.1.3 Maven Snippet

To include Ehcache in your project use:

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache</artifactId>
 <version>2.3.1</version>
 <type>pom</type>
 </dependency>

http://www.slf4j.org

5 C a c h e C o n c e p t s 12

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

5 Cache Concepts
...

5.1 Key Ehcache Concepts

5.1.1 Definitions

• cache-hit: When a data element is requested of the cache and the element exists for the given
key, it is referrred to as a cache hit (or simply 'hit').

• cache-miss: When a data element is requested of the cache and the element does not exist for the
given key, it is referred to as a cache miss (or simply 'miss').

• system-of-record: The core premise of caching assumes that there is a source of truth for the
data. This is often referred to as a system-of-record (SOR). The cache acts as a local copy of
data retrieved from or stored to the system-of-record.

• SOR: See system-of-record.

5.1.2 Key Ehcache Classes

Ehcache consists of a CacheManager, which manages caches. Caches contain elements, which are
essentially name value pairs. Caches are physically implemented either in-memory, or on disk.

5.1.2.1 CacheManager

The CacheManager comprises Caches which in turn comprise Elements.

Creation of, access to and removal of caches is controlled by the CacheManager.

5.CacheManager Creation Modes

CacheManager supports two creation modes: singleton and instance.

5.Singleton Mode

Ehcache-1.1 supported only one CacheManager instance which was a singleton. CacheManager can
still be used in this way using the static factory methods.

5.Instance Mode

From ehcache-1.2, CacheManager has constructors which mirror the various static create methods.
This enables multiple CacheManagers to be created and used concurrently. Each CacheManager
requires its own configuration.

If the Caches under management use only the MemoryStore, there are no special considerations.
If Caches use the DiskStore, the diskStore path specified in each CacheManager configuration
should be unique. When a new CacheManager is created, a check is made that there are no other
CacheManagers using the same diskStore path. If there are, a CacheException is thrown. If a
CacheManager is part of a cluster, there will also be listener ports which must be unique.

5.Mixed Singleton and Instance Mode

If an application creates instances of CacheManager using a constructor, and also calls a static create
method, there will exist a singleton instance of CacheManager which will be returned each time the
create method is called together with any other instances created via constructor. The two types will
coexist peacefully.

5.1.2.2 Ehcache

All caches implement the Ehcache interface. A cache has a name and attributes. Each cache contains
Elements.

http://en.wikipedia.org/wiki/System_of_record

5 C a c h e C o n c e p t s 13

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

A Cache in Ehcache is analogous to a cache region in other caching systems.

Cache elements are stored in the MemoryStore. Optionally they also overflow to a DiskStore.

5.1.2.3 Element

An element is an atomic entry in a cache. It has a key, a value and a record of accesses. Elements are
put into and removed from caches. They can also expire and be removed by the Cache, depending on
the Cache settings.

As of ehcache-1.2 there is an API for Objects in addition to the one for Serializable. Non-serializable
Objects can use all parts of Ehcache except for DiskStore and replication. If an attempt is made to
persist or replicate them they are discarded without error and with a DEBUG level log message.

The APIs are identical except for the return methods from Element. Two new methods on Element:
getObjectValue and getKeyValue are the only API differences between the Serializable and Object
APIs. This makes it very easy to start with caching Objects and then change your Objects to
Seralizable to participate in the extra features when needed. Also a large number of Java classes are
simply not Serializable.

5.1.3 Cache Usage Patterns

There are several common access patterns when using a cache. Ehcache supports the following
patterns:

• cache-aside (or direct manipulation)
• cache-as-sor (a combination of read-through and write-through or write-behind patterns)
• read-through
• write-through
• write-behind (or write-back) []

5.1.3.1 cache-aside

Here, application code uses the cache directly.

This means that application code which accesses the system-of-record (SOR) should consult the
cache first, and if the cache contains the data, then return the data directly from the cache, bypassing
the SOR.

Otherwise, the application code must fetch the data from the system-of-record, store the data in the
cache, and then return it.

When data is written, the cache must be updated with the system-of-record.

This results in code that often looks like the following pseudo-code:

public class MyDataAccessClass
{
 private final Ehcache cache;
 public MyDataAccessClass(Ehcache cache)
 {
 this.cache = cache;
 }

 /* read some data, check cache first, otherwise read from sor */
 public V readSomeData(K key)
 {
 Element element;
 if ((element = cache.get(key)) != null) {

5 C a c h e C o n c e p t s 14

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 return element.getValue();
 }
 // note here you should decide whether your cache
 // will cache 'nulls' or not
 if (value = readDataFromDataStore(key)) != null) {
 cache.put(new Element(key, value));
 }
 return value;
 }
 /* write some data, write to sor, then update cache */
 public void writeSomeData(K key, V value)
 {
 writeDataToDataStore(key, value);
 cache.put(new Element(key, value);
 }
}

5.1.3.2 cache-as-sor

The cache-as-sor pattern implies using the cache as though it were the primary system-of-record
(SOR). The pattern delegates SOR reading and writing activies to the cache, so that application code
is absolved of this responsibility.

To implement the cache-as-sor pattern, use a combination of the following read and write patterns:

• read-through
• write-through or write-behind

Advantages of using the cache-as-sor pattern are:

• less cluttered application code (improved maintainability)
• easily choose between write-through or write-behind strategies on a per-cache basis (use only

configuration)
• allow the cache to solve the "thundering-herd" problem

Disadvantages are:

• less directly visible code-path

5.1.3.3 read-through

The read-through pattern mimics the structure of the cache-aside pattern when reading data. The
difference is that you must implement the CacheEntryFactory interface to instruct the cache
how to read objects on a cache miss, and you must wrap the Ehcache instance with an instance of
SelfPopulatingCache.

Compare the appearance of the read-through pattern code to the code provided in the cache-aside
pattern. (The full example is provided at the end of this document that includes a read-through and
write-through implementation).

5.1.3.4 write-through

The write-through pattern mimics the structure of the cache-aside pattern when writing data. The
difference is that you must implement the CacheWriter interface and configure the cache for write-
through or write-behind.

A write-through cache writes data to the system-of-record in the same thread of execution, therefore
in the common scenario of using a database transaction in context of the thread, the write to the
database is covered by the transaction in scope.

5 C a c h e C o n c e p t s 15

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

More details (including configuration settings) can be found in the User Guide chapter on Write-
through and Write-behind Caching.

5.1.3.5 write-behind

The write-behind pattern changes the timing of the write to the system-of-record. Rather than writing
to the System of Record in the same thread of execution, write-behind queues the data for write at a
later time.

The consequences of the change from write-through to write-behind are that the data write using
write-behind will occur outside of the scope of the transaction.

This often-times means that a new transaction must be created to commit the data to the system-of-
record that is separate from the main transaction.

More details (including configuration settings) can be found in the User Guide chapter on Write-
through and Write-behind Caching.

5.1.3.6 cache-as-sor example

public class MyDataAccessClass
{
 private final Ehcache cache;
 public MyDataAccessClass(Ehcache cache)
 {
 cache.registerCacheWriter(new MyCacheWriter());
 this.cache = new SelfPopulatingCache(cache);
 }
 /* read some data - notice the cache is treated as an SOR.
 * the application code simply assumes the key will always be available
 */
 public V readSomeData(K key)
 {
 return cache.get(key);
 }
 /* write some data - notice the cache is treated as an SOR, it is
 * the cache's responsibility to write the data to the SOR.
 */
 public void writeSomeData(K key, V value)
 {
 cache.put(new Element(key, value);
 }
 /**
 * Implement the CacheEntryFactory that allows the cache to provide
 * the read-through strategy
 */
 private class MyCacheEntryFactory implements CacheEntryFactory
 {
 public Object createEntry(Object key) throws Exception
 {
 return readDataFromDataStore(key);
 }
 }
 /**
 * Implement the CacheWriter interface which allows the cache to provide
 * the write-through or write-behind strategy.

5 C a c h e C o n c e p t s 16

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 */
 private class MyCacheWriter implements CacheWriter
 public CacheWriter clone(Ehcache cache) throws CloneNotSupportedException;
 {
 throw new CloneNotSupportedException();
 }
 public void init() { }
 void dispose() throws CacheException { }
 void write(Element element) throws CacheException;
 {
 writeDataToDataStore(element.getKey(), element.getValue());
 }
 void writeAll(Collection<Element> elements) throws CacheException
 {
 for (Element element : elements) {
 write(element);
 }
 }
 void delete(CacheEntry entry) throws CacheException
 {
 deleteDataFromDataStore(element.getKey());
 }
 void deleteAll(Collection<CacheEntry> entries) throws CacheException
 {
 for (Element element : elements) {
 delete(element);
 }
 }
 }
}

5.1.3.7 Copy Cache

A Copy Cache can have two behaviors: it can copy Element instances it returns, when copyOnRead
is true and copy elements it stores, when copyOnWrite to true.

A copy on read cache can be useful when you can't let multiple threads access the same Element
instance (and the value it holds) concurrently. For example, where the programming model doesn't
allow it, or you want to isolate changes done concurrently from each other.

Copy on write also lets you determine exactly what goes in the cache and when. i.e. when the value
that will be in the cache will be in state it was when it actually was put in cache. All mutations to the
value, or the element, after the put operation will not be reflected in the cache.

A concrete example of a copy cache is a Cache configured for XA. It will always be configured
copyOnRead and copyOnWrite to provide proper transaction isolation and clear transaction
boundaries (the state the objects are in at commit time is the state making it into the cache).

By default, the copy operation will be performed using standard Java object serialization. We
do recognize though that for some applications this might not be good (or fast) enough. You can
configure your own CopyStrategy which will be used to perform these copy operations. For
example, you could easily implement use cloning rather than Serialization.

More information on configuration can be found here: copyOnRead and copyOnWrite cache
configuration.

6 C o n f i g u r a t i o n 17

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

6 Configuration
...

6.1 Cache Configuration
Caches can be configured in Ehcache either declaratively, in xml, or by creating them
programmatically and specifying their parameters in the constructor.

While both approaches are fully supported it is generally a good idea to separate the cache
configuration from runtime use. There are also these benefits:

• It is easy if you have all of your configuration in one place. Caches consume memory, and disk
space. They need to be carefully tuned. You can see the total effect in a configuration file. You
could do this code, but it would not as visible.

• Cache configuration can be changed at deployment time.
• Configuration errors can be checked for at start-up, rather than causing a runtime error.

This chapter covers XML declarative configuration.

Ehcache is redistributed by lots of projects. They may or may not provide a sample Ehcache XML
configuration file. If one is not provided, download Ehcache from http://ehcache.org. It, and the
ehcache.xsd is provided in the distibution.

6.1.1 Dynamically Changing Cache Configuration

After a Cache has been started its configuration is not generally changeable. However, since Ehcache
2.0, certain aspects of cache configuration can modified dynamically at runtime, namely:

• timeToLive
• timeToIdle
• maxElementsInMemory
• maxElementsOnDisk
• memory store eviciton policy
• CacheEventListeners can be added and removed dynamically []

Note that the eternal attribute, when set to "true", overrides timeToLive and timeToIdle so that
no expiration can take place.

This example shows how to dynamically modify the cache configuration of an already running cache:

 Cache cache = manager.getCache("sampleCache");
 CacheConfiguration config = cache.getCacheConfiguration();
 config.setTimeToIdleSeconds(60);
 config.setTimeToLiveSeconds(120);
 config.setMaxElementsInMemory(10000);
 config.setMaxElementsOnDisk(1000000);

Dynamic cache configurations can also be frozen to prevent future changes:

 Cache cache = manager.getCache("sampleCache");
 cache.disableDynamicFeatures();

6.1.2 Memory Based Cache Sizing (Ehcache 2.5 and higher)

Historically Ehcache has only permitted sizing of caches by maxElementsInMemory for the the
OnHeap Store and maxElementsOnDisk for the DiskStore. The OffHeap Store introduced sizing in
terms of memory use.

From Ehcache 2.5, we are extending sizing based on bytes consumed to all stores.

http://ehcache.org

6 C o n f i g u r a t i o n 18

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The new cache attributes are:

• maxBytesOnHeap
• maxBytesOffHeap (formerly maxMemoryOffHeap)
• maxBytesOnDisk

Size may be expressed in bytes using the convention for specifying -Xmx (e.g. 200k, 30m, 5g
etc.)

For added simplicity you can also specify these attributes at the ehcache level, which then
applies them to the whole CacheManager, leaving each cache to share in one large pool of
memory.

If you specify a CacheManager wide sizes, you can also use percentages at the cache level. e.g
maxBytesOnHeap="20%".

For completeness we also add cache pinning and rules for cache-level configuration to override
CacheManager level configuration.

6.1.2.1 Example Configuration

An example is shown below. It allocates 1GB on heap and 4GB off heap at the CacheManager level.

It also demonstrates some finer points which we will conver in the following sections.

 <ehcache maxBytesOnHeap="1g" maxBytesOffHeap="4g" maxBytesOnDisk="100g" >
 <cache name="explicitlyAllocatedCache1"
 maxBytesOnHeap="50m"
 maxBytesOffHeap="200m"
 timeToLiveSeconds="100"
 </cache>
 <cache name="explicitlyAllocatedCache2"
 maxBytesOnHeap="10%"
 maxBytesOffHeap="200m"
 timeToLiveSeconds="100"
 </cache>
 <cache name="automaticallyAllocatedCache1"
 timeToLiveSeconds="100"
 overflowToDisk="true"
 </cache>
 <cache name="automaticallyAllocatedCache2"
 timeToLiveSeconds="100"
 </cache>
 <cache name="pinnedCache"
 timeToLiveSeconds="100"
 <pinning storage="inMemory"/>
 </cache>
 </ehcache>

6.1.2.2 CacheManager versus Cache level configuration

Caches without specific configuration participate in the general storage pools. And caches with
specific configuration take either a fixed amount (e.g. 200m) or a percentage (e.g. 5%).

When managing storage out of CacheManager level pools, element are evicted across all caches using
an LRU (possibly clock based) algorithm.

The CacheManager level storage pool attributes are:

• maxBytesOnHeap="size"

6 C o n f i g u r a t i o n 19

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• maxBytesOffHeap="size"
• maxBytesOnDisk="size"

where size is the Java -Xmx syntax. e.g. 4g

If a store is configured using a CacheManager level pool, the maxElements form of configuration
cannot be used.

6.Cache level overrides

There will be times when the developer knows more about the tuning of each cache than and can
outperform CacheManager level tuning. In this case it is recommended to provide cache specific
configuration.

Cache specific configuration always overrides CacheManager allocations.

The Cache level storage pool attributes are:
• maxBytesOnHeap="size | %"
• maxBytesOffHeap="size | %"
• maxBytesOnDisk="size | %"

where size is the Java -Xmx syntax. e.g. 4g and % is simply a positive number between 0 and
100. e.g. 5%

6.Overallocation Rules

To prevent overallocation of CacheManager level pools by cache level overrdies we perform a
number of checks on startup:

• We convert percentages to fixed amounts
• We then add the those to any other fixed allocations
• If the sum exceeds the CacheManager allocation, we throw an
InvalidConfigurationException.

• If the sum equals the CacheManager allocation, we issue a warning, as there will not be memory
left for caches without overrides
Overallocations can only be detected at configuration time. For this reason we do not permit
the use of max element count (e.g. maxElementsInMemory) configuration with CacheManager
storage pools.

6.1.2.3 Pinning of Caches and Elements in Memory

6.Pinning of Caches

Caches may be pinned using the new pinning sub-element:

 <cache name="pinnedCache"
 timeToLiveSeconds="100"
 <pinning storage="onHeap | inMemory | inCache" />
 </cache>

Pinning means that cache Elements are never evicted due to space. They cache will continue to grow
as elements are added to it. Elements will only be evicted unless the Element has expired.

Pinning is possible at three different levels:
• onHeap - retain the elements in the Java heap
• inMemory - retain the elements in either the OnHeap or the OffHeap stores, depending on what

stores there are and how much is space is available in each.
• inCache - retain the elements in the cache. This allows further off loading to either the DiskStore

in a standalone cache, or the L2 in a Terracotta backed Distributed Ehcache.
The recommended use is reference data, where you always want the whole dataset in memory.

6 C o n f i g u r a t i o n 20

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Pinning cannot be used with either maxElementsInMemory or maxBytesOnHeap - it is
unbounded.

Caution: It is possible to cause an OutOfMemory error with pinned caches. They may even look
like a memory leak in the application. They are meant to be a convenience. They should not be
used with potentially unbounded data sets.

6.Pinning of Elements

Some APIs like OpenJPA and Hibernate require pinning of specific Elements.

A new method on Element, Element.setPinned(true|false, onHeap|inMemory|inCache) has been
added. When a pinned Element is placed in the cache it will not be evicted from the On-Heap store.
Element level pinning is a noop when the whole cache is pinned.

6.1.3 Cache Warming for multi-tier Caches (Ehcache 2.5 and higher)

When a cache starts up, the On-Heap and Off-Heap stores are always empty. Ehcache provides
a BootstrapCacheLoader mechanism to overcome this. The BootstrapCacheLoader is run before
the cache is set to alive. If synchronous, loading completes before the CacheManager starts, or if
asynchronous, the CacheManager starts but loading continues agressively rather than waiting for
elements to be requested, which is a lazy loading approach.

Replicated caches provide a boot strap mechanism which populates them. For example following is
the JGroups bootstrap cache loader:

<bootstrapCacheLoaderFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsBootstrapCacheLoaderFactory"
 properties="bootstrapAsynchronously=true"/>

We have two new bootstrapCacheLoaderFactory implementations: one for standalone caches with
DiskStores, and one for Terracotta Distributed caches.

6.1.3.1 DiskStoreBootstrapCacheLoaderFactory

The DiskStoreBootstrapCacheLoaderFactory loads elements from the DiskStore to the On-Heap Store
and the Off-Heap store until either:

• the memory stores are full
• the DiskStore has been completely loaded

6.Configuration

The DiskStoreBootstrapCacheLoaderFactory is configured as follows:

<bootstrapCacheLoaderFactory
 class="net.sf.ehcache.store.DiskStoreBootstrapCacheLoaderFactory"
 properties="bootstrapAsynchronously=true"/>

6.1.3.2 TerracottaBootstrapCacheLoaderFactory

The TerracottaBootstrapCacheLoaderFactory loads elements from the Terracotta L2 to the On-Heap
Store and the Off-Heap store until either:

• the memory stores are full
• the L2 has been completely loaded

The TerracottaBootstrapCacheLoader uses knowledge of what Elements other L1s in the cluster
have to predict the likely hot set for this L1. If this L1 is the first L1 in the cluster, then there is
no guidance. The loader will then only load Elements from the L2 if the combined capacity of the
memory stores exceeds 50% of the size in memory of the cache in the L2.

6 C o n f i g u r a t i o n 21

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

6.Configuration

The TerracottaStoreBootstrapCacheLoaderFactory is configured as follows:

<bootstrapCacheLoaderFactory
 class="net.sf.ehcache.store.TerracottaStoreBootstrapCacheLoaderFactory"
 properties="bootstrapAsynchronously=true"/>

6.1.4 copyOnRead and copyOnWrite cache configuration

A cache can be configured to copy the data, rather than return reference to it on get or put. This is
configured using the copyOnRead and copyOnWrite attributes of cache and defaultCache elements
in your configuration or programmatically as follows:

 CacheConfiguration config = new CacheConfiguration("copyCache", 1000).copyOnRead(true).copyOnWrite(true);
 Cache copyCache = new Cache(config);

The default configuration will be false for both options.

In order to copy elements on put()-like and/or get()-like operations, a CopyStrategy is being
used. The default implementation uses serialization to copy elements. You can provide your own
implementation of net.sf.ehcache.store.compound.CopyStrategy like this:

 <cache name="copyCache"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="5"
 timeToLiveSeconds="10"
 overflowToDisk="false"
 copyOnRead="true"
 copyOnWrite="true">
 <copyStrategy class="com.company.ehcache.MyCopyStrategy"/>
 </cache>

Per cache, a single instance of your CopyStrategy will be use, hence your implementation of
CopyStrategy.copy(T): T has to be thread-safe.

6.1.5 Special System Properties

6.1.5.1 net.sf.ehcache.disabled

Setting this System Property to true disables caching in ehcache. If disabled no elements will be
added to a cache. i.e. puts are silently discarded.

e.g. java -Dnet.sf.ehcache.disabled=true in the Java command line.

6.1.5.2 net.sf.ehcache.use.classic.lru

Set this System property to true to use the older LruMemoryStore implementation when LRU is
selected as the eviction policy.

This is provided for ease of migration.

e.g. java -Dnet.sf.ehcache.use.classic.lru=true in the Java command line.

6.1.6 ehcache.xsd

Ehcache configuration files must be comply with the Ehcache XML schema, ehcache.xsd.

It can be downloaded from http://ehcache.org/ehcache.xsd.

http://ehcache.org/ehcache.xsd

6 C o n f i g u r a t i o n 22

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

6.1.7 ehcache-failsafe.xml

If the CacheManager default constructor or factory method is called, Ehcache looks for a file called
ehcache.xml in the top level of the classpath. Failing that it looks for ehcache-failsafe.xml in the
classpath. ehcache-failsafe.xml is packaged in the Ehcache jar and should always be found.

ehcache-failsafe.xml provides an extremely simple default configuration to enable users to get started
before they create their own ehcache.xml.

If it used Ehcache will emit a warning, reminding the user to set up a proper configuration.

The meaning of the elements and attributes are explained in the section on ehcache.xml.

<ehcache>
 <diskStore path="java.io.tmpdir"/>
 <defaultCache
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="true"
 maxElementsOnDisk="10000000"
 diskPersistent="false"
 diskExpiryThreadIntervalSeconds="120"
 memoryStoreEvictionPolicy="LRU"
 />
</ehcache>

6.1.8 Update Checker

The update checker is used to see if you have the latest version of Ehcache. It is also used to get non-
identifying feedback on the OS architectures using Ehcache.

To disable the check, do one of the following:

6.1.8.1 By System Property

 -Dnet.sf.ehcache.skipUpdateCheck=true

6.1.8.2 By Configuration

The outer ehcache element takes an updateCheck attribute, which is set to false as in the following
example.

 -->
 <ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
 updateCheck="false" monitoring="autodetect"
 dynamicConfig="true">

6.1.9 ehcache.xml and other configuration files

Prior to ehcache-1.6, Ehcache only supported ASCII ehcache.xml configuration files. Since
ehcache-1.6, UTF8 is supported, so that configuration can use Unicode. As UTF8 is backwardly
compatible with ASCII, no conversion is necessary.

If the CacheManager default constructor or factory method is called, Ehcache looks for a file called
ehcache.xml in the top level of the classpath.

6 C o n f i g u r a t i o n 23

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The non-default creation methods allow a configuration file to be specified which can be called
anything.

One XML configuration is required for each CacheManager that is created. It is an error to use the
same configuration, because things like directory paths and listener ports will conflict. Ehcache
will attempt to resolve conflicts and will emit a warning reminding the user to configure a separate
configuration for multiple CacheManagers with conflicting settings.

The sample ehcache.xml is included in the Ehcache distribution. It contains full commentary required
to configure each element. Further information can be found in specific chapters in the Guide.

It can also be downloaded from http://ehcache.org/ehcache.xml.

http://ehcache.org/ehcache.xml

7 S t o r a g e O p t i o n s 24

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

7 Storage Options
...

7.1 Storage Options
Ehcache has three stores:

• a MemoryStore
• an OffHeapStore (BigMemory, Enterprise Ehcache only) and
• a DiskStore (two versions: open source and Ehcache Enterprise)

7.1.1 Memory Store

The MemoryStore is always enabled. It is not directly manipulated, but is a component of every
cache.

• Suitable Element Types
All Elements are suitable for placement in the MemoryStore.

It has the following characteristics:

• Safety
Thread safe for use by multiple concurrent threads.

Tested for memory leaks. See MemoryCacheTest#testMemoryLeak. This test passes for
Ehcache but exploits a number of memory leaks in JCS. JCS will give an OutOfMemory
error with a default 64M in 10 seconds.

• Backed By JDK
LinkedHashMap The MemoryStore for JDK1.4 and JDK 5 it is backed by an extended
LinkedHashMap. This provides a combined linked list and a hash map, and is ideally suited
for caching. Using this standard Java class simplifies the implementation of the memory
cache. It directly supports obtaining the least recently used element.

• Fast
The memory store, being all in memory, is the fastest caching option.

7.1.1.1 Memory Use, Spooling and Expiry Strategy

All caches specify their maximum in-memory size, in terms of the number of elements, at
configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an existing
element is either deleted, if overflowToDisk is false, or evaluated for spooling to disk, if
overflowToDisk is true. In the latter case, a check for expiry is carried out. If it is expired it
is deleted; if not it is spooled. The eviction of an item from the memory store is based on the
MemoryStoreEvictionPolicy setting specified in the configuration file.

memoryStoreEvictionPolicy is an optional attribute in ehcache.xml introduced since 1.2. Legal values
are LRU (default), LFU and FIFO.

LRU, LFU and FIFO eviction policies are supported. LRU is the default, consistent with all earlier
releases of ehcache.

• Least Recently Used (LRU) - Default
The eldest element, is the Least Recently Used (LRU). The last used timestamp is updated when
an element is put into the cache or an element is retrieved from the cache with a get call.

• Less Frequently Used (LFU)

http://java.sun.com/j2se/1.4.2/docs/api/
http://java.sun.com/j2se/1.4.2/docs/api/

7 S t o r a g e O p t i o n s 25

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

For each get call on the element the number of hits is updated. When a put call is made for a new
element (and assuming that the max limit is reached for the memory store) the element with least
number of hits, the Less Frequently Used element, is evicted.

• First In First Out (FIFO)
Elements are evicted in the same order as they come in. When a put call is made for a new
element (and assuming that the max limit is reached for the memory store) the element that was
placed first (First-In) in the store is the candidate for eviction (First-Out).

For all the eviction policies there are also putQuiet and getQuiet methods which do not
update the last used timestamp.

When there is a get or a getQuiet on an element, it is checked for expiry. If expired, it is
removed and null is returned.

Note that at any point in time there will usually be some expired elements in the cache. Memory
sizing of an application must always take into account the maximum size of each cache. There is
a convenience method which can provide an estimate of the size in bytes of the MemoryStore.
See calculateInMemorySize(). It returns the serialized size of the cache. Do not use this method
in production. It is very slow. It is only meant to provide a rough estimate.

The alternative would have been to have an expiry thread. This is a trade-off between lower
memory use and short locking periods and cpu utilisation. The design is in favour of the latter.
For those concerned with memory use, simply reduce the maxElementsInMemory.

7.1.2 Off-Heap Store

Terracotta BigMemory is an add-on to Enterprise Ehcache that permits caches to use an additional
type of memory store outside the object heap.

This off-heap store, which is not subject to Java GC, is 100 times faster than the DiskStore and allows
very large caches to be created (we have tested this up to 350GB).

Because off-heap data is stored in bytes, there are two implications:

• Only Serializable cache keys and values can be placed in the store, similar to DiskStore.
• Serialization and deserialization take place on putting and getting from the store. This means that

the off-heap store is slower in an absolute sense (around 10 times slower than the MemoryStore),
but this theoretical difference disappears due to two effects:

• the MemoryStore holds the hottest subset of data from the off-heap store, already in
deserialized form

• when the GC involved with larger heaps is taken into account, the off-heap store is faster on
average

7.1.2.1 Suitable Element Types

Only Elements which are Serializable can be placed in the OffHeapMemoryStore. Any non
serializable Elements which attempt to overflow to the OffHeapMemoryStore will be removed
instead, and a WARNING level log message emitted.

See the Off-Heap Store chapter for more details.

7.1.3 DiskStore

The DiskStore provides a disk spooling facility.

http://ehcache.org/apidocs/net/sf/ehcache/Cache.html#calculateInMemorySize%28%29
http://www.terracotta.org/bigmemory?src=ehcache_off_heap_store

7 S t o r a g e O p t i o n s 26

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

7.1.3.1 DiskStores are Optional

The diskStore element in ehcache.xml is now optional (as of 1.5). If all caches use only
MemoryStores, then there is no need to configure a diskStore. This simplifies configuration, and uses
less threads. It is also good where where multiple CacheManagers are being used, and multiple disk
store paths would need to be configured.

If one or more caches requires a DiskStore, and none is configured, java.io.tmpdir will be used and a
warning message will be logged to encourage explicity configuration of the diskStore path.

7.Turning off disk stores

To turn off disk store path creation, comment out the diskStore element in ehcache.xml.

The ehcache-failsafe.xml configuration uses a disk store. This will remain the case so as to not
affect existing Ehcache deployments. So, if you do not wish to use a disk store make sure you specify
your own ehcache.xml and comment out the diskStore element.

7.1.3.2 Suitable Element Types

Only Elements which are Serializable can be placed in the DiskStore. Any non serializable
Elements which attempt to overflow to the DiskStore will be removed instead, and a WARNING
level log message emitted.

7.1.3.3 Enterprise DiskStore

The commercial version of Ehcache 2.4 introduced an upgraded disk store. Improvements include:

• Upgraded fragmentation control/management to be the same as offheap
• No Heap used for fragmentation management or keys
• Much more predictable write latency up to caches over half a terabyte.
• SSD aware and optimised.

Throughput is approximately 110,000 operations/s which translates to around 60MB/sec on a
10k rpm hard drive with even higher rates on SSD drives, for which the Disk

7.1.3.4 Storage

7.Files

The disk store creates a data file for each cache on startup called " cache_name.data". If the
DiskStore is configured to be persistent, an index file called " cache name.index" is created on
flushing of the DiskStore either explicitly using Cache.flush or on CacheManager shutdown.

7.Storage Location

Files are created in the directory specified by the diskStore configuration element. The diskStore
configuration for the ehcache-failsafe.xml and bundled sample configuration file ehcache.xml is
"java.io.tmpdir", which causes files to be created in the system's temporary directory.

7. diskStore Element

The diskStore element is has one attribute called path. --- diskStore path="java.io.tmpdir"/ ---
Legal values for the path attibute are legal file system paths. e.g.for Unix

 /home/application/cache

The following system properties are also legal, in which case they are translated:

• user.home - User's home directory
• user.dir - User's current working directory
• java.io.tmpdir - Default temp file path

7 S t o r a g e O p t i o n s 27

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• ehcache.disk.store.dir - A system property you would normally specify on the command line e.g.
java -Dehcache.disk.store.dir=/u01/myapp/diskdir ...
Subdirectories can be specified below the system property e.g.

 java.io.tmpdir/one
 becomes, on a Unix system,
 /tmp/one

7.1.3.5 Expiry

One thread per cache is used to remove expired elements. The optional attribute
diskExpiryThreadIntervalSeconds sets the interval between runs of the expiry thread.
Warning: setting this to a low value is not recommended. It can cause excessive DiskStore locking
and high cpu utilisation. The default value is 120 seconds.

7.1.3.6 Eviction

If the maxElementsOnDisk attribute is set, elements will be evicted from the DiskStore when
it exceeds that amount. The LFU algorithm is used for these evictions. It is not configurable to use
another algorithm.

7.1.3.7 Serializable Objects

Only Serializable objects can be stored in a DiskStore. A NotSerializableException will be thrown
if the object is not serializable.

7.1.3.8 Safety

DiskStores are thread safe.

7.1.3.9 Persistence

DiskStore persistence is controlled by the diskPersistent configuration element. If false or omitted,
DiskStores will not persist between CacheManager restarts. The data file for each cache will be
deleted, if it exists, both on shutdown and startup. No data from a previous instance CacheManager
is available.

If diskPersistent is true, the data file, and an index file, are saved. Cache Elements are available to a
new CacheManager. This CacheManager may be in the same VM instance, or a new one.

The data file is updated continuously during operation of the Disk Store if overflowToDisk is true.
Otherwise it is not updated until either cache.flush() is called or the cache is disposed.

In all cases the index file is only written when dispose is called on the DiskStore. This happens
when the CacheManager is shut down, a Cache is disposed, or the VM is being shut down. It is
recommended that the CacheManager shutdown() method be used. See Virtual Machine Shutdown
Considerations for guidance on how to safely shut the Virtual Machine down.

When a DiskStore is persisted, the following steps take place:

• Any non-expired Elements of the MemoryStore are flushed to the DiskStore
• Elements awaiting spooling are spooled to the data file
• The free list and element list are serialized to the index file

On startup the following steps take place:

• An attempt is made to read the index file. If it does not exist or cannot be read successfully, due
to disk corruption, upgrade of ehcache, change in JDK version etc, then the data file is deleted
and the DiskStore starts with no Elements in it.

http://java.sun.com/j2se/1.4.2/docs/api/java/io/NotSerializableException.html
http://ehcache.org/apidocs/net/sf/ehcache/CacheManager.html#shutdown%28%29

7 S t o r a g e O p t i o n s 28

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• If the index file is read successfully, the free list and element list are loaded into memory. Once
this is done, the index file contents are removed. This way, if there is a dirty shutdown, when
restarted, Ehcache will delete the dirt index and data files.

• The DiskStore starts. All data is available.
• The expiry thread starts. It will delete Elements which have expired.

These actions favour safety over persistence. Ehcache is a cache, not a database. If a file gets dirty,
all data is deleted. Once started there is further checking for corruption. When a get is done, if the
Element cannot be successfully derserialized, it is deleted, and null is returned. These measures
prevent corrupt and inconsistent data being returned.

• Fragmentation
Expiring an element frees its space on the file. This space is available for reuse by new elements.
The element is also removed from the in-memory index of elements.

• Serialization
Writes to and from the disk use ObjectInputStream and the Java serialization mechanism.
This is not required for the MemoryStore. As a result the DiskStore can never be as fast as the
MemoryStore.

Serialization speed is affected by the size of the objects being serialized and their type. It has
been found in the ElementTest test that:

• The serialization time for a Java object being a large Map of String arrays was 126ms,
where the a serialized size was 349,225 bytes.

• The serialization time for a byte[] was 7ms, where the serialized size was 310,232 bytes
Byte arrays are 20 times faster to serialize. Make use of byte arrays to increase DiskStore
performance.

• RAMFS
One option to speed up disk stores is to use a RAM file system. On some operating systems there
are a plethora of file systems to choose from. For example, the Disk Cache has been successfully
used with Linux' RAMFS file system. This file system simply consists of memory. Linux
presents it as a file system. The Disk Cache treats it like a normal disk - it is just way faster. With
this type of file system, object serialization becomes the limiting factor to performance.

• Operation of a Cache where overflowToDisk is false and diskPersistent is true
In this configuration case, the disk will be written on flush or shutdown.

The next time the cache is started, the disk store will initialise but will not permit overflow
from the MemoryStore. In all other respects it acts like a normal disk store.

In practice this means that persistent in-memory cache will start up with all of its elements
on disk. As gets cause cache hits, they will be loaded up into the MemoryStore. The oher
thing that may happen is that the elements will expire, in which case the DiskStore expiry
thread will reap them, (or they will get removed on a get if they are expired).

So, the Ehcache design does not load them all into memory on start up, but lazily loads
them as required.

7.1.4 Some Configuration Examples

These examples show how to allocate 8GB of machine memory to different stores. It assumes a data
set of 7GB - say for a cache of 7M items (each 1kb in size).

Those who want minimal application response time variance (ie minimizing GC pause times), will
likely want all the cache to be off-heap.

http://java.sun.com/j2se/1.4.2/docs/api/java/io/ObjectOutputStream.html

7 S t o r a g e O p t i o n s 29

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Assuming that 1GB of heap is needed for the rest of the app, they will set their Java config as follows:

 java -Xms1G -Xmx1G -XX:maxDirectMemorySize=7G

And their Ehcache config as

 <cache
 maxElementsInMemory=100
 overflowToOffHeap="true"
 maxMemoryOffHeap="7G"
 ... />

Those who want best possible performance for a hot set of data while still reducing overall application
repsonse time variance will likely want a combination of on-heap and off-heap. The heap will be used
for the hot set, the offheap for the rest. So, for example if the hot set is 1M items (or 1GB) of the 7GB
data. They will set their Java config as follows

 java -Xms2G -Xmx2G -XX:maxDirectMemorySize=6G

And their Ehcache config as

 <cache
 maxElementsInMemory=1M
 overflowToOffHeap="true"
 maxMemoryOffHeap="6G"
 ...>

This configuration will compare VERY favorably against the alternative of keeping the less-hot set in
a database (100x slower) or caching on local disk (20x slower).

Where pauses are not a problem, the whole data set can be kept on heap:

 <cache
 maxElementsInMemory=1
 overflowToOffHeap="false"
 ...>
 Where latency isn't an issue overflow to disk can be used:

cache maxElementsInMemory=1M overflowToOffDisk="true" ... ---

7.1.5 Performance Considerations

7.1.5.1 Relative Speeds

Ehcache comes with a MemoryStore and a DiskStore. The MemoryStore is approximately
an order of magnitude faster than the DiskStore. The reason is that the DiskStore incurs the
following extra overhead:

• Serialization of the key and value
• Eviction from the MemoryStore using an eviction algorithm
• Reading from disk

Note that writing to disk is not a synchronous performance overhead because it is handled by a
separate thread.

7.1.5.2 Always use some amount of Heap

A Cache should alway have its maximumSize attribute set to 1 or higher. A Cache with a maximum
size of 1 has twice the performance of a disk only cache, i.e. one where the maximumSize is set to 0.
For this reason a warning will be issued if a Cache is created with a 0 maximumSize.

7 S t o r a g e O p t i o n s 30

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

And when using the Offheap Store, frequently accessed elements can be held in heap in derserialized
form if an Onheap (configured with maxElementsInMemory) store is used

8 C a c h e C o n s i s t e n c y O p t i o n s 31

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

8 Cache Consistency Options
...

8.1 Cache Consistency Options
The purpose of this chapter is to explain Distributed Ehcache's consistency models in terms of
standard distributed systems theory.

8.1.1 Ehcache Topologies

Ehcache is available with the following clustered caching topologies:
• Standalone - the cached data set is held in the application node. Any other application nodes

are independent with no communication between them. If standalone caching is being used
where there are multiple application nodes running the same application, then there is Weak
Consistency between them. Indeed they will only reflect the same values for immutable data or
after the time to live on an Element has completed and the Element needs to be reloaded.

• Replicated - the cached data set is held in each application node and data is copied or invalidated
across the cluster without locking. Replication can be either asynchronous or synchronous, where
the writing thread blocks while progagation occurs. The only consistency mode available in this
topology is Weak Consistency.

• Distributed Ehcache - the data is held in a Terracotta Server Array ("SA") with a subset of
recently used data held in each application cache node.

The distributed topology supports a very rich set of consistency modes which will be explored in this
chapter.

8.1.2 Server Side Consistency

Leaving aside the issue of data also held in the Ehcache nodes, let us look at the server side
consistency of the Terracotta Server Array.

8.1.2.1 Server Deployment Topology

Large datasets are handled with partitions which are managed automatically using a consistent
hashing algorithm once a set of "stripes" are defined in the tcconfig. There is no dynamic resizing of
clusters, so the consistenct hash always resolves to the same stripe.

The TSA is typically deployed with a pair of servers per partition of data, which is known in the
tcconfig as a Mirror Group.

A mirror group has an active server which handles all requests for that partition and a passive or warm
standby which does not service any requests. The active server propagates changes to the passive
server.

In the language of consistency protocols, the active and passive are replicas - they should contain the
same data.

8.1.2.2 How writes are written

Regardless of the consistency model being used, data is written to the TSA the same way.
• Within an Ehcache node, a write is done to an in-process Transaction Buffer (a

LinkedBlockingQueue). Within the Java process the write is thread-safe. Any local threads in
Ehcache A will have immediate visibility of the change.

• When a write hits the Transaction Buffer, a notify occurs, and the Transaction Buffer initiates
sending the write asynchronously to the Terracotta Server Array. The write stays in the
Transaction Buffer until an acknowledgement from the TSA has been received.

8 C a c h e C o n s i s t e n c y O p t i o n s 32

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• Consistent hashing is used to identify which stripe in the TSA to write to. The client maintains
knowledge of which replica is the Active server using an election protocol. The write is done to
the Active server. The Active server has knowledge of the tcconfig and knows to replicate the
change to the passive. The write is then written to the Passive. The passive then acknowledges
the write to the Active, the Active then acknowledges the write to the Ehcache node. Once
received, the write is removed from the Transaction Buffer.

8.1.2.3 Restating in terms of Quorum based replicated-write protocols

To use the terminology from Gifford (1979) a storage system has N storage replicas. A write is a W.
A read is an R.

The server side storage system will be strongly consistent if:

• R + W > N.
• W > N/2

In Terracotta, there is one Active and one Passive. The acknowledgement is not sent until all
have been written to. We always read from only one replica, the Active.

So, R = 1, W = 2, N = 2.

Substituing the terms of R + W > N, we get 1 + 2 > 2, which is clearly true.

And for W > N/2 we get 2 > 2/2 => 2 > 1 which is clearly true.

Therefore we are strongly consistent server side.

8.1.3 Client-Side Consistency

Because data is also held in Ehcache nodes, and Ehcache nodes are what application code interact
with, there is more to the story than consistency in the TSA.

Werner Vogel's seminal Eventually Consistent paper presented standard terms for client-side
consistency and a way of reasoning about whether that consistency can be achieved in a distributed
system. This paper in turn referenced Tannenbaum's Distributed Systems: Principles and Paradigms
(2nd Edition).

He was popularising research work done on Bayou, a database system. See Page 290 of Distributed
Systems, Principles and Paradigms by Tannenbaum and Van Steen for detailed coverage of this
material.

8.1.3.1 Model Components

Before explaining our consistency modes, we need to expain the standard components of the the
reference model which is an abstract model of a distributed system that can be used for studying
interactions.

• A storage system. The storage system consists of data stored durably in one server or multiple
servers connected via a network. In Ehcache durability is optional and the storage system might
simply be in memory.

• Client Process A. This is a process that writes to and reads from the storage system.
• Client Processes B and C. These two processes are independent of process A and write to and

read from the storage system. It is irrelevant whether these are really processes or threads within
the same process; what is important is that they are independent and need to communicate to
share information. Client-side consistency has to do with how and when observers (in this case
the processes A, B, or C) see updates made to a data object in the storage systems.

http://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/ref=dp_ob_title_bk
http://www.amazon.com/Distributed-Systems-Principles-Paradigms-2nd/dp/0132392275/ref=dp_ob_title_bk

8 C a c h e C o n s i s t e n c y O p t i o n s 33

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

8.1.3.2 Mapping the Model to Distributed Ehcache

The model maps to Distributed Ehcache as follows:

• there is a Terracotta Server Array ("TSA") which is the 'storage system'
• there are three nodes connected to the TSA: Ehcache A, B and C, mapping to the processes in the

standard model
• a "write" in the standard model is a "put" or "remove" in Ehcache.

8.1.3.3 Standard Client Side Consistency Modes

It then goes on to define the following consistencies where process A has made an update to a data
object:

• Strong consistency. After the update completes, any subsequent access (by A, B, or C) will
return the updated value.

• Weak consistency. The system does not guarantee that subsequent accesses will return the
updated value.

• Eventual consistency. This is a specific form of weak consistency; the storage system guarantees
that if no new updates are made to the object, eventually all accesses will return the last updated
value. If no failures occur, the maximum size of the inconsistency window can be determined
based on factors such as communication delays, the load on the system, and the number of
replicas involved in the replication scheme.
Within eventual consistency there are a number of desirable properties:

• Read-your-writes consistency. This is an important model where process A, after it has updated
a data item, always accesses the updated value and will never see an older value. This is a special
case of the causal consistency model.

• Session consistency. This is a practical version of the previous model, where a process
accesses the storage system in the context of a session. As long as the session exists, the system
guarantees read-your-writes consistency. If the session terminates because of a certain failure
scenario, a new session needs to be created and the guarantees do not overlap the sessions.

• Monotonic read consistency. If a process has seen a particular value for the object, any
subsequent accesses will never return any previous values.

• Monotonic write consistency. In this case the system guarantees to serialize the writes by the
same process. Systems that do not guarantee this level of consistency are notoriously hard to
program.
Finally, in eventual consistency, the period between the update and the moment when it is
guaranteed that any observer will always see the updated value is dubbed the inconsistency
window.

8.1.4 Consistency Modes in Distributed Ehcache

8.1.4.1 Strong Consistency

In the distributed cache, strong consistency is configured as follows:

 <cache name="sampleCache1"
 ...
 />
 <terracotta consistency="strong" />
 </cache>

We will walk through how a write is done and show that it is strongly consistent.

1 A thread in Ehcache A performs a write.

8 C a c h e C o n s i s t e n c y O p t i o n s 34

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

2 Before the write is done, a write lock is obtained from the Terracotta Server (storage system).
The write lock is granted only after all read locks have been surrendered.

3 The write is done to an in-process Transaction Buffer. Within the Java process the write is
thread-safe. Any local threads in Ehcache A will have immediate visibility of the change.

4 Once the change has hit the Transaction Buffer which is a LinkedBlockingQueue, a notify
occurs, and the Transaction Buffer initiates sending the write (update) asynchronously to the
Terracotta Server Array (storage system).

5 The Terracotta Server is generally configured with multiple replicas forming a Mirror Group.
Within the mirror group there is an Active server, and one or more Passive servers. The write
is to the Active server. The Active server does not acknowledge the write until it has written it
to each of the passive servers in the Mirror Group. It then sends back an acknowledgement to
Ehcache A which then deletes the write from the Transaction Buffer.

6 A read or write request from Ehcache A is immediately available because a read lock is
automatically granted when a write lock has already been acquired. A read or write request in
Ehcache B or C requires the acquisition of a read or write lock respectively which will block
until step 5 has occurred, and in addition, if you have a stale copy locally it is updated first.
When the lock is granted the write is present in all replicas. Because Ehcache also maintains
copies of Elements in-process in potentially each node, if any of Ehcache A, B or C have a copy
they are also updated before Step 5 completes.

Note: This analysis assumes that if the nonstop is being used, it is configured with the default of
Exception, so that on a clusterOffline event no cache operations happen locally. (Nonstop allows
fine-grained tradeoffs to be made in the event of a network partition, including dropping consistency)

8.1.4.2 Eventual Consistency

Distributed Ehcache may be configured with consistency="eventual". There
is also a bulk loading mode which may additionally be set programmatically with
setNodeBulkLoadEnabled(boolean). Finally there is UnlockedReadsView, a CacheDecorator
that can be created like a view on a cache which shows the latest write visible to the local Ehcache
node without respect for any locks.

Regardless, Ehcache B and C will eventually see the change made by Ehcache A. This occurs as
follows:

• With no partitions or interruptions, B and C will see the change generally within 5ms. The
inconsistency window is therefore usually less than 5ms.

• If a GC happens on a Terracotta Server Array node, or Ehcache A or B, the inconsistency
window is increased by the length of the GC.

• setNodeBulkLoadEnabled(true) changes things so that the Terracotta Server Array does
not update Ehcache B and C. Instead they are set to a 5 minute fixed TTL. The inconsistency
window thus increases to 5 minutes plus the above.

If a network partition occurs, the only configurable option is to discard on rejoin, so once this happens
Ehcache A or B gets the write.

From the perspective of other threads in Ehcache A, all writes are thread-safe.

In all modes the happens-before requirement of the Java Memory Model is honored. As a result the
following is true:

• A thread in Ehcache A will see any writes made by another thread. => Read your writes
consistency.

• Monotonic Read Consistency in Ehcache A is true.
• Monotonic Write Consistency is Ehcache A is true.

8 C a c h e C o n s i s t e n c y O p t i o n s 35

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

It should be noted that desirable characteristics of eventual consistency are from the point of view of
Ehcache A. From the context of a web application, if order for an end user interacting with a whole
application to see this behaviour, either:

• sticky sessions should be used, so that the use interacts with the same node (i.e. Ehcache A) for
each step. If an application node falls over, a new session will be established. The time between
the last write, failure, detection by the load balancer and allocation to a new application node will
take longer than the 5ms plus that it takes for all Ehcache nodes in the cluster to get the write. So
when the new application node is switched to, eventual consistency has occurred and no loss of
consistency is observed by the user.

• do not use sticky sessions but rely on the time gap between a click or submit and the next one
in a click path being much larger than the 5ms plus that it takes for other nodes to become
eventually consistent. In an Internet context the user is sufficiently distant from the server so
that the response time is at least an order of magnitude greater than the inconsistency window.
Probabilistically it is therefore unlikely that a user would see inconsistency.

8.1.5 Other Safety Features

Ehcache offers a rich set of data safety features. In this section we look at some of the others and how
they interact with the strong and eventual consistency.

8.1.5.1 CAS Cache Operations

We support three CAS (#Compare and Swap#) operations:

• cache.replace(Element old, Element new)

• cache.putIfAbsent(Element)

• cache.remove(Element)

In each case the Terracotta Server Array will only perform the write if the old value is the same as
that presented. This is guaranteed to be done atomically as required by the CAS pattern.

CAS achieves strong consistency between A, B and C. The key difference is that it achieves it with
optimistic locking rather than pessimistic locking. As with all optimistic locking approaches, the
operations are not guaranteed to succeed. If someone else got in and changed the Element ahead of
you, the methods will return false. You should read the new value, take that into account in your
business logic and then retry your mutation.

CAS will work with both strong and eventual consistency modes, but because it does not use the
locks it does not need strong.

8.1.6 Use Cases And Recommended Practices

In this section we look at some common use cases and give advice on what consistency and safety
options should be used. These serve as a useful starting point for your own analysis.

We welcome commentary and further discussion on these use cases. Please post to the ehcache
mailing list or post your questions on the forums.

8.1.6.1 Shopping Cart - optimistic inventory

8.Problem

A user adds items to a shopping cart. Do not decrement inventory until checkout.

8.Solution

Use eventual consistency.

8 C a c h e C o n s i s t e n c y O p t i o n s 36

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

8.1.6.2 Shopping Cart with Inventory Decrementing

8.Problem

A user adds items to a shopping cart. There is limited inventory and the business policy is that the first
user to add the inventory to their shopping cart can buy it. If the user does not proceed to checkout a
timer will release the inventory back. As a result, inventory must be decremented at the time the item
is added to the shopping cart.

8.Solution

Use strong consistency with one of:

• explicit locking
• local transactions
• XA transactions

The key thing here is that two resources have to be updated: the shopping cart, which is only visible to
one user, and on it's own has low consistency requirements, and an inventory which is transactiional
in nature.

8.1.6.3 Financial Order Processing - write to cache and database

8.Problem

An order processing system sends a series of messages in a workflow, perhaps using Business Process
Management software. The system involves multiple servers and the next step in the processing of an
order may occur on any server. Let's say there are 5 steps in the process.

To avoid continual re-reading from a database, the processing results are also written to a distributed
cache. The next step could execute in a few ms to minutes depending on what other orders are going
through and how busy the hardware is.

8.Solution

Use strong consistency plus XA transactions.

Because the execution step cannot be replayed once completed, and may be under the control of a
BPM, it is very important that the change in state gets to the cache cluster. Synchronous writes can
also be used (at a high performance cost) so that the put to the cache does not return until the data has
been applied. If an executing node failed before the data was transferred, the locks would still be in
place preventing readers from reading stale data, but that will not help the next step in the process.

XA transactions are needed because we want to keep the database and the cache in sync.

8.1.6.4 Immutable Data

8.Problem

The application uses data that once it comes into existence is immutable. Nothing is immutable
forever. The key point is that it is immutable up until the time of the next software release.

Some examples are:

• application constants
• reference data - zip and post codes, countries etc.

If you analyse database traffic commonly used reference data turns out to be a big hitter.

As they are immutable they can only be appended or read, never updated.

8 C a c h e C o n s i s t e n c y O p t i o n s 37

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

8.Solution

In concurrent programming, immutable data never needs further concurrency protection. So we
simply want to use the fastest mode.

Here we would always use eventual consistency.

8.1.6.5 Financial Order Processing - write to cache as SOR

8.Problem

An order processing system sends a series of messages in a workflow, perhaps using Business Process
Management software. The system involves multiple servers and the next step in the processing of an
order may occur on any server. Let's say there are 50 steps in the process.

To avoid overloading a database the processing results at each step only written to a distributed cache.
The next step could execute in a few ms to minutes depending on what other orders are going through
and how busy the hardware is.

8.Solution

Use one of:

• strong consistency and local transactions (if changes are needed to be applied to multiple caches
or entries).
Because the execution step, once completed cannot be replayed, and may be under the control of
a BPM, it is very important that the change in state gets to the cache cluster. Synchronous writes
can also be used (at a high performance cost) so that the put to the cache does not return until
the data has been applied. If an executing node failed before the data was transferred, the locks
would still be in place preventing readers from reading stale data, but that will not help the next
step in the process.

• CAS operations with eventual consistency. The CAS methods will not return until the data has
been applied to the server, so it is not necessary to use synchronous writes.

In a 50 step process it is likely there are key milestones. Often it is desirable to record these in
a database with the non-milestone steps recorded in the cache. For these key milestones use the
"Financial Order Processing - write to cache and database" pattern.

8.1.6.6 E-commerce web app with Non-sticky sessions

Here a user makes reads and writes to a web application cluster. There are n servers where n > 1. The
load balancer is non-sticky so any of the n servers can be hit on the next HTTP operation.

When a user submits using a HTML form, either a GET or POST is done based on the form action.
And of course if it is an AJAx app then requests are being done with XMLHttpRequest and any
HTTP request method can be sent. If POST (form and AJAX) or PUT (AJAX) is used no content
is returned and a separate GET is required to refresh the view or AJAX app. The key point is that
sending a change and getting a view may happen with one request or two. If it happens with two, then
the same server might respond to the second request or not. The probability that the second server will
be the same as the first is 1/n.

AJAX apps can further exacebate this situation. A page may make multiple request to fill different
panels. This opens up the possibility of, within a single page, having data come from multiple servers.
Any lack of consistency could be glaring indeed.

8.Solution

Use one of:

• strong consistency
• CAS

8 C a c h e C o n s i s t e n c y O p t i o n s 38

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Other options can be added depending on what is needed for the request. e.g. XA if a database
plus the cache is updated.

8.1.6.7 E-commerce web app with sticky sessions

8.Problem

Here a user makes reads and writes to a web application cluster. There are n servers where n > 1.
The load balancer is sticky so any of the n servers can be hit on the next HTTP operation. There
are different ways of configuring sticky sessions. The same server might be used for the length of a
session, which is the standard meaning, or a browser's IP can permanently hash to a server. In any
case each request is guaranteed to hit the same server.

8.Solution

The same server is always hit. The consistency mode depends on whether only the user making the
changes needs to see them applied (read your writes, monotonic reads, monotonic writes) or whether
they are mutating shared state like inventory where write - write conflicts might occur.

For mutating user only consistency use eventual consistency.

For multi-user shared state use strong consistency at a minimum plus further safety mechanisms
depending on the type of mutation.

8.1.6.8 E-commerce Catalog

8.Problem

Catalogues display inventory. There are product details and pricing. There may be also be an
inventory status of available or sold out.

Catalogue changes are usually made by one user or process (for example a daily update load from a
supplier) and are usually do not have write-write conflicts. While the catalogue is often non-sticky,
admin users are typically configured sticky.

There is often tolerance for the displayed catalogue to lag behind the change made. Users are usually
less tolerance for a user following a click path to see inconsistencies.

8.Solution

The person making the changes can see a consistent view by virtue of the sticky session. So eventual
consistency will often be enough.

For end users following a click path, they need a consistent view. However the network or Internet
time plus their think time to move along the path adds up to seconds to minutes, while eventual
consistency will propagate in the order of 2+ milliseconds. With eventual consistency it is very
unlikely they will see inconsistency. The general recommendation is therefore to use eventual
consistency.

9 C a c h e E v i c t i o n A l g o r i t h m s 39

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

9 Cache Eviction Algorithms
...

9.1 Cache Eviction Algorithms
A cache eviction algorithm is a way of deciding which Element to evict when the cache is full.

In Ehcache the MemoryStore has a fixed limited size set by maxElementsInMemory (unless
the maxElementsInMemory is 0, in which case the capacity is unlimited). When the store gets full,
elements are evicted. The eviction algorithms in Ehcache determines which elements is evicted. The
default is LRU.

What happens on eviction depends on the cache configuration. If a DiskStore is configured, the
evicted element will overflow to disk, otherwise it will be removed.

The DiskStore size by default is unbounded. But a maximum size can be set using the
maxElementsOnDisk cache attribute. If the DiskStore is full, then adding an element will cause
one to be evicted. The DiskStore eviction algorithm is not configurable. It uses LFU.

9.1.1 Provided MemoryStore Eviction Algorithms

The idea here is, given a limit on the number of items to cache, how to choose the thing to evict that
gives the best result.

In 1966 Laszlo Belady showed that the most efficient caching algorithm would be to always discard
the information that will not be needed for the longest time in the future. This it a theoretical result
that is unimplementable without domain knowledge. The Least Recently Used ("LRU") algorithm
is often used as a proxy. It works pretty well because of the locality of reference phenonemon. As a
result, LRU is the default eviction algorithm in Ehcache, as it is in most caches.

Ehcache users may sometimes have a good domain knowledge. Accordingly, Ehcache provides three
eviction algorithms to choose from for the MemoryStore.

9.1.1.1 Less Recently Used (LRU)

This is the default.

The eldest element, is the Least Recently Used (LRU). The last used timestamp is updated when an
element is put into the cache or an element is retrieved from the cache with a get call.

It takes a random sample of the Elements and evicts the smallest. Using the sample size of 15
elements, empirical testing shows that an Element in the lowest quartile of use is evicted 99% of the
time.

If probabilistic eviction does not suit your application, a true Least Recently Used deterministic
algorithm is available by setting java -Dnet.sf.ehcache.use.classic.lru=true.

9.1.1.2 Less Frequently Used (LFU)

For each get call on the element the number of hits is updated. When a put call is made for a new
element (and assuming that the max limit is reached) the element with least number of hits, the Less
Frequently Used element, is evicted.

If cache element use follows a pareto distribution, this algorithm may give better results than LRU.

LFU is an algorithm unique to Ehcache. It takes a random sample of the Elements and evicts the
smallest. Using the sample size of 15 elements, empirical testing shows that an Element in the lowest
quartile of use is evicted 99% of the time.

9 C a c h e E v i c t i o n A l g o r i t h m s 40

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

9.1.1.3 First In First Out (FIFO)

Elements are evicted in the same order as they come in. When a put call is made for a new element
(and assuming that the max limit is reached for the memory store) the element that was placed first
(First-In) in the store is the candidate for eviction (First-Out).

This algorithm is used if the use of an element makes it less likely to be used in the future. An
example here would be an authentication cache.

It takes a random sample of the Elements and evicts the smallest. Using the sample size of 15
elements, empirical testing shows that an Element in the lowest quartile of use is evicted 99% of the
time.

9.1.2 Plugging in your own Eviction Algorithm

Ehcache 1.6 and higher allows you to plugin in your own eviction algorithm. You can utilise any
Element metadata which makes possible some very interesting approaches. For example, evict an
Element if it has been hit more than 10 times.

/**
 * Sets the eviction policy strategy. The Cache will use a policy at startup. There
 * are three policies which can be configured: LRU, LFU and FIFO. However many other
 * policies are possible. That the policy has access to the whole element enables policies
 * based on the key, value, metadata, statistics, or a combination of any of the above.
 * It is safe to change the policy of a store at any time. The new policy takes effect
 * immediately.
 *
 * @param policy the new policy
 */
public void setMemoryStoreEvictionPolicy(Policy policy) {
 memoryStore.setEvictionPolicy(policy);
}

A Policy must implement the following interface:

 public interface Policy {
 /**
 * @return the name of the Policy. Inbuilt examples are LRU, LFU and FIFO.
 */
 String getName();
 /**
 * Finds the best eviction candidate based on the sampled elements. What distinguishes
 * this approach from the classic data structures approach is that an Element contains
 * metadata (e.g. usage statistics) which can be used for making policy decisions,
 * while generic data structures do not. It is expected that implementations will take
 * advantage of that metadata.
 *
 * @param sampledElements this should be a random subset of the population
 * @param justAdded we probably never want to select the element just added.
 * It is provided so that it can be ignored if selected. May be null.
 * @return the selected Element
 */
 Element selectedBasedOnPolicy(Element[] sampledElements, Element justAdded);
 /**
 * Compares the desirableness for eviction of two elements
 *
 * @param element1 the element to compare against

9 C a c h e E v i c t i o n A l g o r i t h m s 41

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * @param element2 the element to compare
 * @return true if the second element is preferable for eviction to the first element
 * under ths policy
 */
 boolean compare(Element element1, Element element2);
}

9.1.3 DiskStore Eviction Algorithms

The DiskStore uses the Less Frequently Used algorithm to evict an element when it is full.

1 0 B i g M e m o r y : O f f - H e a p S t o r e 42

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

10 Big Memory:Off-Heap Store
...

10.1 BigMemory: Off-heap Store

Terracotta BigMemory is an add-on to Enterprise Ehcache that permits caches to use an additional
type of memory store outside the object heap.

This off-heap store, which is not subject to Java GC, is 100 times faster than the DiskStore and allows
very large caches to be created (we have tested this up to 350GB).

Because off-heap data is stored in bytes, there are two implications:
• Only Serializable cache keys and values can be placed in the store, similar to DiskStore.
• Serialization and deserialization take place on putting and getting from the store. This means that

the off-heap store is slower in an absolute sense (around 10 times slower than the MemoryStore),
but this theoretical difference disappears due to two effects:

• the MemoryStore holds the hottest subset of data from the off-heap store, already in
deserialized form

• when the GC involved with larger heaps is taken into account, the off-heap store is faster on
average

10.1.1 Configuration

10.1.1.1 Configuring caches to overflow to off-heap.

Configuring a cache to use an off-heap store can be done either through XML or programmatically.

10.Declarative Configuration

The following XML configuration creates an off-heap cache with an in-heap store
(maxElementsInMemory) of 10,000 elements which overflow to a 1-gigabyte off-heap area.

 <?xml version="1.0" encoding="UTF-8"?>
 <ehcache updateCheck="false" monitoring="off"
 dynamicConfig="false">
 <defaultCache maxElementsInMemory="10000"
 eternal="true"
 memoryStoreEvictionPolicy="LRU"
 statistics="false" />
 <cache name="sample-offheap-cache"
 maxElementsInMemory="10000"
 eternal="true"
 memoryStoreEvictionPolicy="LRU"
 overflowToOffHeap="true"
 maxMemoryOffHeap="1G"/>
 </ehcache>

The configuration options are:

http://www.terracotta.org/bigmemory?src=ehcache_off_heap_store

1 0 B i g M e m o r y : O f f - H e a p S t o r e 43

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

10.overflowToOffHeap

Values may be true or false.

When set to true, enables the cache to utilize off-heap memory storage to improve performance.
Off-heap memory is not subject to Java GC cycles and has a size limit set by the Java property
MaxDirectMemorySize. The default value is false.

10.maxMemoryOffHeap

Sets the amount of off-heap memory available to the cache. This attribute's values are given as
numberk|K|m|M|g|G|t|T for kilobytes (k|K), megabytes (m|M), gigabytes (g|G), or terabytes (t|T).
For example, maxMemoryOffHeap="2g" allots 2 gigabytes to off-heap memory. In effect only if
overflowToOffHeap is true.

The minimum amount that can be allocated is 128MB. There is no maximum.

Note that it is recommended to set maxElementsInMemory to at least 100 elements when using an
off-heap store, otherwise performance will be seriously degraded, and a warning will be logged.

10.Programmatic Configuration

The equivalent cache can be created using the following programmatic configuration:

public Cache createOffHeapCache() {
 CacheConfiguration config = new CacheConfiguration("sample-offheap-
cache", 10000)
 .overflowToOffHeap(true).maxMemoryOffHeap("1G");
 Cache cache = new Cache(config);
 manager.addCache(cache);
 return cache;
}

10.1.1.2 Add The License

The Ehcache Enterprise trial download (available here - http://www.terracotta.org/bigmemory)
comes with a trial license key which must be added to activate the off-heap store.

It can be added to the classpath or via a system property.

10.Configuring the License in the Classpath

Add the terracotta-license.key to the root of your classpath, which is also where you add
ehcache.xml. It will be automatically found.

10.Configuring the License as a Java system property

Add a com.tc.productkey.path=/path/to/key system property which points to the key
location.

e.g.

 java -Dcom.tc.productkey.path=/path/to/key

10.1.1.3 Allocating Direct Memory in the JVM

In order to use these configurations you must then use the ehcache-core-ee jar on your classpath,
and modify your JVM command-line to increase the amount of direct memory allowed by the JVM.
You must allocate at least 32MB more to direct memory than the total off-heap memory allocated to
caches.

e.g. to allocate 2GB of memory in the JVM.

 java -XX:MaxDirectMemorySize=2G ..."

http://www.terracotta.org/bigmemory

1 0 B i g M e m o r y : O f f - H e a p S t o r e 44

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

10.1.2 Advanced Configuration Options

There are some rarer configuration options which can be used for fine grained control

10.1.2.1 -XX:+UseLargePages

This is a JVM flag which is meant to improve performance of memory-hungry applications. In
testing, this option gives a 5% speed improvement with a 1Gb off-heap cache.

See http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html for a discussion.

10.1.2.2 Increasing the maximum serialized size of an Element that can be stored in the OffHeapStore

Firstly, the MemoryStore and the DiskStore do not have any limits.

By default, the OffHeapStore has a 4MB limit for classes with high quality hashcodes, and 256KB
for those with pathologically bad hashcodes. The built-in classes such as the java.lang.Number
subclasses such as Long, Integer etc and and String have high quality hashcodes.

You can increase the size by setting a system property
net.sf.ehcache.offheap.cache_name.config.idealMaxSegmentSize to the size you require.

e.g. net.sf.ehcache.offheap.com.company.domain.State.config.idealMaxSegmentSize=30M

10.1.2.3 Avoiding OS Swapping

Operating systems use swap partitions for virtual memory and are free to move less frequently
used pages of memory to the swap partition. This is generally not what you want when using the
OffHeapStore, as the time it takes to swap a page back in when demanded will add to cache latency.

It is recommended that you minimise swap use for maximum performance.

On Linux, you can set /proc/sys/vm/swappiness to reduce the risk of memory pages being
swapped out. See http://lwn.net/Articles/83588/ for details of tuning this parameter. Note that there
are bugs in this which were fixed in kernel 2.6.30 and higher.

Another option is to configure HugePages. See http://unixfoo.blogspot.com/2007/10/hugepages.html

This kind of problem bit us several times in the past in Linux. Although there's a swappiness kernel
parameter that can be set to zero, it is usually not enough to avoid swapping altogether. The only
surefire way to avoid any kind of swapping is either (a) disabling the swap partition, with the
undesirable consequences which that may bring, or (b) using HugePages, which are always mapped to
physical memory and cannot be swapped out to disk.

10.1.2.4 -XX:UseCompressedOops

This setting applies to the HotSpot JVM. It's use should be considered to make the most efficient use
of memory in 64 bit mode. See http://wikis.sun.com/display/HotSpotInternals/CompressedOops for
details.

10.1.2.5 Controlling Overallocation of Memory to the OffHeapStore

If the memory use is dramatically overallocated, you may end up trying to use more than the physical
and even virtual memory available on your OS. We attempt to detect this situation. If it takes
more than 3 seconds to allocate a 1GB chunk of memory we will log an error message and call
System.exit(1) to protect the stability of your OS.

If you wish to force Ehcache to wait set the system property
net.sf.ehcache.offheap.DoNotHaltOnCriticalAllocationDelay to true.

http://andrigoss.blogspot.com/2008/02/jvm-performance-tuning.html
http://lwn.net/Articles/83588/
http://unixfoo.blogspot.com/2007/10/hugepages.html
http://wikis.sun.com/display/HotSpotInternals/CompressedOops

1 0 B i g M e m o r y : O f f - H e a p S t o r e 45

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

10.1.3 Sample application

The easiest way to get started is to play with a simple sample app.

Download here a simple Maven-based application that uses the ehcache off-heap functionality.

Note: You will need to get a license key and install it as discussed above to run this.

10.1.4 Performance Comparisons

Checkout https://svn.terracotta.org/repo/forge/offHeap-test/ terracotta_community_login a Maven-
based performance comparisons between different store configurations.

Note: You will need to get a demo license key and install it as discussed above to run the test.

Here are some charts from tests we have run on the release candidate of BigMemory.

The test machine was a Cisco UCS box running with Intel(R) Xeon(R) Processors. It had 6 2.93Ghz
Xeon(R) cpus for a total of 24 cores, with 128GB of RAM, running RHEL5.1 with Sun JDK 1.6.0_21
in 64 bit mode.

We used 50 threads doing an even mix of reads and writes with 1KB elements. We used the default
garbage collection settings.

The tests all go through a load/warmup phase then start a performance run. You can use the tests in
your own environments and extend them to cover different read/write ratios, data sizes, -Xmx settings
and hot sets. The full suite, which is done with run.sh takes 4-5 hours to complete.

The following charts show the most common caching use case. The read/write ratio is 90% reads and
10% writes. The hot set is that 90% of the time cache.get() will access 10% of the key set. This is
representative of the the familiar Pareto distribution that is very commonly observed.

There are of course many other caching use cases. Further performance results are covered on the
Further Performance Analysis page.

10.1.4.1 Largest Full GC

http://www.terracotta.org/bigmemory?src=ehcache.org
https://svn.terracotta.org/repo/forge/offHeap-test/
http://www.terracotta.org/bigmemory?src=ehcache.org

1 0 B i g M e m o r y : O f f - H e a p S t o r e 46

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

This chart shows the largest observed full GC duration which occurred during the performance run.
Most non-batch applications have maximum response time SLAs. As can be seen in the chart, as data
sizes grow the full GC gets worse and worse for cache held on heap, whereas off-heap remains a low
constant.

The off-heap store will therefore enable applications with maximum response time SLAs to reliably
meet those SLAs.

10.1.4.2 Latency

This chart shows the maximum observed latency while perfomring either a cache.put() or a
cache.get(). It is very similar to the Full GC chart because the reason the on-heap latencies blow
out is full GCs, where all threads in the test app get frozen.

Once again the off-heap store can be observed to have a flat, low maximum latency, because any full
GCs are tiny, and the cache has excellent concurrency properties.

1 0 B i g M e m o r y : O f f - H e a p S t o r e 47

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

This chart shows the off-heap mean latency in microseconds. It can be observed to be flat from 2GB
up to 40GB. Further in-house testing shows that the it remains flat up to the limits we have tested to
which is currently 350GB.

Lower latencies are observed at smaller data set sizes because we use a maxElementsInMemory
setting which approximates to 200MB of on-heap store. On-heap, excluding GC effects is faster than
off-heap because there is no deserialization on gets. At lower data sizes there is a higher probability
that the small on-heap store will be hit, which is reflected in the lower average latencies.

10.1.4.3 Throughput

1 0 B i g M e m o r y : O f f - H e a p S t o r e 48

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

This chart shows the cache operations per second achieved with off-heap. It is the inverse of average
latency and shows much the same thing. Once the effect of the on-heap store becomes marginal,
throughput remains constant, regardless of cache size. Once again we have verified this constancy up
to 350GB.

Note that much larger throughputs than those shown in this chart are achievable. Throughput is
affected by:

• the number of threads (more threads -> more throughput)
• the read/write ratio (reads are slightly faster)
• data payload per operation (more data implies a lower throughput in tps but similar in bytes)
• cpu cores available and their speed (our testing shows that the cpu is always the limiting factor

with enough threads. In other words cache throughput can be increased by adding threads until
all cores are utilised and then adding cpu cores - an ideal situation where the software can use as
much hardware as you can throw at it.)

10.1.5 Storage

10.1.5.1 Storage Hierarchy

With the OffHeapStore, Ehcache Enterprise has three stores:

• MemoryStore - very fast storage of Objects on heap. Limited by the size of heap you can
comfortably garbage collect

• OffHeapStore - fast (one order of magnitude slower than MemoryStore) storage of Serialized
objects off heap. Limited only by the amount of RAM on your hardware and address space. You
need a 64 bit OS to address higher than 2-4GB.

• DiskStore - speedy storage on disk. It is two orders of magnitude slower than the OffHeapStore
but still much faster than a database or a distributed cache
The relationship between speed and size for each store is illustrated below:

1 0 B i g M e m o r y : O f f - H e a p S t o r e 49

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

10.1.5.2 Memory Use in each Store

As a performance optimisation, and because storage gets much cheaper as you drop down through the
hierarchy, we write each put to as many stores as are configured. So, if all three are configured, the
Element may be present in MemoryStore, OffHeapStore and DiskStore.

The result is that each store consumes storage for itself and the other stores higher up the hierarchy.
So, if the MemoryStore has 1,000,000 Elements which consume 2Gb, and the OffHeapStore is
configured for 8GB, then 2GB of that will be duplicate of what is in the MemoryStore. And the 8GB
will also be duplicated on the DiskStore plus the DiskStore will have what cannot fit in any of the
other stores.

This needs to be taken into account when configuring the OffHeap and Disk stores.

It has the great benefit, which pays for the duplication, of not requiring copy on eviction. On eviction
from a store, an Element can simply be removed. It is already in the next store down.

One further twist: the MemoryStore is only populated on a read. Puts go to the OffHeapStore and then
when read, are held in the MemoryStore. The MemoryStore thus holds hot items of the OffHeapStore.
This will result in a difference in what can be expected to be in the MemoryStore between this
implementation and the open source one. A "usage" for the purposes of the eviction algorithms
is either a put or a get. As only gets are counted in this implementation, some differences will be
observed.

10.1.6 Handling JVM startup and shutdown

So you can have a huge in-process cache. But this is not a distributed cache, so when you shut down
you will lose what is in the cache. And when you start up, how long will it take to load the cache?

In caches up to a GB or two, these issues are not hugely problematic. You can often pre-load the
cache on start-up before you bring the application online. Provided this only takes a few minutes,
there is minimal operations impact.

But when we go to tens of GBs, these startup times are O(n), and what took 2 minutes now takes 20
minutes.

To solve this problem, we provide a new implementation of Ehcache's DiskStore, available in the
enterprise version.

You simply mark the cache diskPersistent=true as you normally would for a disk persistent
cache.

It works as follows:

• on startup, which is immediate, the cache will get elements from disk and gradually fill the
MemoryStore and the OffHeapStore.

• when running elements are written to the OffHeapStore, they are already serialized. We write
these to the DiskStore asynchronously in a write-behind pattern. Tests show they can be written
at a rate of 20MB/s on server-class machines with fast disks. If writes get behind, they will
back up and once they reach the diskSpoolBufferSizeMB cache puts will be slowed while
the DiskStore writer catches up. By default this buffer is 30MB but can be increased through
configuration.

• When the Cache is disposed, only a final sync is required to shut the DiskStore down.

10.1.7 Using OffHeapStore with 32 bit JVMs

On a 32 bit operating system, Java will always start with a 32 bit data model. On 64 bit OSs, it will
default to 64 bit, but can be forced into 32 bit mode with the Java command-line option -d32. The
problem is that this limits the size of the process to 4GB. Because garbage collection problems are

1 0 B i g M e m o r y : O f f - H e a p S t o r e 50

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

generally manageable up to this size, there is not much point in using the OffHeapStore, as it will
simply be slower.

If you are suffering GC issues with a 32 bit JVM, then OffHeapStore can help. There are a few points
to keep in mind.

• Everything has to fit in 4GB of addressable space. If you allocate 2GB of heap (with -Xmx2g)
then you have at most 2GB left for your off-heap caches.

• Don't expect to be able to use all of the 4GB of addressable space for yourself. The JVM process
requires some of it for its code and shared libraries plus any extra Operating System overhead.

• If you allocate a 3GB heap with -Xmx as well as 2047MB of off-heap memory the virtual
machine certainly won't complain at startup but when it's time to grow the heap you will get an
OutOfMemoryError.

• If you use both -Xms3G and -Xmx3G with 2047MB of off-heap memory the virtual machine
will start but then complain as soon as the OffHeapStore tries to allocate the off-heap buffers.

• Some APIs, such as java.util.zip.ZipFile on Sun 1.5 JVMs, may mmap files in memory. This will
also use up process space and may trigger an OutOfMemoryError.
For these reasons we issue a warning to the log when OffHeapStore is used with 32 bit JVMs.

10.1.8 Slow off-heap allocation

Off-heap allocation time is measured to avoid allocating buffers too large to fit in memory.
If it takes more than 1.5s to allocate a buffer a warning is issued as it could very well be
that the OS has started paging to disk. If it takes more than 15s then the JVM is halted (with
System.exit(), but different things are tried when the Security Manager prevents this) unless the
net.sf.ehcache.offheap.DoNotHaltOnCriticalAllocationDelay system property is set
to true.

This mechanism was built in because allocating an off-heap buffer too large to fit in RAM can quickly
and easily deplete critical system resources like RAM and swap space and crash the host operating
system. Linux and Mac OS X will crash in these circumstances.

10.1.9 Reducing Cache Misses

While the MemoryStore holds a hotset (a subset) of the entire data set, the off-heap store should be
large enough to hold the entire data set. The frequency of cache misses begins to rise when the data
is too large to fit into off-heap memory, forcing gets to fetch data from the DiskStore. More misses in
turn raise latency and lower performance.

For example, tests with a 4GB data set and a 5GB off-heap store recorded no misses. With the off-
heap store reduced to 4GB, 1.7 percent of cache operations resulted in misses. With the off-heap store
at 3GB, misses reached 15 percent.

10.1.10 FAQ

10.1.10.1 The DiskStore Access stripes configuration no longer has effect. Why?

This has been reimplemented for Ehcache Enterprise and will get added back into the core in the
future.

10.1.10.2 What Eviction Algorithms are supported?

The pluggable MemoryStore eviction algorithms work as normal. The OffHeapStore and DiskStore
use a Clock Cache, a standard paging algorithm which is an approximation of LRU.

1 0 B i g M e m o r y : O f f - H e a p S t o r e 51

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

10.1.10.3 Why do I see performance slow down and speed up in a cyclical pattern when I am filling a
cache?

This is due to repartitioning in the OffHeapStore which is normal. Once the cache is fully filled the
performance slow-downs cease.

10.1.10.4 What is the maximum serialized size of an object when using OffHeapStore?

Firstly, the MemoryStore and the DiskStore do not have any limits.

By default, the OffHeapStore has a 4MB limit for classes with high quality hashcodes, and 256KB
for those with pathologically bad hashcodes. The built-in classes such as the java.lang.Number
subclasses such as Long, Integer etc and and String have high quality hashcodes.

You can increase the size by setting the system property
net.sf.ehcache.offheap.cache_name.config.idealMaxSegmentSize to the size you require.

e.g. net.sf.ehcache.offheap.com.company.domain.State.config.idealMaxSegmentSize=30M

10.1.10.5 Why is my application startup slower?

On startup the CacheManager will calculate the amount of off-heap storage required for all caches
using off-heap stores. The memory will be allocated from the OS and zeroed out by Java. The time
taken will depend on the OS. A server-class machine running Linux will take approximately half a
second per GB.

We print out log messages for each 10% allocated, and also report the total time taken.

This time is incurred only once at startup. The pre-allocation of memory from the OS is one of the
reasons that runtime performance is so fast.

10.1.10.6 How can I do Maven testing with BigMemory?

Maven starts java for you. You cannot add the required -XX switch in as a mvn argument.

Maven provides you with a MAVEN_OPTS environment variable you can use for this on Unix
systems.

e.g. to specify 1GB of MaxDirectMemorySize and then to run jetty:

 export MAVEN_OPTS=-XX:MaxDirectMemorySize=1G
 mvn jetty:run-war

1 1 J D B C C a c h i n g 52

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

11 JDBC Caching
...

11.1 JDBC Caching
Ehcache can easily be combined with your existing JDBC code. Whether you access JDBC directly,
or have a DAO/DAL layer, Ehcache can be combined with your existing data access pattern to speed
up frequently accessed data to reduce page load times, improve performance, and reduce load from
your database.

This document discusses how to add caching to a JDBC application using the commonly used DAO/
DAL layer patterns:

11.1.1 Adding JDBC caching to a DAO/DAL layer

If your application already has a DAO/DAL layer, this is a natural place to add caching. To add
caching, follow these steps:

• identify methods which can be cached
• instantiate a cache and add a member variable to your DAO to hold a reference to it
• Put and get values from the cache

11.1.1.1 Identifying methods which can be cached

Normally, you will want to cache the following kinds of method calls:
• Any method which retrieves entities by an Id
• Any queries which can be tolerate some inconsistent or out of date data

Example methods that are commonly cacheable:

public V getById(final K id);
public Collection<V> findXXX(...);

11.1.1.2 Instantiate a cache and add a member variable

Your DAO is probably already being managed by Spring or Guice, so simply add a setter method to
your DAO layer such as setCache(Cache cache). Configure the cache as a bean in your Spring
or Guice config, and then use the the frameworks injection methodology to inject an instance of the
cache.

If you are not using a DI framework such as Spring or Guice, then you will need to instantiate the
cache during the bootstrap of your application. As your DAO layer is being instantiated, pass the
cache instance to it.

11.1.1.3 Put and get values from the cache

Now that your DAO layer has a cache reference, you can start to use it. You will want to consider
using the cache using one of two standard cache access patterns:

• cache-aside
• cache-as-sor

You can read more about these in the Concepts cache-aside and Concepts cache-as-sor sections.

11.1.2 Putting it all together - an example

Here is some example code that demonstrates a DAO based cache using a cache aside methodology
wiring it together with Spring..

This code implements a PetDao modeled after the Spring Framework PetClinic sample application.

1 1 J D B C C a c h i n g 53

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

It implements a standard pattern of creating an abstract GenericDao implementation which all Dao
implementations will extend.

It also uses Spring's SimpleJdbcTemplate to make the job of accessing the database easier.

Finally, to make Ehcache easier to work with in Spring, it implements a wrapper that holds the cache
name.

11.1.2.1 The example files

The following are relevant snippets from the example files. A full project will be available shortly.

11.CacheWrapper.java

Simple get/put wrapper interface.

public interface CacheWrapper<K, V>
{
 void put(K key, V value);
 V get(K key);
}

11.EhcacheWrapper.java

The wrapper implementation. Holds the name so caches can be named.

public class EhCacheWrapper<K, V> implements CacheWrapper<K, V>
{
 private final String cacheName;
 private final CacheManager cacheManager;
 public EhCacheWrapper(final String cacheName, final CacheManager cacheManager)
 {
 this.cacheName = cacheName;
 this.cacheManager = cacheManager;
 }
 public void put(final K key, final V value)
 {
 getCache().put(new Element(key, value));
 }
 public V get(final K key, CacheEntryAdapter<V> adapter)
 {
 Element element = getCache().get(key);
 if (element != null) {
 return (V) element.getValue();
 }
 return null;
 }
 public Ehcache getCache()
 {
 return cacheManager.getEhcache(cacheName);
 }
}

11.GenericDao.java

The Generic Dao. It implements most of the work.

public abstract class GenericDao<K, V extends BaseEntity> implements Dao<K, V>
{

1 1 J D B C C a c h i n g 54

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 protected DataSource datasource;
 protected SimpleJdbcTemplate jdbcTemplate;
 /* Here is the cache reference */
 protected CacheWrapper<K, V> cache;
 public void setJdbcTemplate(final SimpleJdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }
 public void setDatasource(final DataSource datasource) {
 this.datasource = datasource;
 }
 public void setCache(final CacheWrapper<K, V> cache) {
 this.cache = cache;
 }
 /* the cacheable method */
 public V getById(final K id) {
 V value;
 if ((value = cache.get(id)) == null) {
 value = this.jdbcTemplate.queryForObject(findById, mapper, id);
 if (value != null) {
 cache.put(id, value);
 }
 }
 return value;
 }
 /** rest of GenericDao implementation here **/
 /** ... **/
 /** ... **/
 /** ... **/
}

11.PetDaoImpl.java

The Pet Dao implementation, really it doesn't need to do anything unless specific methods not
available via GenericDao are cacheable.

public class PetDaoImpl extends GenericDao<Integer, Pet> implements PetDao
{
 /** ... **/
}

We need to configure the JdbcTemplate, Datasource, CacheManager, PetDao, and the Pet cache using
the spring configuration file.

11.application.xml

The Spring configuration file.

<!-- datasource and friends -->
<bean id="dataSource" class="org.springframework.jdbc.datasource.FasterLazyConnectionDataSourceProxy">
 <property name="targetDataSource" ref="dataSourceTarget"/>
</bean>
<bean id="dataSourceTarget" class="com.mchange.v2.c3p0.ComboPooledDataSource"
 destroy-method="close">
 <property name="user" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
 <property name="driverClass" value="${jdbc.driverClassName}"/>
 <property name="jdbcUrl" value="${jdbc.url}"/>

1 1 J D B C C a c h i n g 55

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <property name="initialPoolSize" value="50"/>
 <property name="maxPoolSize" value="300"/>
 <property name="minPoolSize" value="30"/>
 <property name="acquireIncrement" value="2"/>
 <property name="acquireRetryAttempts" value="0"/>
</bean>
<!-- jdbctemplate -->
<bean id="jdbcTemplate" class="org.springframework.jdbc.core.simple.SimpleJdbcTemplate">
 <constructor-arg ref="dataSource"/>
</bean>
<!-- the cache manager -->
<bean id="cacheManager" class="EhCacheManagerFactoryBean">
 <property name="configLocation" value="classpath:${ehcache.config}"/>
</bean>
<!-- the pet cache to be injected into the pet dao -->
<bean name="petCache" class="EhCacheWrapper">
 <constructor-arg value="pets"/>
 <constructor-arg ref="cacheManager"/>
</bean>
<!-- the pet dao -->
<bean id="petDao" class="PetDaoImpl">
 <property name="cache" ref="petCache"/>
 <property name="jdbcTemplate" ref="jdbcTemplate"/>
 <property name="datasource" ref="dataSource"/>
</bean>

1 2 S p r i n g C a c h i n g w i t h E h c a c h e 56

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

12 Spring Caching with Ehcache
...

12.1 Using Spring and Ehcache
Ehcache has had excellent Spring integration for many years. More recently there are two new ways
of using Ehcache with Spring

12.1.1 Spring 3.1

Spring Framework 3.1 added a new generic cache abstraction for transparently applying caching to
Spring applications.

It adds caching support for classes and methods using two annotations:

12.1.1.1 @Cacheable

Cache a method call.

In the following example, the value is the return type, a Manual. The key is extracted from the ISBN
argument using the id.

@Cacheable(value="manual", key="#isbn.id")
public Manual findManual(ISBN isbn, boolean checkWarehouse)

12.1.1.2 @CacheEvict

Clears the cache when called.

@CacheEvict(value = "manuals", allEntries=true)
public void loadManuals(InputStream batch)

Spring 3.1 includes an Ehcache implementation. See the Spring 3.1 JavaDoc.

It also does much more with SpEL expressions. See for an excellent blog post covering this material
in more detail.

12.1.2 Spring 2.5 - 3.1: Ehcache Annotations For Spring

This open source, led by Eric Dalquist, predates the Spring 3.1 project. You can use it with earlier
versions of Spring or you can use it with 3.1.

12.1.2.1 @Cacheable

As with Spring 3.1 it uses an @Cacheable annotation to cache a method. In this example calls to
findMessage are stored in a cache named "messageCache". The values are of type Message. The id
for each entry is the id argument given.

@Cacheable(cacheName = "messageCache")
public Message findMessage(long id)

12.1.2.2 @TriggersRemove

And for cache invalidation, there is the @TriggersRemove annotation.

In this example, cache.removeAll() is called after the method is invoked.

@TriggersRemove(cacheName = "messagesCache",
 when = When.AFTER_METHOD_INVOCATION, removeAll = true)
public void addMessage(Message message)

http://static.springsource.org/spring/docs/3.1.0.M1/javadoc-api/org/springframework/cache/ehcache/package-summary.html
http://blog.springsource.com/2011/02/23/spring-3-1-m1-caching/

1 2 S p r i n g C a c h i n g w i t h E h c a c h e 57

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

See for a blog post explaining it's user and providing further links.

http://blog.goyello.com/2010/07/29/quick-start-with-ehcache-annotations-for-spring/

1 3 C o d e S a m p l e s 58

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

13 Code Samples
...

13.1 Recipes and Code Samples
The Recipes and Code Samples page contains recipes - short concise examples for specific use cases -
and a set of code samples that will help you get started with Ehcache.

If you have a suggestion or an idea for a recipe or more code samples, please tell us about it using the
mailing list or forums.

13.2 Recipes

Recipe Description

Web Page and Fragment Caching How to use inluded Servlet Filters to Cache Web Page
and Web Page Fragments

Configure a Grails App for Clustering How to configure a Grails Application for clustered
Hibernate 2nd Level Cache

Data Freshness and Expiration How to maintain cache "freshness" by configuring TTL
and data expiration properly

Enable Terracotta Programmatically How to enable Terracotta support for Ehcache
programmatically

WAN Replication 3 Strategies for configuring WAN replication

Caching Empty Values Why caching empty values can be desirable to deflect
load from the database

Database Read Overload When many readers simultaneously request the
same data element it is called the "Thundering Herd"
problem. How to prevent it in a single jvm or clustered
configuration

Database Write Overload Writing to the Database is a Bottleneck. Configure
write-behind to offload database writes.

Caching methods with Spring Annotations Adding caching to methods using Ehcache
Annotations for Spring project

Cache Wrapper A simple class to make accessing Ehcache easier for
simple use cases

13.3 Code Samples

13.3.1 Using the CacheManager

All usages of Ehcache start with the creation of a CacheManager.

13.3.1.1 Singleton versus Instance

As of ehcache-1.2, Ehcache CacheManagers can be created as either singletons (use the create factory
method) or instances (use new).

Create a singleton CacheManager using defaults, then list caches.

CacheManager.create();

http://forums.terracotta.org

1 3 C o d e S a m p l e s 59

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

String[] cacheNames = CacheManager.getInstance().getCacheNames();

Create a CacheManager instance using defaults, then list caches.

 CacheManager manager = new CacheManager();
 String[] cacheNames = manager.getCacheNames();

Create two CacheManagers, each with a different configuration, and list the caches in each.

 CacheManager manager1 = new CacheManager("src/config/ehcache1.xml");
 CacheManager manager2 = new CacheManager("src/config/ehcache2.xml");
 String[] cacheNamesForManager1 = manager1.getCacheNames();
 String[] cacheNamesForManager2 = manager2.getCacheNames();

13.3.1.2 Ways of loading Cache Configuration

When the CacheManager is created it creates caches found in the configuration.

Create a CacheManager using defaults. Ehcache will look for ehcache.xml in the classpath.

 CacheManager manager = new CacheManager();

Create a CacheManager specifying the path of a configuration file.

CacheManager manager = new CacheManager("src/config/ehcache.xml");

Create a CacheManager from a configuration resource in the classpath.

URL url = getClass().getResource("/anotherconfigurationname.xml");
CacheManager manager = new CacheManager(url);

Create a CacheManager from a configuration in an InputStream.

InputStream fis = new FileInputStream(new File("src/config/
ehcache.xml").getAbsolutePath());
try {
 CacheManager manager = new CacheManager(fis);
} finally {
 fis.close();
}

13.3.1.3 Adding and Removing Caches Programmatically

You are not just stuck with the caches that were placed in the configuration. You can create and
remove them programmatically.

Add a cache using defaults, then use it. The following example creates a cache called testCache,
which will be configured using defaultCache from the configuration.

CacheManager singletonManager = CacheManager.create();
singletonManager.addCache("testCache");
Cache test = singletonManager.getCache("testCache");

Create a Cache and add it to the CacheManager, then use it. Note that Caches are not usable until they
have been added to a CacheManager.

CacheManager singletonManager = CacheManager.create();
Cache memoryOnlyCache = new Cache("testCache", 5000, false, false, 5, 2);
manager.addCache(memoryOnlyCache);
Cache test = singletonManager.getCache("testCache");

See the cache constructor for the full parameters for a new Cache:

Remove cache called sampleCache1

CacheManager singletonManager = CacheManager.create();

1 3 C o d e S a m p l e s 60

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

singletonManager.removeCache("sampleCache1");

13.3.1.4 Shutdown the CacheManager

Ehcache should be shutdown after use. It does have a shutdown hook, but it is best practice to shut it
down in your code.

Shutdown the singleton CacheManager

CacheManager.getInstance().shutdown();

Shutdown a CacheManager instance, assuming you have a reference to the CacheManager called
manager

manager.shutdown();

See the CacheManagerTest for more examples.

13.3.2 Creating Caches Programmatically

13.3.2.1 Creating a new cache from defaults

A new cache with a given name can be created from defaults very simply:

manager.addCache(cache name);

13.3.2.2 Creating a new cache with custom parameters

The configuration for a Cache can be specified programmatically as an argument to the Cache
constructor:

public Cache(CacheConfiguration cacheConfiguration) {
 ...
 }

Here is an example which creates a cache called test.

 //Create a CacheManager using defaults
 CacheManager manager = CacheManager.create();
 //Create a Cache specifying its configuration.
 Cache testCache = new Cache(
 new CacheConfiguration("test", maxElements)
 .memoryStoreEvictionPolicy(MemoryStoreEvictionPolicy.LFU)
 .overflowToDisk(true)
 .eternal(false)
 .timeToLiveSeconds(60)
 .timeToIdleSeconds(30)
 .diskPersistent(false)
 .diskExpiryThreadIntervalSeconds(0));
 manager.addCache(cache);

Once the cache is created, add it to the list of caches managed by the CacheManager:

 manager.addCache(testCache);

The cache is not usable until it has been added.

13.3.3 Using Caches

All of these examples refer to manager, which is a reference to a CacheManager, which has a cache in
it called sampleCache1.

1 3 C o d e S a m p l e s 61

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

13.3.3.1 Obtaining a reference to a Cache

Obtain a Cache called "sampleCache1", which has been preconfigured in the configuration file

Cache cache = manager.getCache("sampleCache1");

13.3.3.2 Performing CRUD operations

Put an element into a cache

Cache cache = manager.getCache("sampleCache1");
Element element = new Element("key1", "value1");
cache.put(element);

Update an element in a cache. Even though cache.put() is used, Ehcache knows there is an
existing element, and considers the put an update for the purpose of notifying cache listeners.

Cache cache = manager.getCache("sampleCache1");
cache.put(new Element("key1", "value1"));
//This updates the entry for "key1"
cache.put(new Element("key1", "value2"));

Get a Serializable value from an element in a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
Element element = cache.get("key1");
Serializable value = element.getValue();

Get a NonSerializable value from an element in a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
Element element = cache.get("key1");
Object value = element.getObjectValue();

Remove an element from a cache with a key of "key1".

Cache cache = manager.getCache("sampleCache1");
cache.remove("key1");

13.3.3.3 Disk Persistence on demand

sampleCache1 has a persistent diskStore. We wish to ensure that the data and index are written
immediately.

Cache cache = manager.getCache("sampleCache1");
cache.flush();

13.3.3.4 Obtaining Cache Sizes

Get the number of elements currently in the Cache.

Cache cache = manager.getCache("sampleCache1");
int elementsInMemory = cache.getSize();

Get the number of elements currently in the MemoryStore.

Cache cache = manager.getCache("sampleCache1");
long elementsInMemory = cache.getMemoryStoreSize();

Get the number of elements currently in the DiskStore.

Cache cache = manager.getCache("sampleCache1");
long elementsInMemory = cache.getDiskStoreSize();

1 3 C o d e S a m p l e s 62

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

13.3.3.5 Obtaining Statistics of Cache Hits and Misses

These methods are useful for tuning cache configurations.

Get the number of times requested items were found in the cache. i.e. cache hits

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getHitCount();

Get the number of times requested items were found in the MemoryStore of the cache.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMemoryStoreHitCount();

Get the number of times requested items were found in the DiskStore of the cache.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getDiskStoreCount();

Get the number of times requested items were not found in the cache. i.e. cache misses.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMissCountNotFound();

Get the number of times requested items were not found in the cache due to expiry of the elements.

Cache cache = manager.getCache("sampleCache1");
int hits = cache.getMissCountExpired();

These are just the most commonly used methods. See CacheTest for more examples. See Cache for
the full API.

13.3.3.6 Dynamically Modifying Cache Configurations

This example shows how to dynamically modify the cache configuration of an already running cache:

 Cache cache = manager.getCache("sampleCache");
 CacheConfiguration config = cache.getCacheConfiguration();
 config.setTimeToIdleSeconds(60);
 config.setTimeToLiveSeconds(120);
 config.setMaxElementsInMemory(10000);
 config.setMaxElementsOnDisk(1000000);

Dynamic cache configurations can also be frozen to prevent future changes:

 Cache cache = manager.getCache("sampleCache");
 cache.disableDynamicFeatures();

13.3.3.7 JTA

A cache will automatically participate in the ongoing UserTransaction when configured in
transactionalMode XA. This can be done programmatically:

 //Create a CacheManager using defaults
 CacheManager manager = CacheManager.create();
 //Create a Cache specifying its configuration.
 Cache xaCache = new Cache(
 new CacheConfiguration("test", 1000)
 .overflowToDisk(true)
 .eternal(false)
 .transactionalMode(CacheConfiguration.TransactionalMode.XA)
 .terracotta(new TerracottaConfiguration().clustered(true)));
 manager.addCache(xaCache);

Or in your CacheManager's configuration file :

1 3 C o d e S a m p l e s 63

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <cache name="xaCache"
 maxElementsInMemory="500"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="false"
 diskPersistent="false"
 diskExpiryThreadIntervalSeconds="1"
 transactionalMode="xa">
 <terracotta clustered="true"/>
 </cache>

Please note that XA Transactional caches are supported for standalone Ehcache and also when
clustered with Terracotta, but with the replicating cluster architectures such as RMI|JMS|JGroups as
there is no locking in those architectures.

The Cache can then be used without any special requirement. Changes will only become visible to
others, once the transaction has been committed.

 Ehcache cache = cacheManager.getEhcache("xaCache");
 transactionManager.begin();
 try {
 Element e = cache.get(key);
 Object result = complexService.doStuff(element.getValue());
 // This put will be rolled back should complexService.doMoreStuff throw an Exception
 cache.put(new Element(key, result));
 // Any changes to result in that call, will be visible to others when the Transaction commits
 complexService.doMoreStuff(result);
 transactionManager.commit();
 } catch (Exception e) {
 transactionManager.rollback();
 }

13.3.4 Using Distributed Caches

13.3.4.1 Terracotta Example

See the fully worked examples in the Terracotta Clustering Chapter.

13.3.5 Cache Statistics and Monitoring

13.3.5.1 Registering CacheStatistics in an MBeanServer

This example shows how to register CacheStatistics in the JDK1.5 platform MBeanServer, which
works with the JConsole management agent.

 CacheManager manager = new CacheManager();
 MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
 ManagementService.registerMBeans(manager, mBeanServer, false, false, false, true);

13.3.6 More examples

13.3.6.1 JCache Examples

See the examples in the JCache Chapter.

1 3 C o d e S a m p l e s 64

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

13.3.6.2 Cache Server Examples

See the examples in the Cache Server Chapter.

13.3.6.3 Browse the JUnit Tests

Ehcache comes with a comprehensive JUnit test suite, which not only tests the code, but shows you
how to use ehcache.

A link to browsable unit test source code for the major Ehcache classes is given per section. The unit
tests are also in the src.zip in the Ehcache tarball.

1 4 C l a s s l o a d i n g a n d C l a s s L o a d e r s 65

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

14 Class loading and Class Loaders
...

14.1 Class loading and Class Loaders
Class loading within the plethora of environments Ehcache can be running is a somewhat vexed issue.

Since ehcache-1.2 all classloading is done in a standard way in one utility class: ClassLoaderUtil.

14.1.1 Plugin class loading

Ehcache allows plugins for events and distribution. These are loaded and created as follows:

/**
 * Creates a new class instance. Logs errors along the way. Classes are loaded using the
 * Ehcache standard classloader.
 *
 * @param className a fully qualified class name
 * @return null if the instance cannot be loaded
 */
public static Object createNewInstance(String className) throws CacheException {
 Class clazz;
 Object newInstance;
 try {
 clazz = Class.forName(className, true, getStandardClassLoader());
 } catch (ClassNotFoundException e) {
 //try fallback
 try {
 clazz = Class.forName(className, true, getFallbackClassLoader());
 } catch (ClassNotFoundException ex) {
 throw new CacheException("Unable to load class " + className +
 ". Initial cause was " + e.getMessage(), e);
 }
 }
 try {
 newInstance = clazz.newInstance();
 } catch (IllegalAccessException e) {
 throw new CacheException("Unable to load class " + className +
 ". Initial cause was " + e.getMessage(), e);
 } catch (InstantiationException e) {
 throw new CacheException("Unable to load class " + className +
 ". Initial cause was " + e.getMessage(), e);
 }
 return newInstance;
}
/**
 * Gets the <code>ClassLoader</
code> that all classes in ehcache, and extensions, should
 * use for classloading. All ClassLoading in Ehcache should use this one. This is the only
 * thing that seems to work for all of the class loading situations found in the wild.
 * @return the thread context class loader.
 */
public static ClassLoader getStandardClassLoader() {
 return Thread.currentThread().getContextClassLoader();

1 4 C l a s s l o a d i n g a n d C l a s s L o a d e r s 66

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

}
/**
 * Gets a fallback <code>ClassLoader</
code> that all classes in ehcache, and extensions,
 * should use for classloading. This is used if the context class loader does not work.
 * @return the <code>ClassLoaderUtil.class.getClassLoader();</code>
 */
public static ClassLoader getFallbackClassLoader() {
 return ClassLoaderUtil.class.getClassLoader();
}

If this does not work for some reason a CacheException is thrown with a detailed error message.

14.1.2 Loading of ehcache.xml resources

If the configuration is otherwise unspecified, Ehcache looks for a configuration in the following order:

• Thread.currentThread().getContextClassLoader().getResource("/ehcache.xml")
• ConfigurationFactory.class.getResource("/ehcache.xml")
• ConfigurationFactory.class.getResource("/ehcache-failsafe.xml")

Ehcache uses the first configuration found.

Note the use of "/ehcache.xml" which requires that ehcache.xml be placed at the root of the classpath,
i.e. not in any package.

14.1.3 Classloading with Terracotta clustering

If Terracotta clustering is being used with valueMode="serialization" then keys and values will be
moved across the cluster in byte[] and deserialized on other nodes.

The classloaders used (in order) to instantiate those classes will be:

• Thread.currentThread().getContextClassLoader()
• The classloader that defined the CacheManager initially

1 5 T u n i n g G a r b a g e C o l l e c t i o n 67

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

15 Tuning Garbage Collection
...

15.1 Tuning Garbage Collection
Applications which use Ehcache can be expected to have larger heaps. Some Ehcache applications
have heap sizes greater than 6GB.

Ehcache works well at this scale. However large heaps or long held object, which is what a cache is,
can place strain on the default Garbage Collector.

Note. The following documentation relates to Sun JDK 1.5.

Finally Ehcache 2.3 introduced the Big Memory Offheap Store which adds an additional store
outside of the heap so solve this problem.

15.1.1 Detecting Garbage Collection Problems

A full garbage collection event pauses all threads in the JVM. Nothing happens during the pause. If
this pause takes more than a few seconds it will become noticeable.

The clearest way to see if this is happening is to run jstat. The following command will produce a
log of garbage collection statistics, updated each ten seconds.

 jstat -gcutil <pid> 10 1000000

The thing to watch for is the Full Garbage Collection Time. The difference between the total time for
each reading is the time the system spends time paused. If there is a jump more than a few seconds
this will not be acceptable in most application contexts.

15.1.2 Garbage Collection Tuning

The Sun core garbage collection team has offered the following tuning suggestion for virtual
machines with large heaps using caching:

java ... -XX:+DisableExplicitGC -XX:+UseConcMarkSweepGC
 -XX:NewSize=<1/4 of total heap size> -XX:SurvivorRatio=16

The reasoning for each setting is as follows:

• -XX:+DisableExplicitGC - some libs call System.gc(). This is usually a bad idea and could
explain some of what we saw.

• -XX:+UseConcMarkSweepGC - use the low pause collector
• -XX:NewSize= 1/4 of total heap size -XX:SurvivorRatio=16

15.1.3 Distributed Caching Garbage Collection Tuning

Some users have reported that enabling distributed caching causes a full GC each minute. This is
an issue with RMI generally, which can be worked around by increasing the interval for garbage
collection. The effect that RMI is having is similar to a user application calling System.gc() each
minute. In the settings above this is disabled, but it does not disable the full GC initiated by RMI.

The default in JDK6 was increased to 1 hour. The following system properties control the interval.

-Dsun.rmi.dgc.client.gcInterval=60000
-Dsun.rmi.dgc.server.gcInterval=60000

See http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367 for the bug report and detailed
instructions on workarounds.

Increase the interval as required in your application.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4403367

1 6 C a c h e D e c o r a t o r s 68

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

16 Cache Decorators
...

16.1 Cache Decorators
Ehcache 1.2 introduced the Ehcache interface, of which Cache is an implementation. It is possible and
encouraged to create Ehcache decorators that are backed by a Cache instance, implement Ehcache and
provide extra functionality.

The Decorator pattern is one of the the well known Gang of Four patterns.

Decorated caches are accessed from the CacheManager using
CacheManager.getEhcache(String name).

Note that, for backward compatibility, CacheManager.getCache(String name) has been
retained. However only CacheManager.getEhcache(String name) returns the decorated cache.

16.1.1 Creating a Decorator

16.1.1.1 Programmatically

Cache decorators are created as follows:

BlockingCache newBlockingCache = new BlockingCache(cache);

The class must implement Ehcache.

16.1.1.2 By Configuration

Cache decorators can be configured directly in ehcache.xml. The decorators will be
created and added to the CacheManager. It accepts the name of a concrete class that
extends net.sf.ehcache.constructs.CacheDecoratorFactory The properties will be parsed
according to the delimiter (default is comma ',') and passed to the concrete factory's
createDecoratedEhcache(Ehcache cache, Properties properties) method along with
the reference to the owning cache.

It is configured as per the following example:

 <cacheDecoratorFactory
 class="com.company.SomethingCacheDecoratorFactory"
 properties="property1=36 ..." />

Note that from version 2.2, decorators can be configured against the defaultCache. This is very
useful for frameworks like Hibernate that add caches based on the defaultCache.

16.1.2 Adding decorated caches to the CacheManager

Having created a decorator programmatically it is generally useful to put it in a place where multiple
threads may access it.

Note that decorators created via configuration in ehcache.xml have already been added to the
CacheManager.

16.1.2.1 Using CacheManager.replaceCacheWithDecoratedCache()

A built-in way is to replace the Cache in CacheManager with the decorated one. This is achieved as in
the following example:

cacheManager.replaceCacheWithDecoratedCache(cache, newBlockingCache);

1 6 C a c h e D e c o r a t o r s 69

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The CacheManager replaceCacheWithDecoratedCache method requires that the decorated
cache be built from the underlying cache from the same name.

Note that any overwritten Ehcache methods will take on new behaviours without casting, as per the
normal rules of Java. Casting is only required for new methods that the decorator introduces.

Any calls to get the cache out of the CacheManager now return the decorated one.

A word of caution. This method should be called in an appropriately synchronized init style method
before multiple threads attempt to use it. All threads must be referencing the same decorated cache.
An example of a suitable init method is found in CachingFilter:

/**
 * The cache holding the web pages. Ensure that all threads for a given cache name
 * are using the same instance of this.
 */
private BlockingCache blockingCache;
/**
 * Initialises blockingCache to use
 *
 * @throws CacheException The most likely cause is that a cache has not been
 * configured in Ehcache's configuration file ehcache.xml for the
 * filter name
 */
public void doInit() throws CacheException {
 synchronized (this.getClass()) {
 if (blockingCache == null) {
 final String cacheName = getCacheName();
 Ehcache cache = getCacheManager().getEhcache(cacheName);
 if (!(cache instanceof BlockingCache)) {
 //decorate and substitute
 BlockingCache newBlockingCache = new BlockingCache(cache);
 getCacheManager().replaceCacheWithDecoratedCache(cache, newBlockingCache);
 }
 blockingCache = (BlockingCache) getCacheManager().getEhcache(getCacheName());
 }
 }
}
Ehcache blockingCache = singletonManager.getEhcache("sampleCache1");

The returned cache will exhibit the decorations.

16.1.2.2 Using CacheManager.addDecoratedCache()

Sometimes you want to add a decorated cache but retain access to the underlying cache.

The way to do this is to create a decorated cache and then call cache.setName(new_name) and
then add it to CacheManager with CacheManager.addDecoratedCache().

 /**
 * Adds a decorated {@link Ehcache} to the CacheManager. This method neither creates the memory/
disk store
 * nor initializes the cache. It only adds the cache reference to the map of caches held by this
 * cacheManager.
 * <p/>
 * It is generally required that a decorated cache, once constructed, is made available to other execution
 * threads. The simplest way of doing this is to either add it to the cacheManager with a different name or
 * substitute the original cache with the decorated one.

1 6 C a c h e D e c o r a t o r s 70

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * <p/>
 * This method adds the decorated cache assuming it has a different name. If another cache (decorated or not)
 * with the same name already exists, it will throw {@link ObjectExistsException}. For replacing existing
 * cache with another decorated cache having same name, please use
 * {@link #replaceCacheWithDecoratedCache(Ehcache, Ehcache)}
 * <p/>
 * Note that any overridden Ehcache methods by the decorator will take on new behaviours without casting.
 * Casting is only required for new methods that the decorator introduces. For more information see the well
 * known Gang of Four Decorator pattern.
 *
 * @param decoratedCache
 * @throws ObjectExistsException
 * if another cache with the same name already exists.
 */
 public void addDecoratedCache(Ehcache decoratedCache) throws ObjectExistsException {

16.1.3 Built-in Decorators

16.1.3.1 BlockingCache

A blocking decorator for an Ehcache, backed by a @link Ehcache.

It allows concurrent read access to elements already in the cache. If the element is null, other reads
will block until an element with the same key is put into the cache.

This is useful for constructing read-through or self-populating caches.

BlockingCache is used by CachingFilter.

16.1.3.2 SelfPopulatingCache

A selfpopulating decorator for Ehcache that creates entries on demand.

Clients of the cache simply call it without needing knowledge of whether the entry exists in the cache.
If null the entry is created.

The cache is designed to be refreshed. Refreshes operate on the backing cache, and do not degrade
performance of get calls.

SelfPopulatingCache extends BlockingCache. Multiple threads attempting to access a null element
will block until the first thread completes. If refresh is being called the threads do not block - they
return the stale data.

This is very useful for engineering highly scalable systems.

16.1.3.3 Caches with Exception Handling

These are decorated. See Cache Exception Handlers for full details.

1 7 H i b e r n a t e C a c h i n g 71

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

17 Hibernate Caching
...

17.1 Hibernate Second Level Cache
IMPORTANT NOTICES - PLEASE READ

Users of Ehcache and/or Terracotta Ehcache for Hibernate prior to Ehcache 2.0 should read:
• Upgrade Notes for Ehcache versions prior to 2.0

These instructions are for Hibernate 3. For older instructions on how to use Hibernate 2.1, please
refer to:

• Guide for Version 1.1

17.1.1 Overview

Ehcache easily integrates with the Hibernate Object/Relational persistence and query service. Gavin
King, the maintainer of Hibernate, is also a committer to the Ehcache project. This ensures Ehcache
will remain a first class cache for Hibernate.

Configuring Ehcache for Hibernate is simple. The basic steps are:
• Download and install Ehcache into your project
• Configure Ehcache as a cache provider in your project's Hibernate configuration.
• Configure second level caching in your project's Hibernate configuration.
• Configure Hibernate caching for each entity, collection, or query you wish to cache.
• Configure ehcache.xml as necessary for each entity, collection, or query configured for caching.

For more information regarding cache configuration in Hibernate see the Hibernate documentation.

17.1.2 Downloading and Installing Ehcache

The Hibernate provider is in the ehcache-core module. Download:
• the latest version of the Ehcache core module here

For Terracotta clustering, download:
• a full Ehcache distribution here

17.1.3 Maven Dependency versions vary with the specific kit you intend to use. Since kits are
guaranteed to contain compatible artifacts, find the artifact versions you need by downloading a kit.

Configure or add the following repository to your build (pom.xml):

 <repository>
 <id>terracotta-releases</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>false</enabled></snapshots>
 </repository>

Configure or add the the ehcache core module defined by the following dependency to your build
(pom.xml):

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-core</artifactId>
 <version>${ehcacheVersion}</version>
 </dependency>

http://ehcache.org/documentation/documentation-1_1.html
http://hibernate.org
http://www.hibernate.org/hib_docs/reference/en/html_single/
http://sourceforge.net/projects/ehcache/files/ehcache-core
http://sourceforge.net/projects/ehcache/files/ehcache

1 7 H i b e r n a t e C a c h i n g 72

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

If you are configuring Hibernate and Ehcache for Terracotta clustering, add the following
dependencies to your build (pom.xml):

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-terracotta</artifactId>
 <version>${ehcacheVersion}</version>
 </dependency>
 <dependency>
 <groupId>org.terracotta</groupId>
 <artifactId>terracotta-toolkit-${toolkitAPIversion}-runtime</
artifactId>
 <version>${toolkitVersion}</version>
 </dependency>

17.1.4 Configure Ehcache as the Second Level Cache Provider

To configure Ehcache as a Hibernate second level cache, set the region factory property (for
Hibernate 3.3 and above) or the factory class property (Hibernate 3.2 and below) to one of the
following in the Hibernate configuration.

Hibernate configuration is configured either via hibernate.cfg.xml, hibernate.properties or Spring. The
format given is for hibernate.cfg.xml.

17.1.4.1 Hibernate 3.3 and higher

ATTENTION HIBERNATE 3.2 USERS: Make sure to note the change to BOTH the property
name and value.

Use:

 <property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

for instance creation, or

 <property name="hibernate.cache.region.factory_class">
 net.sf.ehcache.hibernate.SingletonEhCacheRegionFactory</
property>

to force Hibernate to use a singleton of Ehcache CacheManager.

17.1.4.2 Hibernate 3.0 - 3.2

Use:

 <property name="hibernate.cache.provider_class">
 net.sf.ehcache.hibernate.EhCacheProvider</property>

for instance creation, or

 <property name="hibernate.cache.provider_class">
 net.sf.ehcache.hibernate.SingletonEhCacheProvider</property>

to force Hibernate to use a singleton Ehcache CacheManager.

17.1.5 Enable Second Level Cache and Query Cache Settings

In addition to configuring the second level cache provider setting, you will need to turn on the second
level cache (by default it is configured to off - 'false' - by Hibernate). This is done by setting the
following property in your hibernate config:

1 7 H i b e r n a t e C a c h i n g 73

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <property name="hibernate.cache.use_second_level_cache">true</property>

You may also want to turn on the Hibernate query cache. This is done by setting the following
property in your hibernate config:

 <property name="hibernate.cache.use_query_cache">true</property>

17.1.6 Optional

The following settings or actions are optional.

17.1.6.1 Ehcache Configuration Resource Name

The configurationResourceName property is used to specify the location of the ehcache
configuration file to be used with the given Hibernate instance and cache provider/region-factory.

The resource is searched for in the root of the classpath. It is used to support multiple CacheManagers
in the same VM. It tells Hibernate which configuration to use. An example might be "ehcache-2.xml".

When using multiple Hibernate instances it is therefore recommended to use multiple non-singleton
providers or region factories, each with a dedicated Ehcache configuration resource.

net.sf.ehcache.configurationResourceName=/name_of_ehcache.xml

17.1.6.2 Set the Hibernate cache provider programmatically

The provider can also be set programmatically in Hibernate by adding necessary Hibernate property
settings to the configuration before creating the SessionFactory:

Configuration.setProperty("hibernate.cache.region.factory_class",
 "net.sf.ehcache.hibernate.EhCacheRegionFactory")

17.1.7 Putting it all together

If you are using Hibernate 3.3 and enabling both second level caching and query caching, then your
hibernate config file should contain the following:

<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property name="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFactory</
property>

An equivalent Spring configuration file would contain:

<prop key="hibernate.cache.use_second_level_cache">true</prop>
<prop key="hibernate.cache.use_query_cache">true</prop>
<prop key="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFactory</
prop>

17.1.8 Configure Hibernate Entities to use Second Level Caching

In addition to configuring the Hibernate second level cache provider, Hibernate must also be told to
enable caching for entities, collections, and queries.

For example, to enable cache entries for the domain object
com.somecompany.someproject.domain.Country there would be a mapping file something like the
following:

<hibernate-mapping>
<class
 name="com.somecompany.someproject.domain.Country"

1 7 H i b e r n a t e C a c h i n g 74

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 table="ut_Countries"
 dynamic-update="false"
 dynamic-insert="false"
>
...
</class>
</hibernate-mapping>

To enable caching, add the following element.

<cache usage="read-write|nonstrict-read-write|read-only" />

e.g.

<hibernate-mapping>
<class
 name="com.somecompany.someproject.domain.Country"
 table="ut_Countries"
 dynamic-update="false"
 dynamic-insert="false"
>
 <cache usage="read-write" />
...
</class>
</hibernate-mapping>

This can also be achieved using the @Cache annotation, e.g.

@Entity
@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
public class Country {
 ...
}

17.1.8.1 Definition of the different cache strategies

17.read-only

Caches data that is never updated.

17.nonstrict-read-write

Caches data that is sometimes updated without ever locking the cache. If concurrent access to an item
is possible, this concurrency strategy makes no guarantee that the item returned from the cache is the
latest version available in the database. Configure your cache timeout accordingly!

17.read-write

Caches data that is sometimes updated while maintaining the semantics of "read committed" isolation
level. If the database is set to "repeatable read", this concurrency strategy almost maintains the
semantics. Repeatable read isolation is compromised in the case of concurrent writes.

17.1.9 Configure ehcache.xml

Because ehcache.xml has a defaultCache, caches will always be created when required by Hibernate.
However more control can be exerted by specifying a configuration per cache, based on its name.

In particular, because Hibernate caches are populated from databases, there is potential for them to get
very large. This can be controlled by capping their maxElementsInMemory and specifying whether to
overflowToDisk beyond that.

1 7 H i b e r n a t e C a c h i n g 75

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Hibernate uses a specific convention for the naming of caches of Domain Objects, Collections, and
Queries.

17.1.9.1 Domain Objects

Hibernate creates caches named after the fully qualified name of Domain Objects.

So, for example to create a cache for com.somecompany.someproject.domain.Country create a cache
configuration entry similar to the following in ehcache.xml.

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
</ehcache>

17.1.9.2 Hibernate

CacheConcurrencyStrategy read-write, nonstrict-read-write and read-only policies apply to Domain
Objects.

17.1.9.3 Collections

Hibernate creates collection caches named after the fully qualified name of the Domain Object
followed by "." followed by the collection field name.

For example, a Country domain object has a set of advancedSearchFacilities. The Hibernate doclet for
the accessor looks like:

 /**
 * Returns the advanced search facilities that should appear for this country.
 * @hibernate.set cascade="all" inverse="true"
 * @hibernate.collection-key column="COUNTRY_ID"
 * @hibernate.collection-one-to-
many class="com.wotif.jaguar.domain.AdvancedSearchFacility"
 * @hibernate.cache usage="read-write"
 */
 public Set getAdvancedSearchFacilities() {
 return advancedSearchFacilities;
 }

You need an additional cache configured for the set. The ehcache.xml configuration looks like:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <cache name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="50"
 eternal="false"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
 <cache

1 7 H i b e r n a t e C a c h i n g 76

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 name="com.somecompany.someproject.domain.Country.advancedSearchFacilities"
 maxElementsInMemory="450"
 eternal="false"
 timeToLiveSeconds="600"
 overflowToDisk="true"
 />
</ehcache>

17.1.9.4 Hibernate CacheConcurrencyStrategy

read-write, nonstrict-read-write and read-only policies apply to Domain Object collections.

17.1.9.5 Queries

Hibernate allows the caching of query results using two caches.

"net.sf.hibernate.cache.StandardQueryCache" and "net.sf.hibernate.cache.UpdateTimestampsCache"
in versions 2.1 to 3.1 and "org.hibernate.cache.StandardQueryCache" and
"org.hibernate.cache.UpdateTimestampsCache" in version 3.2. are always used.

17.1.9.6 StandardQueryCache

This cache is used if you use a query cache without setting a name. A typical ehcache.xml
configuration is:

<cache
 name="org.hibernate.cache.StandardQueryCache"
 maxElementsInMemory="5"
 eternal="false"
 timeToLiveSeconds="120"
 overflowToDisk="true"/>

17.1.9.7 UpdateTimestampsCache

Tracks the timestamps of the most recent updates to particular tables. It is important that the cache
timeout of the underlying cache implementation be set to a higher value than the timeouts of any of
the query caches. In fact, it is recommend that the the underlying cache not be configured for expiry at
all.

A typical ehcache.xml configuration is:

<cache
 name="org.hibernate.cache.UpdateTimestampsCache"
 maxElementsInMemory="5000"
 eternal="true"
 overflowToDisk="true"/>

17.1.9.8 Named Query Caches

In addition, a QueryCache can be given a specific name in Hibernate using
Query.setCacheRegion(String name). The name of the cache in ehcache.xml is then the name given
in that method. The name can be whatever you want, but by convention you should use "query."
followed by a descriptive name.

E.g.

<cache name="query.AdministrativeAreasPerCountry"
 maxElementsInMemory="5"
 eternal="false"

1 7 H i b e r n a t e C a c h i n g 77

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 timeToLiveSeconds="86400"
 overflowToDisk="true"/>

17.1.9.9 Using Query Caches

For example, let's say we have a common query running against the Country Domain.

Code to use a query cache follows:

public List getStreetTypes(final Country country) throws HibernateException {
 final Session session = createSession();
 try {
 final Query query = session.createQuery(
 "select st.id, st.name"
 + " from StreetType st "
 + " where st.country.id = :countryId "
 + " order by st.sortOrder desc, st.name");
 query.setLong("countryId", country.getId().longValue());
 query.setCacheable(true);
 query.setCacheRegion("query.StreetTypes");
 return query.list();
 } finally {
 session.close();
 }
 }

The query.setCacheable(true) line caches the query.

The query.setCacheRegion("query.StreetTypes") line sets the name of the Query Cache.

Alex Miller has a good article on the query cache here.

17.1.9.10 Hibernate CacheConcurrencyStrategy

None of read-write, nonstrict-read-write and read-only policies apply to Domain Objects. Cache
policies are not configurable for query cache. They act like a non-locking read only cache.

17.1.10 Demo Apps

We have demo applications showing how to use the Hibernate 3.3 CacheRegionFactory.

17.1.10.1 Hibernate Tutorial

Check out from https://svn.terracotta.org/repo/forge/projects/hibernate-tutorial-web/trunk
terracotta_community_login

17.1.10.2 Examinator

Examinator is our complete application that shows many aspects of caching, all using the Terracotta
Server Array.

Check out from http://svn.terracotta.org/svn/forge/projects/exam/trunk terracotta_community_login *
Performance Tips

17.1.10.3 Session.load

Session.load will always try to use the cache.

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/
https://svn.terracotta.org/repo/forge/projects/hibernate-tutorial-web/trunk
http://svn.terracotta.org/svn/forge/projects/exam/trunk

1 7 H i b e r n a t e C a c h i n g 78

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

17.1.10.4 Session.find and Query.find

Session.find does not use the cache for the primary object. Hibernate will try to use the cache for any
associated objects. Session.find does however cause the cache to be populated.

Query.find works in exactly the same way.

Use these where the chance of getting a cache hit is low.

17.1.10.5 Session.iterate and Query.iterate

Session.iterate always uses the cache for the primary object and any associated objects.

Query.iterate works in exactly the same way.

Use these where the chance of getting a cache hit is high.

17.1.11 How to Scale

Configuring each Hibernate instance with a standalone ehcache will dramatically improve
performance. However most production applications use multiple application instances for
redundancy and for scalability. Ideally applications are horizontally scalable, where adding more
application instances linearly improves throughput.

With an application deployed on multiple nodes, using standalone Ehcache means that each instance
holds its own data. On a cache miss on any node, Hibernate will read from the database. This
generally results in N reads where N is the number of nodes in the cluster. As each new node gets
added database workload goes up. Also, when data is written in one node, the other nodes are
unaware of the data write, and thus subsequent reads of this data on other nodes will result in stale
reads.

The solution is to turn on distributed caching or replicated caching.

Ehcache comes with native cache distribution using the following mechanism:
• Terracotta

Ehcache supports the following methods of cache replication:
• RMI
• JGroups
• JMS replication

Selection of the distributed cache or replication mechanism may be made or changed at any time.
There are no changes to the application. Only changes to ehcache.xml file are required. This allows an
application to easily scale as it grows without expensive re-architecting.

17.1.12 Configuring Ehcache for distributed caching using Terracotta

Ehcache provides built-in support for Terracotta distributed caching. The following are the key
considerations when selecting this option:

• Simple snap-in configuration with one line of configuration
• Simple to scale up to as much performance as you need -- no application changes required
• Wealth of "CAP" configuration options allow you to configure your cache for whatever it needs -

fast, coherent, asynchronous updates, dirty reads etc.
• The fastest coherent option for caches with reads and writes
• Store as much data as you want - 20GB -> 1TB
• Commercial products and support available from http://www.terracotta.org

Configuring Terracotta replication is described in the Terracotta Documentation. A sample cache
configuration is provided here:

http://www.terracotta.org
http://www.terracotta.org/documentation/ga/distributed-hibernate-install.html

1 7 H i b e r n a t e C a c h i n g 79

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <terracottaConfig url="localhost:9510" />
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <terracotta/>
 </cache>
</ehcache>

17.1.13 Configuring Replicated Caching using RMI, JGroups, or JMS

Ehcache can use JMS, JGroups or RMI as a cache replication scheme. The following are the key
considerations when selecting this option:

• The consistency is weak. Nodes might be stale, have different versions or be missing an element
that other nodes have. Your application should be tolerant of weak consistency.

• session.refresh() should be used to check the cache against the database before performing
a write that must be correct. This can have a performance inmpact on the database.

• Each node in the cluster stores all data, thus the cache size is limited to memory size, or disk if
disk overflow is selected.

17.1.13.1 Configuring for RMI Replication

RMI configuration is described in the Ehcache User Guide - RMI Distributed Caching. A sample
cache configuration (using automatic discovery) is provided here:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
 properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
 multicastGroupPort=4446, timeToLive=32"/>
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
 </cache>
</ehcache>

17.1.13.2 Configuring for JGroups Replication

Configuraging JGroups replication is described in the Ehcache User Guide - Distributed Caching
with JGroups. A sample cache configuration is provided here:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>

1 7 H i b e r n a t e C a c h i n g 80

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution.jgroups
 .JGroupsCacheManagerPeerProviderFactory"
 properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;ip_ttl=32;
 mcast_send_buf_size=150000;mcast_recv_buf_size=80000):
 PING(timeout=2000;num_initial_members=6):
 MERGE2(min_interval=5000;max_interval=10000):
 FD_SOCK:VERIFY_SUSPECT(timeout=1500):
 pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):
 UNICAST(timeout=5000):
 pbcast.STABLE(desired_avg_gossip=20000):
 FRAG:
 pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;
 shun=false;print_local_addr=true)"
 propertySeparator="::"
 />
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />
 </cache>
</ehcache>

17.1.13.3 Configuring for JMS Replication

Configuring JMS replication is described in the Ehcache User Guide - JMS Distributed Caching. A
sample cache configuration (for ActiveMQ) is provided here:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache>
 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,
 providerURL=tcp://localhost:61616,
 topicConnectionFactoryBindingName=topicConnectionFactory,
 topicBindingName=ehcache"
 propertySeparator=","
 />
 <cache
 name="com.somecompany.someproject.domain.Country"
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="true">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"

1 7 H i b e r n a t e C a c h i n g 81

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 properties="replicateAsynchronously=true,
 replicatePuts=true,
 replicateUpdates=true,
 replicateUpdatesViaCopy=true,
 replicateRemovals=true,
 asynchronousReplicationIntervalMillis=1000"
 propertySeparator=","/>
 </cache>
</ehcache>

17.1.14 FAQ

17.1.14.1 Should I use the provider in the Hibernate distribution or in Ehcache?

Since Hibernate 2.1, Hibernate has included an Ehcache CacheProvider. That provider is
periodically synced up with the provider in the Ehcache Core distribution. New features are generally
added in to the Ehcache Core provider and then the Hibernate one.

17.1.14.2 What is the relationship between the Hibernate and Ehcache projects?

Gavin King and Greg Luck cooperated to create Ehcache and include it in Hibernate. Since 2009 Greg
Luck has been a committer on the Hibernate project so as to ensure Ehcache remains a first-class 2nd
level cache for Hibernate.

17.1.14.3 Does Ehcache support the new Hibernate 3.3 2nd level caching SPI?

Yes. Ehcache 2.0 supports this new API.

17.1.14.4 Does Ehcache support the transactional strategy?

Yes. It was introduced in Ehcache 2.1.

17.1.14.5 Is Ehcache Cluster Safe?

hibernate.org maintains a table listing the providers. While ehcache works as a distributed cache
for Hibernate, it is not listed as "Cluster Safe". What this means is that `Hibernate's lock and unlock
methods are not implemented. Changes in one node will be applied without locking. This may or may
not be a noticeable problem.

In Ehcache 1.7 when using Terracotta, this cannot happen as access to the clustered cache itself is
controlled with read locks and write locks.

In Ehcache 2.0 when using Terracotta, the lock and unlock methods tie-in to the underlying clustered
cache locks. We expect Ehcache 2.0 to be marked as cluster safe in new versions of the Hibernate
documentation.

17.1.14.6 How are Hibernate Entities keyed?

Hibernate identifies cached Entities via an object id. This is normally the primary key of a database
row.

17.1.14.7 Can you use Identity mode with the Terracotta Server Array

You cannot use identity mode clustered cache with Hibernate. If the cache is exclusively used
by Hibernate we will convert identity mode caches to serialization mode. If the cache cannot be
determined to be exclusively used by Hibernate (i.e. generated from a singleton cache manager) then

1 7 H i b e r n a t e C a c h i n g 82

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

an exception will be thrown indicating the misconfigured cache. Serialization mode is in any case the
default for Terracotta clustered caches.

17.1.14.8 I get org.hibernate.cache.ReadWriteCache - An item was expired by the
cache while it was locked error messages. What is it?

Soft locks are implemented by replacing a value with a special type that marks the element as locked,
thus indicating to other threads to treat it differently to a normal element. This is used in the Hibernate
Read/Write strategy to force fall-through to the database during the two-phase commit - since we
don't know exactly what should be returned by the cache while the commit is in process (but the db
does).

If a soft-locked Element is evicted by the cache during the 2 phase commit, then once the 2 phase
commit completes the cache will fail to update (since the soft-locked Element was evicted) and the
cache entry will be reloaded from the database on the next read of that object. This is obviously non-
fatal (we're a cache failure here so it should not be a problem).

The only problem it really causes would I imagine be a small rise in db load.

So, in summary the Hibernate messages are not problematic.

The underlying cause is the probabilistic evictor can theoretically evict recently loaded items. This
evictor has been tuned over successive ehcache releases. As a result this warning will happen most
often in 1.6, less often in 1.7 and very rarely in 1.8.

You can also use the deterministic evictor to avoid this problem. Specify the java -
Dnet.sf.ehcache.use.classic.lru=true system property to turn on classic LRU which
contains a deterministic evictor.

17.1.14.9 I get java.lang.ClassCastException: org.hibernate.cache.ReadWriteCache$Item incompatible
with net.sf.ehcache.hibernate.strategy.AbstractReadWriteEhcacheAccessStrategy$Lockable

This is the tell-tale error you get if you are:

• using a Terracotta cluster with Ehcache
• you have upgraded part of the cluster to use net.sf.ehcache.hibernate.EhCacheRegionFactory but

part of it is still using the old SPI of EhCacheProvider.
• you are upgrading a Hibernate version

Ensure you have changed all nodes and that you clear any caches during the upgrade.

17.1.14.10 Are compound keys supported?

For standalone caching yes. With Terracotta a larger amount of memory is used.

17.1.14.11 Why do I not see replicated data when using nonstrict mode?

You may thing that Hibernate's nonstrict mode is just like read-write but with dirty reads. The truth
is far more complex than that. Suffice to say, in nonstrict mode, Hibernate puts the object in the
appropriate cache but then IMMEDIATELY removes it. The PUT and the REMOVE are BOTH
replicated by ehcache so the net effect of that is the new object is copied to remote cache but then it's
immediately followed by a replicated remove # so the next time you try get the object it's not in cache
and hibernate goes back to the DB.

So, practically there is no point using nonstrict mode with replicated or distributed caches. If you want
the updated entry to be replicated or distributed use readwrite or transactional.

1 8 W e b C a c h i n g 83

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

18 Web Caching
...

18.1 Web Caching
Ehcache provides a set of general purpose web caching filters in the ehcache-web module.

Using these can make an amazing difference to web application performance. A typical server
can deliver 5000+ pages per second from the page cache. With built-in gzipping, storage and
network transmission is highly efficient. Cache pages and fragments make excellent candidates for
DiskStore storage, because the object graphs are simple and the largest part is already a byte[].

18.1.1 SimplePageCachingFilter

This is a simple caching filter suitable for caching compressable HTTP responses such as HTML,
XML or JSON.

It uses a Singleton CacheManager created with the default factory method. Override to use a different
CacheManager

It is suitable for:
• complete responses i.e. not fragments.
• A content type suitable for gzipping. e.g. text or text/html

For fragments see the SimplePageFragmentCachingFilter.

18.1.2 Keys

Pages are cached based on their key. The key for this cache is the URI followed by the query string.
An example is /admin/SomePage.jsp?id=1234&name=Beagle.

This key technique is suitable for a wide range of uses. It is independent of hostname and port
number, so will work well in situations where there are multiple domains which get the same content,
or where users access based on different port numbers.

A problem can occur with tracking software, where unique ids are inserted into request
query strings. Because each request generates a unique key, there will never be a
cache hit. For these situations it is better to parse the request parameters and override
calculateKey(javax.servlet.http.HttpServletRequest) with an implementation that
takes account of only the significant ones.

18.1.3 Configuring the cacheName

A cache entry in ehcache.xml should be configured with the name of the filter.

Names can be set using the init-param cacheName, or by sub-classing this class and overriding the
name.

18.1.4 Concurrent Cache Misses

A cache miss will cause the filter chain, upstream of the caching filter to be processed. To avoid
threads requesting the same key to do useless duplicate work, these threads block behind the first
thread.

The thead timeout can be set to fail after a certain wait by setting the init-param
blockingTimeoutMillis. By default threads wait indefinitely. In the event upstream processing
never returns, eventually the web server may get overwhelmed with connections it has not responded
to. By setting a timeout, the waiting threads will only block for the set time, and then throw a @link

1 8 W e b C a c h i n g 84

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

net.sf.ehcache.constructs.blocking.LockTimeoutException. Under either scenario an upstream failure
will still cause a failure.

18.1.5 Gzipping

Significant network efficiencies, and page loading speedups, can be gained by gzipping responses.

Whether a response can be gzipped depends on:

• Whether the user agent can accept GZIP encoding. This feature is part of HTTP1.1. If a browser
accepts GZIP encoding it will advertise this by including in its HTTP header: All common
browsers except IE 5.2 on Macintosh are capable of accepting gzip encoding. Most search engine
robots do not accept gzip encoding.

• Whether the user agent has advertised its acceptance of gzip encoding. This is on a per request
basis. If they will accept a gzip response to their request they must include the following in the
HTTP request header:
 Accept-Encoding: gzip

Responses are automatically gzipped and stored that way in the cache. For requests which do not
accept gzip encoding the page is retrieved from the cache, ungzipped and returned to the user
agent. The ungzipping is high performance.

18.1.6 Caching Headers

The SimpleCachingHeadersPageCachingFilter extends SimplePageCachingFilter to
provide the HTTP cache headers: ETag, Last-Modified and Expires. It supports conditional GET.

Because browsers and other HTTP clients have the expiry information returned in the response
headers, they do not even need to request the page again. Even once the local browser copy has
expired, the browser will do a conditional GET.

So why would you ever want to use SimplePageCachingFilter, which does not set these headers? The
answer is that in some caching scenarios you may wish to remove a page before its natural expiry.
Consider a scenario where a web page shows dynamic data. Under Ehcache the Element can be
removed at any time. However if a browser is holding expiry information, those browsers will have to
wait until the expiry time before getting updated. The caching in this scenario is more about defraying
server load rather than minimising browser calls.

18.1.7 Init-Params

The following init-params are supported:

• cacheName - the name in ehcache.xml used by the filter.
• blockingTimeoutMillis - the time, in milliseconds, to wait for the filter chain to return with

a response on a cache miss. This is useful to fail fast in the event of an infrastructure failure.
• varyHeader - set to true to set Vary:Accept-Encoding in the response when doing Gzip. This

header is needed to support HTTP proxies however it is off by default.
<init-param>
 <param-name>varyHeader</param-name>
 <param-value>true</param-value>
</init-param>

18.1.8 Re-entrance

Care should be taken not to define a filter chain such that the same CachingFilter class is
reentered. The CachingFilter uses the BlockingCache. It blocks until the thread which
did a get which results in a null does a put. If reentry happens a second get happens before the

1 8 W e b C a c h i n g 85

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

first put. The second get could wait indefinitely. This situation is monitored and if it happens, an
IllegalStateException will be thrown.

18.1.9 SimplePageFragmentCachingFilter

The SimplePageFragmentCachingFilter does everyting that SimplePageCachingFilter does, except
it never gzips, so the fragments can be combined. There is variant of this filter which sets browser
caching headers, because that is only applicable to the entire page.

18.1.10 Example web.xml configuration

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd "
 version="2.5">
 <filter>
 <filter-name>CachePage1CachingFilter</filter-name>
 <filter-
class>net.sf.ehcache.constructs.web.filter.SimplePageCachingFilter
 </filter-class>
 <init-param>
 <param-name>suppressStackTraces</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>cacheName</param-name>
 <param-value>CachePage1CachingFilter</param-value>
 </init-param>
 </filter>
 <filter>
 <filter-name>SimplePageFragmentCachingFilter</filter-name>
 <filter-
class>net.sf.ehcache.constructs.web.filter.SimplePageFragmentCachingFilter
 </filter-class>
 <init-param>
 <param-name>suppressStackTraces</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>cacheName</param-name>
 <param-value>SimplePageFragmentCachingFilter</param-value>
 </init-param>
 </filter>
 <filter>
 <filter-name>SimpleCachingHeadersPageCachingFilter</filter-name>
 <filter-
class>net.sf.ehcache.constructs.web.filter.SimpleCachingHeadersPageCachingFilter
 </filter-class>
 <init-param>
 <param-name>suppressStackTraces</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>

1 8 W e b C a c h i n g 86

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <param-name>cacheName</param-name>
 <param-value>CachedPage2Cache</param-value>
 </init-param>
 </filter>
 <!-- This is a filter chain. They are executed in the order below.
 Do not change the order. -->
 <filter-mapping>
 <filter-name>CachePage1CachingFilter</filter-name>
 <url-pattern>/CachedPage.jsp</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>SimplePageFragmentCachingFilter</filter-name>
 <url-pattern>/include/Footer.jsp</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>SimplePageFragmentCachingFilter</filter-name>
 <url-pattern>/fragment/CachedFragment.jsp</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>SimpleCachingHeadersPageCachingFilter</filter-name>
 <url-pattern>/CachedPage2.jsp</url-pattern>
 </filter-mapping>

An ehcache.xml configuration file, matching the above would then be:

<Ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../../main/config/ehcache.xsd">
 <diskStore path="java.io.tmpdir"/>
 <defaultCache
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="5"
 timeToLiveSeconds="10"
 overflowToDisk="true"
 />
 <!-- Page and Page Fragment Caches -->
 <cache name="CachePage1CachingFilter"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="10000"
 timeToLiveSeconds="10000"
 overflowToDisk="true">
 </cache>
 <cache name="CachedPage2Cache"
 maxElementsInMemory="10"
 eternal="false"
 timeToLiveSeconds="3600"
 overflowToDisk="true">
 </cache>
 <cache name="SimplePageFragmentCachingFilter"
 maxElementsInMemory="10"
 eternal="false"

1 8 W e b C a c h i n g 87

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 timeToIdleSeconds="10000"
 timeToLiveSeconds="10000"
 overflowToDisk="true">
 </cache>
 <cache name="SimpleCachingHeadersTimeoutPageCachingFilter"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="10000"
 timeToLiveSeconds="10000"
 overflowToDisk="true">
 </cache>
</ehcache>

18.1.11 CachingFilter Exceptions

Additional exception types have been added to the Caching Filter.

18.1.11.1 FilterNonReentrantException

Thrown when it is detected that a caching filter's doFilter method is reentered by the same thread.
Reentrant calls will block indefinitely because the first request has not yet unblocked the cache.
Nasty.

18.1.11.2 AlreadyGzippedException

The web package performs gzipping operations. One cause of problems on web browsers is getting
content that is double or triple gzipped. They will either get gobblydeegook or a blank page. This
exception is thrown when a gzip is attempted on already gzipped content.

18.1.11.3 ResponseHeadersNotModifiableException

A gzip encoding header needs to be added for gzipped content. The HttpServletResponse#setHeader()
method is used for that purpose. If the header had already been set, the new value normally overwrites
the previous one. In some cases according to the servlet specification, setHeader silently fails. Two
scenarios where this happens are:

• The response is committed.
• RequestDispatcher#include method caused the request.

1 9 U s i n g C o l d F u s i o n w i t h E h c a c h e 88

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

19 Using ColdFusion with Ehcache
...

19.1 Using Ehcache with ColdFusion

19.1.1 Which version of Ehcache comes with which version of ColdFusion?

ColdFusion now ships with Ehcache. Here are the versions shipped:
• ColdFusion 9.0.1 includes Ehcache 2.0 out-of-the-box
• ColdFusion 9 includes Ehcache 1.6 out-of-the-box
• ColdFusion 8 caching was not built on Ehcache, but Ehcache can easily be integrated with a CF8

application (see below).

19.1.2 Which version of Ehcache should I use if I want a distributed cache?

Ehcache is designed so that applications written to use it can easily scale out. A standalone cache (the
default in ColdFusion 9) can easily be distributed. A distributed cache solves database bottleneck
problems, cache drift (where the data cached in individual application server nodes becomes out of
sync), and also (when using the recommended 2-tier Terracotta distributed cache) provides the ability
to have a highly available, coherent in-memory cache that is far larger than can fit in any single JVM
heap. See http://ehcache.org/documentation/distributed_caching.html for details.

Note: Ehcache 1.7 and higher support the Terracotta distributed cache out of the box. Due to
Ehcache's API backward compatibility, it is easy to swap out older versions of ehcache with newer
ones to leverage the features of new releases.

19.1.3 Using Ehcache with ColdFusion 9 and 9.0.1

The ColdFusion community has actively engaged with Ehcache and have put out lots of great blogs.
Here are three to get you started.

For a short introduction - check out Raymond Camden's blog: http://www.coldfusionjedi.com/
index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements

For more in-depth analysis read Rob Brooks-Bilson's awesome 9 part Blog Series: http://
www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--
Part-1-Why-Cache

14 days of ColdFusion caching, by Aaron West, covering a different topic each day: http://
www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-
a-Full-Page

19.1.4 Switching from a local cache to a distributed cache with ColdFusion 9.0.1

1. http://www.terracotta.org/dl. Click the link to the open-source kit if you are using open source and
get terracotta-<version>-installer.jar.

Install the kit with 'java -jar terracotta-<version>-installer.jar'. We will refer to the directory you
installed it into as TCHOME. Similarly, we will refer to the location of ColdFusion as CFHOME.
These instructions assume you are working with a standalone server install of ColdFusion; if working
with a EAR/WAR install you will need to modify the steps accordingly (file locations may vary and
additional steps may be needed to rebuild the EAR/WAR).

Before integrating the distributed cache with ColdFusion, you may want to follow the simple self-
contained tutorial which uses one of the samples in the kit to demonstrate distributed caching: http://
www.terracotta.org/start/distributed-cache-tutorial

http://ehcache.org/documentation/distributed_caching.html
http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements
http://www.coldfusionjedi.com/index.cfm/2009/7/18/ColdFusion-9-and-Caching-Enhancements
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.brooks-bilson.com/blogs/rob/index.cfm/2009/7/21/Caching-Enhancements-in-ColdFusion-9--Part-1-Why-Cache
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.aaronwest.net/blog/index.cfm/2009/11/17/14-Days-of-ColdFusion-9-Caching-Day-1--Caching-a-Full-Page
http://www.terracotta.org/start/distributed-cache-tutorial
http://www.terracotta.org/start/distributed-cache-tutorial

1 9 U s i n g C o l d F u s i o n w i t h E h c a c h e 89

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

2. Copy TCHOME/ehcache/lib/ehcache-terracotta-<version>.jar into CFHOME/lib

3. Edit the CFHOME/lib/ehcache.xml to add the necessary two lines of config to turn on distributed
caching

 <terracottaConfig url="localhost:9510"/>
 <defaultCache
 ...
 >
 <terracotta clustered="true" />
 </defaultCache>

4. Edit jvm.config (typically in CFHOME/runtime/bin) properties to ensure that coldfusion.classPath
(set with -Dcoldfusion.classPath= in java.args) DOES NOT include any relative paths (ie ../) -
ie replace the relative paths with full paths (This is to work around a known issue in ehcache-
terracotta-2.0.0.jar).

5. Start the Terracotta server in a *NIX shell or Microsoft Windows:

 $TCHOME/bin/start-tc-server.sh
 start-tc-server.bat

Note: In production, you would run your servers on a set of separate machines for fault tolerance and
performance.

6. Start ColdFusion, access your application, and see the distributed cache in action.

7. This is just the tip of the iceberg & you'll probably have lots of questions. Drop us an email to
info@terracottatech.com to let us know how you got on, and if you have questions you'd like answers
to.

19.1.5 Using Ehcache with ColdFusion 8

To integrate Ehcache with ColdFusion 8, first add the ehcache-core jar (and its dependent jars) to your
web application lib directory.

The following code demonstrates how to call Ehcache from ColdFusion 8. It will cache a CF object
in Ehcache and the set expiration time to 30 seconds. If you refresh the page many times within 30
seconds, you will see the data from cache. After 30 seconds, you will see a cache miss, then the code
will generate a new object and put in cache again.

<CFOBJECT type="JAVA" class="net.sf.ehcache.CacheManager" name="cacheManager">
<cfset cache=cacheManager.getInstance().getCache("MyBookCache")>
<cfset myBookElement=#cache.get("myBook")#>
<cfif IsDefined("myBookElement")>
 <cfoutput>
 myBookElement: #myBookElement#

 </cfoutput>
 <cfif IsStruct(myBookElement.getObjectValue())>
 Cache Hit<p/>
 <!-- Found the object from cache -->
 <cfset myBook = #myBookElement.getObjectValue()#>
 </cfif>
</cfif>
<cfif IsDefined("myBook")>
<cfelse>
Cache Miss
 <!-- object not found in cache, go ahead create it -->
 <cfset myBook = StructNew()>

1 9 U s i n g C o l d F u s i o n w i t h E h c a c h e 90

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <cfset a = StructInsert(myBook, "cacheTime", LSTimeFormat(Now(), 'hh:mm:sstt'), 1)>
 <cfset a = StructInsert(myBook, "title", "EhCache Book", 1)>
 <cfset a = StructInsert(myBook, "author", "Greg Luck", 1)>
 <cfset a = StructInsert(myBook, "ISBN", "ABCD123456", 1)>
 <CFOBJECT type="JAVA" class="net.sf.ehcache.Element" name="myBookElement">
 <cfset myBookElement.init("myBook", myBook)>
 <cfset cache.put(myBookElement)>
</cfif>
<cfoutput>
 Cache time: #myBook["cacheTime"]#

 Title: #myBook["title"]#

 Author: #myBook["author"]#

 ISBN: #myBook["ISBN"]#
</cfoutput>

2 0 C a c h e T o p o l o g i e s 91

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

20 Cache Topologies
...

20.1 Distributed and Replicated Caching
Many production applications are deployed in clusters of multiple instances for availability and
scalability. However, without a distributed or replicated cache, application clusters exhibit a number
of undesirable behaviors, such as:

• Cache Drift--if each application instance maintains its own cache, updates made to one cache
will not appear in the other instances. This also happens to web session data. A distributed or
replicated cache ensures that all of the cache instances are kept in sync with each other.

• Database Bottlenecks--In a single-instance application, a cache effectively shields a database
from the overhead of redundant queries. However, in a distributed application environment,
each instance much load and keep its own cache fresh. The overhead of loading and refreshing
multiple caches leads to database bottlenecks as more application instances are added. A
distributed or replicated cache eliminates the per-instance overhead of loading and refreshing
multiple caches from a database.

20.1.1 Distributed Caching

Ehcache comes bundled with a distributed caching mechanism using Terracotta that enables multiple
CacheManagers and their caches in multiple JVMs to share data with each other. Adding distributed
caching to Ehcache takes only two lines of configuration.

Using Terracotta for Ehcache distributed caching is the recommended method of operating Ehcache
in a distributed or scaled-out application environment. It provides the highest level of performance,
availability, and scalability. As the maintainers of Ehcache, the Terracotta development team has
invested million of hours developing Ehcache and its distributed cache capabilities.

To get started, see the Distributed Caching With Terracotta chapter.

20.1.2 Replicated Caching

In addition to the built-in distributed caching, Ehcache has a pluggable cache replication scheme
which enables the addition of cache replication mechanisms.

The following additional replicated caching mechanisms are available:

• RMI
• JGroups
• JMS
• Cache Server

Each of the is covered in its own chapter.

One solution is to replicate data between the caches to keep them consistent, or coherent. Typical
operations which Applicable operations include:

• put
• update (put which overwrites an existing entry)
• remove

Update supports updateViaCopy or updateViaInvalidate. The latter sends the a remove message out to
the cache cluster, so that other caches remove the Element, thus preserving coherency. It is typically a
lower cost option than a copy.

2 0 C a c h e T o p o l o g i e s 92

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

20.1.2.1 Using a Cache Server

Ehcache 1.5 supports the Ehcache Cache Server.

To achieve shared data, all JVMs read to and write from a Cache Server, which runs it in its own
JVM.

To achieve redundancy, the Ehcache inside the Cache Server can be set up in its own cluster.

This technique will be expanded upon in Ehcache 1.6.

20.1.2.2 Notification Strategies

The best way of notifying of put and update depends on the nature of the cache.

If the Element is not available anywhere else then the Element itself should form the payload of the
notification. An example is a cached web page. This notification strategy is called copy.

Where the cached data is available in a database, there are two choices. Copy as before, or invalidate
the data. By invalidating the data, the application tied to the other cache instance will be forced to
refresh its cache from the database, preserving cache coherency. Only the Element key needs to be
passed over the network.

Ehcache supports notification through copy and invalidate, selectable per cache.

20.1.2.3 Potential Issues with Replicated Caching

20.Potential for Inconsistent Data

Timing scenarios, race conditions, delivery, reliability constraints and concurrent updates to the same
cached data can cause inconsistency (and thus a lack of coherency) across the cache instances.

This potential exists within the Ehcache implementation. These issues are the same as what is seen
when two completely separate systems are sharing a database; a common scenario.

Whether data inconsistency is a problem depends on the data and how it is used. For those times when
it is important, Ehcache provides for synchronous delivery of puts and updates via invalidation. These
are discussed below:

20.Synchronous Delivery

Delivery can be specified to be synchronous or asynchronous. Asynchronous delivery gives faster
returns to operations on the local cache and is usually preferred. Synchronous delivery adds time to
the local operation, however delivery of an update to all peers in the cluster happens before the cache
operation returns.

20.Put and Update via Invalidation

The default is to update other caches by copying the new value to them. If the replicatePutsViaCopy
property is set to false in the replication configuration, puts are made by removing the element in
any other cache peers. If the replicateUpdatesViaCopy property is set to false in the replication
configuration, updates are made by removing the element in any other cache peers.

This forces the applications using the cache peers to return to a canonical source for the data.

A similar effect can be obtained by setting the element TTL to a low value such as a second.

Note that these features impact cache performance and should not be used where the main purpose of
a cache is performance boosting over coherency.

2 0 C a c h e T o p o l o g i e s 93

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

20.Use of Time To Idle

Time To Idle is inconsistent with replicated caching. Time-to-idle makes some entries live longer on
some nodes than in others because of cache usage patterns. However, the cache entry "last touched"
timestamp is not replicated across the distributed cache.

Do not use Time To Idle with distributed caching, unless you do not care about inconsistent data
across nodes.

2 1 R e p l i c a t e d C a c h i n g W i t h R M I 94

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

21 Replicated Caching With RMI
...

21.1 RMI Replicated Caching

Since version 1.2, Ehcache has provided replicated caching using RMI.

An RMI implementation is desirable because:

• it itself is the default remoting mechanism in Java
• it is mature
• it allows tuning of TCP socket options
• Element keys and values for disk storage must already be Serializable, therefore directly

transmittable over RMI without the need for conversion to a third format such as XML.
• it can be configured to pass through firewalls
• RMI had improvements added to it with each release of Java, which can then be taken advantage

of.
While RMI is a point-to-point protocol, which can generate a lot of network traffic, Ehcache manages
this through batching of communications for the asynchronous replicator.

To set up RMI replicated caching you need to configure the CacheManager with:

• a PeerProvider
• a CacheManagerPeerListener

The for each cache that will be replicated, you then need to add one of the RMI
cacheEventListener types to propagate messages.

You can also optionally configure a cache to bootstrap from other caches in the cluster.

2 1 R e p l i c a t e d C a c h i n g W i t h R M I 95

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

21.1.1 Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element itself. In this
case the operation will be replicated provided the key is Serializable, even if the Element is not.

21.1.2 Configuring the Peer Provider

21.1.2.1 Peer Discovery

Ehcache has the notion of a group of caches acting as a replicated cache. Each of the caches is a peer
to the others. There is no master cache. How do you know about the other caches that are in your
cluster? This problem can be given the name Peer Discovery.

Ehcache provides two mechanisms for peer discovery, just like a car: manual and automatic.

To use one of the built-in peer discovery mechanisms specify the
class attribute of cacheManagerPeerProviderFactory as
net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory in the
ehcache.xml configuration file.

21.1.2.2 Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish and maintain a multicast group. It features
minimal configuration and automatic addition to and deletion of members from the group. No a priori
knowledge of the servers in the cluster is required. This is recommended as the default option.

Peers send heartbeats to the group once per second. If a peer has not been heard of for 5 seconds it is
dropped from the group. If a new peer starts sending heartbeats it is admitted to the group.

Any cache within the configuration set up as replicated will be made available for discovery by other
peers.

To set automatic peer discovery, specify the properties attribute of
cacheManagerPeerProviderFactory as follows:

peerDiscovery=automatic multicastGroupAddress=multicast address | multicast host name
multicastGroupPort=port timeToLive=0-255 (See below in common problems before setting this)
hostName= the hostname or IP of the interface to be used for sending and receiving multicast packets
(relevant to mulithomed hosts only)

21.Example

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and
sampleCache12. The configuration required for each server is identical:

Configuration for server1 and server2

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
 properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
 multicastGroupPort=4446, timeToLive=32"/>

21.1.2.3 Manual Peer Discovery

Manual peer configuration requires the IP address and port of each listener to be known. Peers cannot
be added or removed at runtime. Manual peer discovery is recommended where there are technical
difficulties using multicast, such as a router between servers in a cluster that does not propagate

2 1 R e p l i c a t e d C a c h i n g W i t h R M I 96

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

multicast datagrams. You can also use it to set up one way replications of data, by having server2
know about server1 but not vice versa.

To set manual peer discovery, specify the properties attribute of
cacheManagerPeerProviderFactory as follows: peerDiscovery=manual rmiUrls=//server:port/
cacheName, ...

The rmiUrls is a list of the cache peers of the server being configured. Do not include the server being
configured in the list.

21.Example

Suppose you have two servers in a cluster. You wish to distribute sampleCache11 and
sampleCache12. Following is the configuration required for each server:

Configuration for server1

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
 properties="peerDiscovery=manual,
 rmiUrls=//server2:40001/sampleCache11|//server2:40001/sampleCache12"/>

Configuration for server2

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
 properties="peerDiscovery=manual,
 rmiUrls=//server1:40001/sampleCache11|//server1:40001/sampleCache12"/>

21.1.3 Configuring the CacheManagerPeerListener

A CacheManagerPeerListener listens for messages from peers to the current CacheManager.

You configure the CacheManagerPeerListener by specifiying a CacheManagerPeerListenerFactory
which is used to create the CacheManagerPeerListener using the plugin mechanism.

The attributes of cacheManagerPeerListenerFactory are:

• class - a fully qualified factory class name * properties - comma separated properties having
meaning only to the factory.
Ehcache comes with a built-in RMI-based distribution system. The listener
component is RMICacheManagerPeerListener which is configured using
RMICacheManagerPeerListenerFactory. It is configured as per the following example:

<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"
properties="hostName=localhost, port=40001,
socketTimeoutMillis=2000"/>

Valid properties are:
• hostName (optional) - the hostName of the host the listener is running on. Specify where the host

is multihomed and you want to control the interface over which cluster messages are received.
The hostname is checked for reachability during CacheManager initialisation.

If the hostName is unreachable, the CacheManager will refuse to start and an CacheException
will be thrown indicating connection was refused.

If unspecified, the hostname will use InetAddress.getLocalHost().getHostAddress(),
which corresponds to the default host network interface.

2 1 R e p l i c a t e d C a c h i n g W i t h R M I 97

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Warning: Explicitly setting this to localhost refers to the local loopback of 127.0.0.1, which is
not network visible and will cause no replications to be received from remote hosts. You should
only use this setting when multiple CacheManagers are on the same machine.

• port (mandatory) - the port the listener listens on.
• socketTimeoutMillis (optional) - the number of seconds client sockets will wait when sending

messages to this listener until they give up. By default this is 2000ms.

21.1.4 Configuring Cache Replicators

Each cache that will be replicated needs to set a cache event listener which then replicates messages to
the other CacheManager peers. This is done by adding a cacheEventListenerFactory element to each
cache's configuration.

<!-- Sample cache named sampleCache2. -->
<cache name="sampleCache2"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="100"
 timeToLiveSeconds="100"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true, replicateUpdates=true,
 replicateUpdatesViaCopy=false, replicateRemovals=true "/>
</cache>

class - use net.sf.ehcache.distribution.RMICacheReplicatorFactory

The factory recognises the following properties:

• replicatePuts=true | false - whether new elements placed in a cache are replicated to others.
Defaults to true.

• replicateUpdates=true | false - whether new elements which override an element already existing
with the same key are replicated. Defaults to true.

• replicateRemovals=true - whether element removals are replicated. Defaults to true.
• replicateAsynchronously=true | false - whether replications are asyncrhonous (true) or

synchronous (false). Defaults to true.
• replicateUpdatesViaCopy=true | false - whether the new elements are copied to other caches

(true), or whether a remove message is sent. Defaults to true.
To reduce typing if you want default behaviour, which is replicate everything in asynchronous mode,
you can leave off the RMICacheReplicatorFactory properties as per the following example:

 <!-- Sample cache named sampleCache4. All missing RMICacheReplicatorFactory properties
 default to true -->
 <cache name="sampleCache4"
 maxElementsInMemory="10"
 eternal="true"
 overflowToDisk="false"
 memoryStoreEvictionPolicy="LFU">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
 </cache>

2 1 R e p l i c a t e d C a c h i n g W i t h R M I 98

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

21.1.5 Configuring Bootstrap from a Cache Peer

When a peer comes up, it will be incoherent with other caches. When the bootstrap completes it will
be partially coherent. Bootstrap gets the list of keys from a random peer, and then loads those in
batches from random peers. If bootstrap fails then the Cache will not start (not like this right now).
However if a cache replication operation occurs which is then overwritten by bootstrap there is a
chance that the cache could be inconsistent.

Here are some scenarios:

Delete overwritten by boostrap put --- Cache A keys with values: 1, 2, 3, 4, 5

Cache B starts bootstrap

Cache A removes key 2

Cache B removes key 2 and then bootstrap puts it back

Put overwritten by boostrap put --- Cache A keys with values: 1, 2, 3, 4, 5

Cache B starts bootstrap

Cache A updates the value of key 2

Cache B updates the value of key 2 and then bootstrap overwrites it with the old value

The solution is for bootstrap to get a list of keys and write them all before committing transactions.

This could cause synchronous transaction replicates to back up. To solve this problem, commits will
be accepted, but not written to the cache until after bootstrap. Coherency is maintained because the
cache is not available until bootstrap has completed and the transactions have been completed.

21.1.6 Full Example

Ehcache's own integration tests provide complete examples of RMI-based replication. The best
example is the integration test for cache replication. You can see it online here: http://ehcache.org/
xref-test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html

The test uses 5 ehcache.xml's representing 5 CacheManagers set up to replicate using RMI.

21.1.7 Common Problems

21.1.7.1 Tomcat on Windows

There is a bug in Tomcat and/or the JDK where any RMI listener will fail to start on Tomcat if the
installation path has spaces in it. See http://archives.java.sun.com/cgi-bin/wa?A2=ind0205&L=rmi-
users&P=797 and http://www.ontotext.com/kim/doc/sys-doc/faq-howto-bugs/known-bugs.html.

As the default on Windows is to install Tomcat in "Program Files", this issue will occur by default.

21.1.7.2 Multicast Blocking

The automatic peer discovery process relies on multicast. Multicast can be blocked by routers.
Virtualisation technologies like Xen and VMWare may be blocking multicast. If so enable it. You
may also need to turn it on in the configuration for your network interface card.

An easy way to tell if your multicast is getting through is to use the Ehcache remote debugger and
watch for the heartbeat packets to arrive.

http://ehcache.org/xref-test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html
http://ehcache.org/xref-test/net/sf/ehcache/distribution/RMICacheReplicatorTest.html

2 1 R e p l i c a t e d C a c h i n g W i t h R M I 99

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

21.1.7.3 Multicast Not Propagating Far Enough or Propagating Too Far

You can control how far the multicast packets propagate by setting the badly misnamed time to live.
Using the multicast IP protocol, the timeToLive value indicates the scope or range in which a packet
may be forwarded. By convention:

 0 is restricted to the same host
 1 is restricted to the same subnet
 32 is restricted to the same site
 64 is restricted to the same region
 128 is restricted to the same continent
 255 is unrestricted

The default value in Java is 1, which propagates to the same subnet. Change the timeToLive property
to restrict or expand propagation.

2 2 R e p l i c a t e d C a c h i n g W i t h J G r o u p s 100

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

22 Replicated Caching With JGroups
...

22.1 Replicated Caching using JGroups
JGroups can be used as the underlying mechanism for the replication operations in ehcache. JGroups
offers a very flexible protocol stack, reliable unicast and multicast message transmission. On the
down side JGroups can be complex to configure and some protocol stacks have dependencies on
others.

To set up replicated caching using JGroups you need to configure a PeerProviderFactory of type
JGroupsCacheManagerPeerProviderFactory which is done globally for a CacheManager For
each cache that will be replicated, you then need to add a cacheEventListenerFactory of type
JGroupsCacheReplicatorFactory to propagate messages.

22.1.1 Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element itself. In this
case the operation will be replicated provided the key is Serializable, even if the Element is not.

22.1.2 Peer Discovery

If you use the UDP multicast stack there is no additional configuration. If you use a TCP stack you
will need to specify the initial hosts in the cluster.

22.1.3 Configuration

There are two things to configure:

• The JGroupsCacheManagerPeerProviderFactory which is done once per CacheManager and
therefore once per ehcache.xml file.

• The JGroupsCacheReplicatorFactory which is added to each cache's configuration.
The main configuration happens in the JGroupsCacheManagerPeerProviderFactory connect
sub-property. A connect property is passed directly to the JGroups channel and therefore all the
protocol stacks and options available in JGroups can be set.

22.1.4 Example configuration using UDP Multicast

Suppose you have two servers in a cluster. You wish to replicated sampleCache11 and
sampleCache12 and you wish to use UDP multicast as the underlying mechanism.

The configuration for server1 and server2 are identical and will look like this:

<cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
 properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;):PING:
 MERGE2:FD_SOCK:VERIFY_SUSPECT:pbcast.NAKACK:UNICAST:pbcast.STABLE:FRAG:pbcast.GMS"
 propertySeparator="::"
 />

22.1.5 Example configuration using TCP Unicast

The TCP protocol requires the IP address of all servers to be known. They are configured through the
TCPPING protocol of Jgroups.

2 2 R e p l i c a t e d C a c h i n g W i t h J G r o u p s 101

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Suppose you have 2 servers host1 and host2, then the configuration is:

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
 properties="connect=TCP(start_port=7800):
 TCPPING(initial_hosts=host1[7800],host2[7800];port_range=10;timeout=3000;
 num_initial_members=3;up_thread=true;down_thread=true):
 VERIFY_SUSPECT(timeout=1500;down_thread=false;up_thread=false):
 pbcast.NAKACK(down_thread=true;up_thread=true;gc_lag=100;retransmit_timeout=3000):
 pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;shun=false;
 print_local_addr=false;down_thread=true;up_thread=true)"
 propertySeparator="::" />

22.1.6 Protocol considerations.

You should read the JGroups documentation to configure the protocols correctly.

See http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html.

If using UDP you should at least configure PING, FD_SOCK (Failure detection),
VERIFY_SUSPECT, pbcast.NAKACK (Message reliability), pbcast.STABLE (message garbage
collection).

22.1.7 Configuring CacheReplicators

Each cache that will be replicated needs to set a cache event listener which then replicates messages to
the other CacheManager peers. This is done by adding a cacheEventListenerFactory element to each
cache's configuration. The properties are identical to the one used for RMI replication.

The listener factory MUST be of type JGroupsCacheReplicatorFactory.

<!-- Sample cache named sampleCache2. -->
<cache name="sampleCache2"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="100"
 timeToLiveSeconds="100"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
 replicateUpdates=true, replicateUpdatesViaCopy=false, replicateRemovals=true" /
>
</cache>

The configuration options are explained below:

class - use net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory

The factory recognises the following properties:

• replicatePuts=true | false - whether new elements placed in a cache are replicated to others.
Defaults to true.

• replicateUpdates=true | false - whether new elements which override an element already existing
with the same key are replicated. Defaults to true.

• replicateRemovals=true - whether element removals are replicated. Defaults to true.
• replicateAsynchronously=true | false - whether replications are asyncrhonous (true) or

synchronous (false). Defaults to true.

http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html

2 2 R e p l i c a t e d C a c h i n g W i t h J G r o u p s 102

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• replicateUpdatesViaCopy=true | false - whether the new elements are copied to other caches
(true), or whether a remove message is sent. Defaults to true.

• asynchronousReplicationIntervalMillis default 1000ms Time between updates when replication
is asynchroneous

22.1.8 Complete Sample configuration

A typical complete configuration for one replicated cache configured for UDP will look like:

<Ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../../../main/config/ehcache.xsd">
<diskStore path="java.io.tmpdir/one"/>
<cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution.jgroups
 .JGroupsCacheManagerPeerProviderFactory"
 properties="connect=UDP(mcast_addr=231.12.21.132;mcast_port=45566;ip_ttl=32;
 mcast_send_buf_size=150000;mcast_recv_buf_size=80000):
 PING(timeout=2000;num_initial_members=6):
 MERGE2(min_interval=5000;max_interval=10000):
 FD_SOCK:VERIFY_SUSPECT(timeout=1500):
 pbcast.NAKACK(gc_lag=10;retransmit_timeout=3000):
 UNICAST(timeout=5000):
 pbcast.STABLE(desired_avg_gossip=20000):
 FRAG:
 pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;
 shun=false;print_local_addr=true)"
 propertySeparator="::"
 />
<cache name="sampleCacheAsync"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="1000"
 timeToLiveSeconds="1000"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />
</cache>
</ehcache>

22.1.9 Common Problems

If replication using JGroups doesn't work the way you have it configured try this configuration which
has been extensively tested:

<cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"/
>
<cache name="sampleCacheAsync"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="1000"
 timeToLiveSeconds="1000"

2 2 R e p l i c a t e d C a c h i n g W i t h J G r o u p s 103

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
 properties="replicateAsynchronously=true, replicatePuts=true,
 replicateUpdates=true, replicateUpdatesViaCopy=false,
 replicateRemovals=true" />
</cache>

If this fails to replicate, try to get the example programs from JGroups to run:

http://www.jgroups.org/javagroupsnew/docs/manual/html/ch02.html#d0e451

and

http://www.jgroups.org/javagroupsnew/docs/manual/html/ch02.html#ItDoesntWork

Once you have figured out the connection string that works in your network for JGroups, you can
directly paste it in the connect property of JGroupsCacheManagerPeerProviderFactory.

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 104

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

23 Replicated Caching With JMS
...

23.1 Replicated Caching using JMS
As of version 1.6, JMS can be used as the underlying mechanism for the replicated operations in
Ehcache with the jmsreplication module.

JMS, ("Java Message Service") is an industry standard mechanism for interacting with message
queues. Message queues themselves are a very mature piece of infrastructure used in many enterprise
software contexts. Because they are a required part of the Java EE specification, the large enterprise
vendors all provide their own implementations. There are also several open source choices including
Open MQ and Active MQ. Ehcache is integration tested against both of these.

The Ehcache jmsreplication module lets organisations with a message queue investment leverage it
for caching.

It provides:

• replication between cache nodes using a replication topic, in accordance with ehcache's standard
replication mechanism

• pushing of data directly to cache nodes from external topic publishers, in any language. This is
done by sending the data to the replication topic, where it automatically picked up by the cache
subscribers.

• a JMSCacheLoader, which sends cache load requests to a queue. Either an Ehcache cluster node,
or an external queue receiver can respond.

23.1.1 Ehcache Replication and External Publishers

Ehcache replicates using JMS as follows:

• Each cache node subscribes to a predefined topic, configured as the topicBindingName in
ehcache.xml.

• Each replicated cache publishes cache Elements to that topic. Replication is configured per
cache.
To set up replicated caching using JMS you need to configure a
JMSCacheManagerPeerProviderFactory which is done globally for a CacheManager.

For each cache that wishing to replicate, you add a JGroupsCacheReplicatorFactory element to
the cache element.

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 105

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

23.1.1.1 Configuration

23.Message Queue Configuration

Each cluster needs to use a fixed topic name for replication. Set up a topic using the tools in your
message queue. Out of the box, both ActiveMQ and Open MQ support auto creation of destinations,
so this step may be optional.

23.Ehcache Configuration

Configuration is done in the ehcache.xml.

There are two things to configure:

• The JMSCacheManagerPeerProviderFactory which is done once per CacheManager and
therefore once per ehcache.xml file.

• The JMSCacheReplicatorFactory which is added to each cache's configuration if you want that
cache replicated.

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 106

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The main configuration happens in the JGroupsCacheManagerPeerProviderFactory connect
sub-property. A connect property is passed directly to the JGroups channel and therefore all the
protocol stacks and options available in JGroups can be set.

23.Configuring the JMSCacheManagerPeerProviderFactory

Following is the configuration instructions as it appears in the sample ehcache.xml shipped with
ehcache:

{Configuring JMS replication}.
===========================
<cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="..."
 propertySeparator=","
 />
The JMS PeerProviderFactory uses JNDI to maintain message queue independence.
Refer to the manual for full configuration examples using ActiveMQ and Open Message Queue.
Valid properties are:
* initialContextFactoryName (mandatory) - the name of the factory used to create the
 message queue initial context.
* providerURL (mandatory) - the JNDI configuration information for the service provider to
use.
* topicConnectionFactoryBindingName (mandatory) - the JNDI binding name for the
 TopicConnectionFactory
* topicBindingName (mandatory) - the JNDI binding name for the topic name
* securityPrincipalName - the JNDI java.naming.security.principal
* securityCredentials - the JNDI java.naming.security.credentials
* urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs
* userName - the user name to use when creating the TopicConnection to the Message Queue
* password - the password to use when creating the TopicConnection to the Message Queue
* acknowledgementMode - the JMS Acknowledgement mode for both publisher and subscriber.
 The available choices are
 AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE and SESSION_TRANSACTED.
 The default is AUTO_ACKNOWLEDGE.
* listenToTopic - true or false. If false, this cache will send to the JMS topic but will
 not listen for updates.
* Default is true.
23.Example Configurations

Usage is best illustrated with concrete examples for Active MQ and Open MQ.

23.Configuring the JMSCacheManagerPeerProviderFactory for Active MQ

This configuration works with Active MQ out of the box.

<cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,
 providerURL=tcp://localhost:61616,
 topicConnectionFactoryBindingName=topicConnectionFactory,
 topicBindingName=ehcache"
 propertySeparator=","
 />

You need to provide your own ActiveMQInitialContextFactory for the initialContextFactoryName.

An example which should work for most purposes is:

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 107

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

public class ExampleActiveMQInitialContextFactory extends ActiveMQInitialContextFactory {
/**
 * {@inheritDoc}
 */
@Override
@SuppressWarnings("unchecked")
public Context getInitialContext(Hashtable environment) throws NamingException {
 Map<String, Object> data = new ConcurrentHashMap<String, Object>();
 String factoryBindingName = (String)environment.get(JMSCacheManagerPeerProviderFactory
 .TOPIC_CONNECTION_FACTORY_BINDING_NAME);
 try {
 data.put(factoryBindingName, createConnectionFactory(environment));
 } catch (URISyntaxException e) {
 throw new NamingException("Error initialisating ConnectionFactory with message "
 + e.getMessage());
 }
 String topicBindingName = (String)environment.get(JMSCacheManagerPeerProviderFactory
 .TOPIC_BINDING_NAME);
 data.put(topicBindingName, createTopic(topicBindingName));
 return createContext(environment, data);
}
}
23.Configuring the JMSCacheManagerPeerProviderFactory for Open MQ

This configuration works with an out of the box Open MQ.

<cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
 properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,
 providerURL=file:///tmp,
 topicConnectionFactoryBindingName=MyConnectionFactory,
 topicBindingName=ehcache"
 propertySeparator=","
 />

To set up the Open MQ file system initial context to work with this example use the following
imqobjmgr commands to create the requires objects in the context.

imqobjmgr add -t tf -l 'MyConnectionFactory' -j java.naming.provider.url \
=file:///tmp -
j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -f
imqobjmgr add -t t -l 'ehcache' -o 'imqDestinationName=EhcacheTopicDest'
-j java.naming.provider.url\
=file:///tmp -
j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -f
23.Configuring the JMSCacheReplicatorFactory

This is the same as configuring any of the cache replicators. The class should be
net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory.

See the following example:

<cache name="sampleCacheAsync"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="1000"
 timeToLiveSeconds="1000"
 overflowToDisk="false">

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 108

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
 properties="replicateAsynchronously=true,
 replicatePuts=true,
 replicateUpdates=true,
 replicateUpdatesViaCopy=true,
 replicateRemovals=true,
 asynchronousReplicationIntervalMillis=1000"
 propertySeparator=","/>
</cache>

23.1.1.2 External JMS Publishers

Anything that can publish to a message queue can also add cache entries to ehcache. These are called
non-cache publishers.

23.Required Message Properties

Publishers need to set up to four String properties on each message: cacheName, action, mimeType
and key.

23. cacheName Property

A JMS message property which contains the name of the cache to operate on.

If no cacheName is set the message will be ignored. A warning log message will indicate that the
message has been ignored.

23. action Property

A JMS message property which contains the action to perform on the cache.

Available actions are strings labeled PUT, REMOVE and REMOVE_ALL.

If not set no action is performed. A warning log message will indicate that the message has been
ignored.

23. mimeType Property

A JMS message property which contains the mimeType of the message. Applies to the PUT action. If
not set the message is interpreted as follows:

ObjectMessage - if it is an net.sf.ehcache.Element, then it is treated as such and stored in the cache.

For other objects, a new Element is created using the object in the ObjectMessage as the value and the
key property as a key. Because objects are already typed, the mimeType is ignored.

TextMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be
specified. If not specified it is stored as type text/plain.

BytesMessage - Stored in the cache as value of MimeTypeByteArray. The mimeType should be
specified. If not specified it is stored as type application/octet-stream.

Other message types are not supported.

To send XML use a TextMessage or BytesMessage and set the mimeType to application/xml.It
will be stored in the cache as a value of MimeTypeByteArray.

The REMOVE and REMOVE_ALL actions do not require a mimeType property.

23. key Property

The key in the cache on which to operate on. The key is of type String.

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 109

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The REMOVE_ALL action does not require a key property.

If an ObjectMessage of type net.sf.ehcache.Element is sent, the key is contained in the element. Any
key set as a property is ignored.

If the key is required but not provided, a warning log message will indicate that the message has been
ignored.

23. Code Samples

These samples use Open MQ as the message queue and use it with out of the box defaults. They are
heavily based on Ehcache's own JMS integration tests. See the test source for more details.

Messages should be sent to the topic that Ehcache is listening on. In these samples it is
EhcacheTopicDest.

All samples get a Topic Connection using the following method:

private TopicConnection getMQConnection() throws JMSException {
 com.sun.messaging.ConnectionFactory factory = new com.sun.messaging.ConnectionFactory();
 factory.setProperty(ConnectionConfiguration.imqAddressList, "localhost:7676");
 factory.setProperty(ConnectionConfiguration.imqReconnectEnabled, "true");
 TopicConnection myConnection = factory.createTopicConnection();
 return myConnection;
}

23.PUT a Java Object into an Ehcache JMS Cluster

String payload = "this is an object";
TopicConnection connection = getMQConnection();
connection.start();
TopicSession publisherSession =
 connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
ObjectMessage message = publisherSession.createObjectMessage(payload);
message.setStringProperty(ACTION_PROPERTY, "PUT");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
//don't set. Should work.
//message.setStringProperty(MIME_TYPE_PROPERTY, null);
//should work. Key should be ignored when sending an element.
message.setStringProperty(KEY_PROPERTY, "1234");
Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);
connection.stop();

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a Java class
String value of "this is an object".

23.PUT XML into an Ehcache JMS Cluster

TopicConnection connection = getMQConnection();
connection.start();
TopicSession publisherSession = connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
String value = "<?xml version=\"1.0\"?>\n" +
 "<oldjoke>\n" +
 "<burns>Say <quote>goodnight</quote>,\n" +
 "Gracie.</burns>\n" +
 "<allen><quote>Goodnight, \n" +
 "Gracie.</quote></allen>\n" +

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 110

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 "<applause/>\n" +
 "</oldjoke>";
TextMessage message = publisherSession.createTextMessage(value);
message.setStringProperty(ACTION_PROPERTY, "PUT");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty(MIME_TYPE_PROPERTY, "application/xml");
message.setStringProperty(KEY_PROPERTY, "1234");
Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);
connection.stop();

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a value of type
MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache value object from
which a mimeType and byte[] can be retrieved. The mimeType will be "application/xml". The byte[]
will contain the XML String encoded in bytes, using the platform's default charset.

23.PUT arbitrary bytes into an Ehcache JMS Cluster

byte[] bytes = new byte[]{0x34, (byte) 0xe3, (byte) 0x88};
TopicConnection connection = getMQConnection();
connection.start();
TopicSession publisherSession = connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
BytesMessage message = publisherSession.createBytesMessage();
message.writeBytes(bytes);
message.setStringProperty(ACTION_PROPERTY, "PUT");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty(MIME_TYPE_PROPERTY, "application/octet-stream");
message.setStringProperty(KEY_PROPERTY, "1234");
Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" in and a value of type
MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache value object from
which a mimeType and byte[] can be retrieved. The mimeType will be "application/octet-stream".
The byte[] will contain the original bytes.

23.REMOVE

TopicConnection connection = getMQConnection();
connection.start();
TopicSession publisherSession = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
ObjectMessage message = publisherSession.createObjectMessage();
message.setStringProperty(ACTION_PROPERTY, "REMOVE");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
message.setStringProperty(KEY_PROPERTY, "1234");
Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);

Ehcache will remove the Element with key "1234" from cache "sampleCacheAsync" from the cluster.

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 111

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

23.REMOVE_ALL

TopicConnection connection = getMQConnection();
connection.start();
TopicSession publisherSession = connection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
ObjectMessage message = publisherSession.createObjectMessage();
message.setStringProperty(ACTION_PROPERTY, "REMOVE_ALL");
message.setStringProperty(CACHE_NAME_PROPERTY, "sampleCacheAsync");
Topic topic = publisherSession.createTopic("EhcacheTopicDest");
TopicPublisher publisher = publisherSession.createPublisher(topic);
publisher.send(message);
connection.stop();

Ehcache will remove all Elements from cache "sampleCacheAsync" in the cluster.

23.1.2 Using the JMSCacheLoader

The JMSCacheLoader is a CacheLoader which loads objects into the cache by sending requests to a
JMS Queue.

The loader places an ObjectMessage of type JMSEventMessage on the getQueue with an Action of
type GET.

It is configured with the following String properties, loaderArgument.

The defaultLoaderArgument, or the loaderArgument if specified on the load request. To work with
the JMSCacheManagerPeerProvider this should be the name of the cache to load from. For custom
responders, it can be anything which has meaning to the responder.

A queue responder will respond to the request. You can either create your own or use the one built-
into the JMSCacheManagerPeerProviderFactory, which attempts to load the queue from its cache.

The JMSCacheLoader uses JNDI to maintain message queue independence. Refer to the manual for
full configuration examples using ActiveMQ and Open Message Queue.

It is configured as per the following example:

<cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"
 properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,
providerURL=file:///tmp,
replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=20000
defaultLoaderArgument=/>

Valid properties are:

• initialContextFactoryName (mandatory) - the name of the factory used to create the message
queue initial context.

• providerURL (mandatory) - the JNDI configuration information for the service provider to use.
• getQueueConnectionFactoryBindingName (mandatory) - the JNDI binding name for the

QueueConnectionFactory
• getQueueBindingName (mandatory) - the JNDI binding name for the queue name used to do

make requests.

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 112

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• defaultLoaderArgument - (optional) - an application specific argument. If not supplied as a
cache.load() parameter this default value will be used. The argument is passed in the JMS request
as a StringProperty called loaderArgument.

• timeoutMillis - time in milliseconds to wait for a reply.
• securityPrincipalName - the JNDI java.naming.security.principal
• securityCredentials - the JNDI java.naming.security.credentials
• urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs
• userName - the user name to use when creating the TopicConnection to the Message Queue
• password - the password to use when creating the TopicConnection to the Message Queue
• acknowledgementMode - the JMS Acknowledgement mode for both publisher and subscriber.

The available choices are AUTO_ACKNOWLEDGE, DUPS_OK_ACKNOWLEDGE and
SESSION_TRANSACTED. The default is AUTO_ACKNOWLEDGE.

23.1.2.1 Example Configuration Using Active MQ

<cache name="sampleCacheNorep"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="1000"
 timeToLiveSeconds="1000"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
 properties="replicateAsynchronously=false, replicatePuts=false,
 replicateUpdates=false, replicateUpdatesViaCopy=false,
 replicateRemovals=false, loaderArgument=sampleCacheNorep"
 propertySeparator=","/>
 <cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"
 properties="initialContextFactoryName=net.sf.ehcache.distribution.jms.
 TestActiveMQInitialContextFactory,
 providerURL=tcp://localhost:61616,
 replicationTopicConnectionFactoryBindingName=topicConnectionFactory,
 getQueueConnectionFactoryBindingName=queueConnectionFactory,
 replicationTopicBindingName=ehcache,
 getQueueBindingName=ehcacheGetQueue,
 timeoutMillis=10000"/>
</cache>

23.1.2.2 Example Configuration Using Open MQ

<cache name="sampleCacheNorep"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="100000"
 timeToLiveSeconds="100000"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
 properties="replicateAsynchronously=false, replicatePuts=false,
 replicateUpdates=false, replicateUpdatesViaCopy=false,
 replicateRemovals=false"
 propertySeparator=","/>
 <cacheLoaderFactory class="net.sf.ehcache.distribution.jms.JMSCacheLoaderFactory"

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 113

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,
 providerURL=file:///tmp,
 replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
 replicationTopicBindingName=ehcache,
 getQueueConnectionFactoryBindingName=queueConnectionFactory,
 getQueueBindingName=ehcacheGetQueue,
 timeoutMillis=10000,
 userName=test,
 password=test"/>
</cache>

23.1.3 Configuring Clients for Message Queue Reliability

Ehcache replication and cache loading is designed to gracefully degrade if the message queue
infrastructure stops. Replicates and loads will fail. But when the message queue comes back, these
operations will start up again.

For this to work, the ConnectionFactory used with the specific message queue needs to be configured
correctly.

For example, with Open MQ, reconnection is configured as follows:

• imqReconnect='true' - without this reconnect will not happen
• imqPingInterval='5' - Consumers will not reconnect until they notice the connection is down. The

ping interval
• does this. The default is 30. Set it lower if you want the Ehcache cluster to reform more quickly.
• Finally, unlimited retry attempts are recommended. This is also the default.

For greater reliability consider using a message queue cluster. Most message queues
support clustering. The cluster configuration is once again placed in the ConnectionFactory
configuration.

23.1.4 Tested Message Queues

23.1.4.1 Sun Open MQ

This open source message queue is tested in integration tests. It works perfectly.

23.1.4.2 Active MQ

This open source message queue is tested in integration tests. It works perfectly other than having a
problem with temporary reply queues which prevents the use of JMSCacheLoader. JMSCacheLoader
is not used during replication.

23.1.4.3 Oracle AQ

Versions up to an including 0.4 do not work, due to Oracle not supporting the unified API (send) for
topics.

23.1.4.4 JBoss Queue

Works as reported by a user.

2 3 R e p l i c a t e d C a c h i n g W i t h J M S 114

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

23.1.5 Known JMS Issues

23.1.5.1 Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 where it does not cleanup temporary queues,
even though they have been deleted. That bug appears to be long standing but was though to have
been fixed.

See:

• http://www.nabble.com/Memory-Leak-Using-Temporary-Queues-td11218217.html#a11218217
• http://issues.apache.org/activemq/browse/AMQ-1255

The JMSCacheLoader uses temporary reply queues when loading. The Active MQ issue is
readily reproduced in Ehcache integration testing. Accordingly, use of the JMSCacheLoader with
ActiveMQ is not recommended. Open MQ tests fine.

Active MQ works fine for replication.

23.1.5.2 WebSphere 5 and 6

Websphere Application Server prevents MessageListeners, which are not MDBs, from being
created in the container. While this is a general Java EE limitation, most other app servers either
are permissive or can be configured to be permissive. WebSphere 4 worked, but 5 and 6 enforce the
restriction.

Accordingly the JMS replicator cannot be used with WebSphere 5 and 6.

2 4 S h u t t i n g D o w n E h c a c h e 115

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

24 Shutting Down Ehcache
...

24.1 Shutting Down Ehcache
If you are using persistent disk stores, or distributed caching, care should be taken to shutdown
ehcache.

Note that Hibernate automatically shuts down its Ehcache CacheManager.

The recommended way to shutdown the Ehcache is:

• to call CacheManager.shutdown()
• in a web app, register the Ehcache ShutdownListener

Though not recommended, Ehcache also lets you register a JVM shutdown hook.

24.1.1 ServletContextListener

Ehcache proivdes a ServletContextListener that shutsdown CacheManager. Use this when you want to
shutdown Ehcache automatically when the web application is shutdown.

To receive notification events, this class must be configured in the deployment descriptor for the web
application.

To do so, add the following to web.xml in your web application:

 <listener>
 <listener-class>net.sf.ehcache.constructs.web.ShutdownListener</
listener-class>
 </listener>

24.1.2 The Shutdown Hook

Ehcache CacheManager can optionally register a shutdown hook.

To do so, set the system property net.sf.ehcache.enableShutdownHook=true.

This will shutdown the CacheManager when it detects the Virtual Machine shutting down and it is not
already shut down.

24.1.2.1 When to use the shutdown hook

Use the shutdown hook where:

• you need guaranteed orderly shutdown, when for example using persistent disk stores, or
distributed caching.

• CacheManager is not already being shutdown by a framework you are using or by your
application.
Having said that, shutdown hooks are inherently dangerous. The JVM is shutting down, so
sometimes things that can never be null are. Ehcache guards against as many of these as it can,
but the shutdown hook should be the last option to use.

24.1.2.2 What the shutdown hook does

The shutdown hook is on CacheManager. It simply calls the shutdown method.

The sequence of events is:

• call dispose for each registered CacheManager event listener

2 4 S h u t t i n g D o w n E h c a c h e 116

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• call dispose for each Cache.
Each Cache will:

• shutdown the MemoryStore. The MemoryStore will flush to the DiskStore
• shutdown the DiskStore. If the DiskStore is persistent, it will write the entries and index to

disk.
• shutdown each registered CacheEventListener
• set the Cache status to shutdown, preventing any further operations on it.

• set the CacheManager status to shutdown, preventing any further operations on it

24.1.2.3 When a shutdown hook will run, and when it will not

The shutdown hook runs when:

• a program exists normally. e.g. System.exit() is called, or the last non-daemon thread exits
• the Virtual Machine is terminated. e.g. CTRL-C. This corresponds to kill -SIGTERM pid or
kill -15 pid on Unix systems.

The shutdown hook will not run when:

• the Virtual Machine aborts
• A SIGKILL signal is sent to the Virtual Machine process on Unix systems. e.g. kill -
SIGKILL pid or kill -9 pid

• A TerminateProcess call is sent to the process on Windows systems.

24.1.3 Dirty Shutdown

If Ehcache is shutdown dirty then any persistent disk stores will be corrupted. They will be deleted,
with a log message, on the next startup.

Replications waiting to happen to other nodes in a distributed cache will also not get written.

2 5 L o g g i n g 117

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

25 Logging
...

25.1 Logging

25.1.1 SLF4J Logging

As of 1.7.1, Ehcache uses the the slf4j (http://www.slf4j.org) logging facade. Plug in your own
logging framework.

25.1.1.1 Concrete Logging Implementation Use in Maven

With slf4j, users must choose a concrete logging implementation at deploy time.

The maven dependency declarations are reproduced here for convenience. Add one of these to your
Maven pom.

 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>1.5.8</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.5.8</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.5.8</version>
 </dependency>

25.1.1.2 Concrete Logging Implemenation Use in the Download Kit

We provide the slf4j-api and slf4j-jdk14 jars in the kit along with the ehcache jars so that, if the app
does not already use SLF4J, you have everything you need.

Additional concrete logging implementations can be downloaded from http://www.slf4j.org.

25.1.2 Recommended Logging Levels

Ehcache seeks to trade off informing production support developers or important messages and
cluttering the log.

ERROR ERROR messages should not occur in normal production and indicate that action should be
taken.

WARN WARN messages generally indicate a configuration change should be made or an unusual
event has occurred.

DEBUG DEBUG and TRACE messages are for development use. All DEBUG level statements are
surrounded with a guard so that no performance cost is incurred unless the logging level is set.

Setting the logging level to DEBUG should provide more information on the source of any problems.
Many logging systems enable a logging level change to be made without restarting the application.

http://www.slf4j.org
http://www.slf4j.org

2 6 R e m o t e N e t w o r k r e p l i c a t i o n d e b u g g i n g : R M I R e p l i c a t e d C a c h e s 118

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

26 Remote Network replication debugging: RMI
Replicated Caches
...

26.1 Remote Network debugging and monitoring for Distributed Caches

26.1.1 Introduction

The ehcache-1.x-remote-debugger.jar} can be used to debug replicated cache operations. When
started with the same configuration as the cluster, it will join the cluster and then report cluster events
for the cache of interest. By providing a window into the cluster it can help to identify the cause of
cluster problems.

26.1.2 Packaging

From version 1.5 it is packaged in its own distribution tarball along with a maven module.

It is provided as an executable jar.

26.1.3 Limitations

This version of the debugger has been tested only with the default RMI based replication.

26.1.4 Usage

It is invoked as follows:

java -classpath [add your application jars here]
 -jar ehcache-debugger-1.5.0.jar ehcache.xml sampleCache1
 path_to_ehcache.xml [cacheToMonitor]

Note: Add to the classpath any libraries your project uses in addition to these above, otherwise RMI
will attempt to load them remotely which requires specific security policy settings that surprise most
people.

It takes one or two arguments:

• the first argument, which is mandatory, is the Ehcache configuration file e.g. app/config/
ehcache.xml. This file should be configured to allow Ehcache to joing the cluster. Using one of
the existing ehcache.xml files from the other nodes normally is sufficient.

• the second argument, which is optional, is the name of the cache e.g. distributedCache1
If only the first argument is passed, it will print our a list of caches with replication configured
from the configuration file, which are then available for monitoring.

If the second argument is also provided, the debugger will monitor cache operations received for
the given cache.

This is done by registering a CacheEventListener which prints out each operation.

26.1.4.1 Output

When monitoring a cache it prints a list of caches with replication configured, prints notifications as
they happen, and periodically prints the cache name, size and total events received. See sample output
below which is produced when the RemoteDebuggerTest is run.

 Caches with replication configured which are available for monitoring are:
 sampleCache19 sampleCache20 sampleCache26 sampleCache42 sampleCache33
 sampleCache51 sampleCache40 sampleCache32 sampleCache18 sampleCache25

2 6 R e m o t e N e t w o r k r e p l i c a t i o n d e b u g g i n g : R M I R e p l i c a t e d C a c h e s 119

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 sampleCache9 sampleCache15 sampleCache56 sampleCache31 sampleCache7
 sampleCache12 sampleCache17 sampleCache45 sampleCache41 sampleCache30
 sampleCache13 sampleCache46 sampleCache4 sampleCache36 sampleCache29
 sampleCache50 sampleCache37 sampleCache49 sampleCache48 sampleCache38
 sampleCache6 sampleCache2 sampleCache55 sampleCache16 sampleCache27
 sampleCache11 sampleCache3 sampleCache54 sampleCache28 sampleCache10
 sampleCache8 sampleCache47 sampleCache5 sampleCache53 sampleCache39
 sampleCache23 sampleCache34 sampleCache22 sampleCache44 sampleCache52
 sampleCache24 sampleCache35 sampleCache21 sampleCache43 sampleCache1
 Monitoring cache: sampleCache1
 Cache: sampleCache1 Notifications received: 0 Elements in cache: 0
 Received put notification for element [key = this is an id, value=this is
 a value, version=1, hitCount=0, CreationTime = 1210656023456,
 LastAccessTime = 0]
 Received update notification for element [key = this is an id, value=this
 is a value, version=1210656025351, hitCount=0, CreationTime =
 1210656024458, LastAccessTime = 0]
 Cache: sampleCache1 Notifications received: 2 Elements in cache: 1
 Received remove notification for element this is an id
 Received removeAll notification.

26.1.4.2 Providing more Detailed Logging

If you see nothing happening, but cache operations should be going through, enable trace (LOG4J) or
finest (JDK) level logging on codenet.sf.ehcache.distribution /code in the logging configuration being
used by the debugger. A large volume of log messages will appear. The normal problem is that the
CacheManager has not joined the cluster. Look for the list of cache peers.

26.1.4.3 Yes, but I still have a cluster problem

Check the FAQ where a lot of commonly reported errors and their solutions are provided. Beyond
that, post to the forums or mailing list or contact Ehcache for support.

2 7 J M X M a n a g e m e n t A n d M o n i t o r i n g 120

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

27 JMX Management And Monitoring
...

27.1 JMX Management and Monitoring

27.1.1 Terracotta Monitoring Products

An extensive monitoring product, available in Enterprise Ehcache, provides a monitoring server with
probes supporting Ehcache-1.2.3 and higher for standalone and clustered Ehcache. It comes with a
web console and a RESTful API for operations integration.

See the ehcache-monitor documentation for more information.

When using Ehcache 1.7 with Terracotta clustering, the Terracotta Developer Console shows statistics
for Ehcache.

27.1.2 JMX Overview

JMX, part of JDK1.5, and available as a download for 1.4, creates a standard way of instrumenting
classes and making them available to a management and monitoring infrastructure.

The net.sf.ehcache.management package contains MBeans and a ManagementService for
JMX management of ehcache. It is in a separate package so that JMX libraries are only required if
you wish to use it - there is no leakage of JMX dependencies into the core Ehcache package.

This implementation attempts to follow Sun's JMX best practices. See http://java.sun.com/javase/
technologies/core/mntr-mgmt/ javamanagement/best-practices.jsp.

Use net.sf.ehcache.management.ManagementService.registerMBeans(...) static
method to register a selection of MBeans to the MBeanServer provided to the method.

If you wish to monitor Ehcache but not use JMX, just use the existing public methods on Cache and
CacheStatistics.

2 7 J M X M a n a g e m e n t A n d M o n i t o r i n g 121

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The Management Package

27.1.3 MBeans

Ehcache uses Standard MBeans. MBeans are available for the following:
• CacheManager
• Cache
• CacheConfiguration
• CacheStatistics

All MBean attributes are available to a local MBeanServer. The CacheManager MBean allows
traversal to its collection of Cache MBeans. Each Cache MBean likewise allows traversal to its
CacheConfiguration MBean and its CacheStatistics MBean.

27.1.4 JMX Remoting

The JMX Remote API allows connection from a remote JMX Agent to an MBeanServer via an
MBeanServerConnection.

2 7 J M X M a n a g e m e n t A n d M o n i t o r i n g 122

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Only Serializable attributes are available remotely. The following Ehcache MBean attributes are
available remotely:

• limited CacheManager attributes
• limited Cache attributes
• all CacheConfiguration attributes
• all CacheStatistics attributes

Most attributes use built-in types. To access all attributes, you need to add ehcache.jar to the
remote JMX client's classpath e.g. jconsole -J-Djava.class.path=ehcache.jar.

27.1.5 ObjectName naming scheme

• CacheManager - "net.sf.ehcache:type=CacheManager,name= CacheManager"
• Cache - "net.sf.ehcache:type=Cache,CacheManager= cacheManagerName,name= cacheName"
• CacheConfiguration - "net.sf.ehcache:type=CacheConfiguration,CacheManager=

cacheManagerName,name= cacheName"
• CacheStatistics - "net.sf.ehcache:type=CacheStatistics,CacheManager=

cacheManagerName,name= cacheName"

27.1.6 The Management Service

The ManagementService class is the API entry point.

2 7 J M X M a n a g e m e n t A n d M o n i t o r i n g 123

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

ManagementService

There is only one method, ManagementService.registerMBeans which is used to initiate JMX
registration of an Ehcache CacheManager's instrumented MBeans.

The ManagementService is a CacheManagerEventListener and is therefore notified of any
new Caches added or disposed and updates the MBeanServer appropriately.

Once initiated the MBeans remain registered in the MBeanServer until the CacheManager shuts
down, at which time the MBeans are deregistered. This behaviour ensures correct behaviour in
application servers where applications are deployed and undeployed.

/**
 * This method causes the selected monitoring options to be be registered
 * with the provided MBeanServer for caches in the given CacheManager.
 * <p/>
 * While registering the CacheManager enables traversal to all of the other
 * items,

2 7 J M X M a n a g e m e n t A n d M o n i t o r i n g 124

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * this requires programmatic traversal. The other options allow entry points closer
 * to an item of interest and are more accessible from JMX management tools like JConsole.
 * Moreover CacheManager and Cache are not serializable, so remote monitoring is not
 * possible * for CacheManager or Cache, while CacheStatistics and CacheConfiguration are.
 * Finally * CacheManager and Cache enable management operations to be performed.
 * <p/>
 * Once monitoring is enabled caches will automatically added and removed from the
 * MBeanServer * as they are added and disposed of from the CacheManager. When the
 * CacheManager itself * shutsdown all registered MBeans will be unregistered.
 *
 * @param cacheManager the CacheManager to listen to
 * @param mBeanServer the MBeanServer to register MBeans to
 * @param registerCacheManager Whether to register the CacheManager MBean
 * @param registerCaches Whether to register the Cache MBeans
 * @param registerCacheConfigurations Whether to register the CacheConfiguration MBeans
 * @param registerCacheStatistics Whether to register the CacheStatistics MBeans
 */
public static void registerMBeans(
 net.sf.ehcache.CacheManager cacheManager,
 MBeanServer mBeanServer,
 boolean registerCacheManager,
 boolean registerCaches,
 boolean registerCacheConfigurations,
 boolean registerCacheStatistics) throws CacheException {

27.1.7 JConsole Example

This example shows how to register CacheStatistics in the JDK1.5 platform MBeanServer, which
works with the JConsole management agent.

 CacheManager manager = new CacheManager();
 MBeanServer mBeanServer = ManagementFactory.getPlatformMBeanServer();
 ManagementService.registerMBeans(manager, mBeanServer, false, false, false, true);

CacheStatistics MBeans are then registered.

2 7 J M X M a n a g e m e n t A n d M o n i t o r i n g 125

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

CacheStatistics MBeans in JConsole

27.1.8 Hibernate statistics

If you are running Terracotta clustered caches as hibernate second-level cache provider, it is possible
to access the hibernate statistics + ehcache stats etc via jmx.

EhcacheHibernateMBean is the main interface that exposes all the API's via jmx. It basically
extends two interfaces -- EhcacheStats and HibernateStats. And as the name implies
EhcacheStats contains methods related with Ehcache and HibernateStats related with
Hibernate.

2 7 J M X M a n a g e m e n t A n d M o n i t o r i n g 126

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

You can see cache hit/miss/put rates, change config element values dynamically -- like
maxElementInMemory, TTI, TTL, enable/disable statistics collection etc and various other things.
Please look into the specific interface for more details.

27.1.9 JMX Tutorial

See http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html for an online
tutorial.

27.1.10 Performance

Collection of cache statistics is not entirely free of overhead. In production systems where monitoring
is not required statistics can be disabled. This can be done either programatically by calling
setStatisticsEnabled(false) on the cache instance, or in configuration by setting the statistics="false"
attribute of the relevant cache configuration element.

From Ehcache 2.1.0 statistics are off by default.

http://weblogs.java.net/blog/maxpoon/archive/2007/06/extending_the_n_2.html

2 8 J T A A n d T r a n s a c t i o n s 127

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

28 JTA And Transactions
...

28.1 Transactions in Ehcache

28.1.1 Introduction

Transactions are supported in versions of Ehcache 2.0 and higher.

The 2.3.x or lower releases only support XA. However since ehcache 2.4 support for both Global
Transactions with xa_strict and xa modes, and Local Transactions with local mode has been
added.

28.1.1.1 All or nothing

If a cache is enabled for transactions, all operations on it must happen within a transaction context
otherwise a TransactionException will be thrown.

28.1.1.2 Change Visibility

The isolation level offered in Ehcache is READ_COMMITTED. Ehcache can work as an XAResource in
which case, full two-phase commit is supported.

Specifically:

• All mutating changes to the cache are transactional including put, remove, putWithWriter,
removeWithWriter and removeAll.

• Mutating changes are not visible to other transactions in the local JVM or across the cluster until
COMMIT has been called.

• Until then, read such as by cache.get(...) by other transactions will return the old copy.
Reads do not block.

28.1.2 When to use transactional modes

28.1.2.1 Transactional modes are a powerful extension of Ehcache allowing you to perform atomic
operations on your caches and potentially other data stores, eg: to keep your cache in sync with your
database.

• local When you want your changes across multiple caches to be performed atomically.
Use this mode when you need to update your caches atomically, ie: have all your changes be
committed or rolled back using a straight simple API. This mode is most useful when a cache
contains data calculated out of other cached data.

• xa

Use this mode when you cache data from other data stores (eg: DBMS, JMS) and want to do it in
an atomic way under the control of the JTA API but don't want to pay the price of full two-phase
commit. In this mode, your cached data can get out of sync with the other resources participating
in the transactions in case of a crash so only use it if you can afford to live with stale data for a
brief period of time.

• xa_strict

Same as xa but use it only if you need strict XA disaster recovery guarantees. In this mode, the
cached data can never get out of sync with the other resources participating in the transactions,
even in case of a crash but you pay a high price in performance to get that extra safety.

2 8 J T A A n d T r a n s a c t i o n s 128

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

28.1.3 Requirements

The objects you are going to store in your transactional cache must:
• implement java.io.Serializable

This is required to store cached objects when the cache is clustered with Terracotta but it's also
required by the copy on read / copy on write mechanism used to implement isolation.

• override equals and hashcode
Those must be overridden as the transactional stores rely on element value comparison, see:
ElementValueComparator and the elementValueComparator configuration setting.

28.1.4 Configuration

Transactions are enabled on a cache by cache basis with the transactionalMode cache attribute.

The allowed values are:
• xa_strict

• xa

• local

• off

The default value is off.

Enabling a cache for xa_strict transactions is shown in the following example:

 <cache name="xaCache"
 maxElementsInMemory="500"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 overflowToDisk="false"
 diskPersistent="false"
 diskExpiryThreadIntervalSeconds="1"
 transactionalMode="xa_strict">
 </cache>

28.1.4.1 Considerations when using clustered caches with Terracotta

For Terracotta clustered caches, transactionalMode can only be used where
terracotta consistency="strong". Because caches can be dynamically changed into
consistencyType=eventual mode for bulk loading, any attempt to perform a transaction when this is
the case will throw a CacheException.

Note that transactions do not work with Terracotta's identity mode. An attempt to initialise a
transactional cache when this mode is set will result in a CacheException being thrown. The default
mode is serialization mode.

Also note that all transactional modes are currently sensitive to the ABA problem.

28.1.5 Global Transactions

Global Transactions are supported by Ehcache. Ehcache can act as an XAResouce to participate
in JTA ("Java Transaction API") transactions under the control of a Transaction Manager. This is
typically provided by your application server, however you may also use a third party transaction
manager such as Bitronix.

To use Global Transactions, select either xa_strict or xa mode. The differences are explained in
the sections below.

2 8 J T A A n d T r a n s a c t i o n s 129

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

28.1.5.1 Implementation

Global transactions support is implemented at the Store level, through XATransactionStore
and JtaLocalTransactionStore. The former actually decorates the underlying MemoryStore
implementation, augmenting it with transaction isolation and two-phase commit support through an
XAResouce implementation. The latter decorates a LocalTransactionStore-decorated cache to make it
controllable by the standard JTA API instead of the proprietary TransactionController API.

During its initialization, the Cache will lookup the TransactionManager using
the provided TransactionManagerLookup implementation. Then, using the
TransactionManagerLookup.register(XAResouce), the newly created XAResource will be
registered.

The store is automatically configured to copy every Element read from the cache or written to it.
Cache is copy-on-read and copy-on-write.

28.1.6 Failure Recovery

As specified by the JTA specification, only prepared transaction data is recoverable.

Prepared data is persisted onto the cluster and locks on the memory are held. This basically means
that non-clustered caches cannot persist transactions data, so recovery errors after a crash may be
reported by the transaction manager.

28.1.6.1 Recovery

At any time after something went wrong, an XAResource may be asked to recover. Data that has
been prepared may either be committed or rolled back during recovery. In accordance with XA, data
that has not yet been prepared is discarded.

The recovery guarantee differs depending on the xa mode.

28.xa Mode

With xa, the cache doesn't get registered as an XAResource with the transaction manager but merely
can follow the flow of a JTA transaction by registering a JTA Synchronization. The cache can end up
inconsistent with the other resources if there is a JVM crash in the mutating node.

In this mode, some inconsistency may occur between a cache and other XA resources (such as
databases) after a crash. However, the cache's data remains consistent because the transaction is still
fully atomic on the cache itself.

28.xa_strict Mode

If xa_strict is used the cache will always respond to the TransactionManager's recover calls with
the list of prepared XIDs of failed transactions. Those transaction branches can then be committed or
rolled back by the transaction manager. This is the standard XA mechanism in strict compliance with
the JTA specification.

28.1.7 Sample Apps

We have three sample applications showing how to use XA with a variety of technologies.

28.1.7.1 XA Sample App

This sample application uses JBoss application server. It shows an example using User managed
transactions. While we expect most people will use JTA from within Spring or EJB where the
container rather than managing it themselves, it clearly shows what is going on.

The following snippet from our SimpleTX servlet shows a complete transaction.

2 8 J T A A n d T r a n s a c t i o n s 130

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 Ehcache cache = cacheManager.getEhcache("xaCache");
 UserTransaction ut = getUserTransaction();
 printLine(servletResponse, "Hello...");
 try {
 ut.begin();
 int index = serviceWithinTx(servletResponse, cache);
 printLine(servletResponse, "Bye #" + index);
 ut.commit();
 } catch(Exception e) {
 printLine(servletResponse,
 "Caught a " + e.getClass() + "! Rolling Tx back");
 if(!printStackTrace) {
 PrintWriter s = servletResponse.getWriter();
 e.printStackTrace(s);
 s.flush();
 }
 rollbackTransaction(ut);
 }

The source code for the demo can be checked out from http://svn.terracotta.org/svn/forge/projects/
ehcache-jta-sample/trunk

A README.txt explains how to get the JTA Sample app going.

28.1.7.2 XA Banking Application

The Idea of this application is to show a real world scenario. AwWeb app reads account transfer
messages from a queue and tries to execute these account transfers.

With JTA turned on, failures are rolled back so that the cached account balance is always the same as
the true balance summed from the database.

This app is a Spring-based Java web app running in a Jetty container. It has (embedded) the following
components:

• A JMS Server (ActiveMQ)
• 2 databases (embedded Derby XA instances)
• 2 caches (JTA Ehcache)

All XA Resources are managed by Atomikos TransactionManager. Transaction demarcation is
done using Spring AOP's @Transactional annotation.

You can run it with: mvn clean jetty:run. Then point your browser at: http://
localhost:9080.

To see what happens without XA transactions:

mvn clean jetty:run -Dxa=no

The source code for the demo can be checked out from http://svn.terracotta.org/svn/forge/
projects/ehcache-jta-banking/trunk

A README.txt explains how to get the JTA Sample app going.

28.1.7.3 Examinator

Examinator is our complete application that shows many aspects of caching in one web based Exam
application, all using the Terracotta Server Array.

Check out from http://svn.terracotta.org/svn/forge/projects/exam/

http://svn.terracotta.org/svn/forge/projects/ehcache-jta-sample/trunk
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-sample/trunk
http://localhost:9080
http://localhost:9080
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-banking/trunk
http://svn.terracotta.org/svn/forge/projects/ehcache-jta-banking/trunk
http://svn.terracotta.org/svn/forge/projects/exam/

2 8 J T A A n d T r a n s a c t i o n s 131

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

28.1.8 Transaction Managers

28.1.8.1 Automatically Detected Transaction Managers

Ehcache automatically detects and uses the following transaction managers in the following order:
• GenericJNDI (e.g. Glassfish, JBoss, JTOM and any others that register themselves in JNDI at the

standard location of java:/TransactionManager
• Weblogic (since 2.4.0)
• Bitronix
• Atomikos

No configuration is required; they work out of the box.

The first found is used.

28.1.8.2 Configuring a Transaction Manager

If your Transaction Manager is not in the above list or you wish to change the
priority you need to configure your own lookup class and specify it in place of the
DefaultTransactionManagerLookup in the ehcache.xml config:

<transactionManagerLookup
 class= "net.sf.ehcache.transaction.manager.DefaultTransactionManagerLookup"
 properties="" propertySeparator=":"/>

You can also provide a different location for the JNDI lookup by providing the jndiName property to
the DefaultTransactionManagerLookup.

The example below provides the proper location for the TransactionManager in GlassFish v3:

<transactionManagerLookup
 class="net.sf.ehcache.transaction.manager.DefaultTransactionManagerLookup"
 properties="jndiName=java:appserver/
TransactionManager" propertySeparator=";"/>

28.1.9 Local Transactions

Local Transactions allow single phase commit across multiple cache operations, across one or more
caches, and in the same CacheManager, whether distributed with Terracotta or standalone.

This lets you apply multiple changes to a CacheManager all in your own transaction. If you also want
to apply changes to other resources such as a database then you need to open a transaction to them and
manually handle commit and rollback to ensure consistency.

Local transactions are not controlled by a Transaction Manager. Instead there is an explicit API
where a reference is obtained to a TransactionController for the CacheManager using
cacheManager.getTransactionController() and the steps in the transaction are called
explicitly.

The steps in a local transaction are:
• transactionController.begin() - This marks the beginning of the local transaction on the

current thread. The changes are not visible to other threads or to other transactions.
• transactionController.commit() - Commits work done in the current transaction on the

calling thread.
• transactionController.rollback() - Rolls back work done in the current transaction on

the calling thread. The changes done since begin are not applied to the cache.
These steps should be placed in a try-catch block which catches TransactionException. If any
exceptions are thrown, rollback() should be called.

2 8 J T A A n d T r a n s a c t i o n s 132

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Local Transactions has it's own exceptions that can be thrown, which are all subclasses of
CacheException. They are:

• TransactionException - a general exception
• TransactionInterruptedException - if Thread.interrupt() got called while the cache was

processing a transaction.
• TransactionTimeoutException - if a cache operation or commit is called after the

transaction timeout has elapsed.

28.1.9.1 Introduction Video

Ludovic Orban the primary author of Local Transactions presents an introductory video on Local
Transactions.

28.1.9.2 Configuration

Local transactions are configured as follows:

 <cache name="sampleCache"
 ...
 transactionalMode="local"
 </cache>

28.1.9.3 Isolation Level

As with the other transaction modes, the isolation level is READ_COMMITTED.

28.1.9.4 Transaction Timeouts

If a transaction cannot complete within the timeout period, then a
TransactionTimeoutException will be thrown. To return the cache to a consistent state you need
to call transactionController.rollback().

Because TransactionController is at the level of the CacheManager, a default timeout can be set
which applies to all transactions across all caches in a CacheManager. If not set, it is 15 seconds.

To change the defaultTimeout:

 transactionController.setDefaultTransactionTimeout(int defaultTransactionTimeoutSeconds)

The countdown starts straight after begin() is called. You might have another local transaction on
a JDBC connection and you may be making multiple changes. If you think it could take longer than
15 seconds for an individual transaction, you can override the default when you begin the transaction
with:

 transactionController.begin(int transactionTimeoutSeconds) {

28.1.9.5 Sample Code

This example shows a transaction which performs multiple operations across two caches.

 CacheManager cacheManager = CacheManager.getInstance();
 try {
 cacheManager.getTransactionController().begin();
 cache1.put(new Element(1, "one"));
 cache2.put(new Element(2, "two"));
 cache1.remove(4);
 cacheManager.getTransactionController().commit();
 } catch (CacheException e) {
 cacheManager.getTransactionController().rollback()

http://vimeo.com/21299785

2 8 J T A A n d T r a n s a c t i o n s 133

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 }

28.1.9.6 What can go wrong

28.JVM crash between begin and commit

On restart none of the changes applied after begin are there.

On restart, nothing needs to be done. Under the covers in the case of a Terracotta cluster, the
Element's new value is there but not applied. It's will be lazily removed on next access.

28.1.10 Performance

28.1.10.1 Managing Contention

If two transactions, either standalone or across the cluster, attempt to perform a cache operation on the
same element then the following rules apply:

• The first transaction gets access
• The following transactions will block on the cache operation until either the first transaction

completes or the transaction timeout occurs.
Under the covers, when an element is involved in a transaction, it is replaced with a new element with
a marker that is locked, along with the transaction ID. The normal cluster semantics are used.

Because transactions only work with consistency=strong caches, the first transaction will be the
thread that manages to atomically place a soft lock on the Element. (Up to Terracotta 3.4 this was
done with write locks. After that it is done with the CAS based putIfAbsent and replace methods).

28.1.10.2 What granularity of locking is used?

Ehcache standalone up to 2.3 used page level locking, where each segment in the CompoundStore is
locked. From 2.4, it is one with soft locks stored in the Element itself and is on a key basis.

Terracotta clustered caches are locked on the key level.

28.1.10.3 Performance Comparisons

Any transactional cache adds an overhead which is significant for writes and nearly negligible for
reads.

Within the modes the relative time take to perform writes, where off = 1, is:

• off - no overhead
• xa_strict - 20 times slower
• xa - 3 times slower
• local - 3 times slower

The relative read performance is:
• off - no overhead
• xa_strict - 20 times slower
• xa - 30% slower
• local - 30% slower

Accordingly, xa_strict should only be used where it's full guarantees are required, othewise one of the
other modes should be used.

2 8 J T A A n d T r a n s a c t i o n s 134

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

28.1.11 FAQ

28.1.11.1 Is IBM Websphere Transaction Manager supported?

Mostly. xa_strict is not supported due to each version of Websphere essentially being a
custom implementation i.e. no stable interface to implement against. However, xa, which uses
TransactionManager callbacks and local are supported.

28.1.11.2 How do transactions interact with Write-behind and Write-through caches?

If your transactional enabled cache is being used with a writer, write operations will be queued until
transaction commit time. Solely a Write-through approach would have its potential XAResource
participate in the same transaction. Write-behind, while supported, should probably not be used with
an XA transactional Cache, as the operations would never be part of the same transaction. Your writer
would also be responsible for obtaining a new transaction...

Using Write-through with a non XA resource would also work, but there is no guarantee the
transaction will succeed after the write operations have been executed successfully. On the other
hand, any thrown exception during these write operations would cause the transaction to be rolled
back by having UserTransaction.commit() throw a RollbackException.

28.1.11.3 Are Hibernate Transactions supported?

Ehcache is a "transactional" cache for Hibernate purposes. The
net.sf.ehcache.hibernate.EhCacheRegionFactory has support for Hibernate entities
configured with cache usage="transactional"/.

28.1.11.4 How do I make WebLogic 10 work with Ehcache JTA?

WebLogic uses an optimization that is not supported by our implementation. By default WebLogic 10
will spawn threads to start the Transaction on each XAResource in parallel. As we need transaction
work to be performed on the same Thread, you will have to turn this optimization off by setting
parallel-xa-enabled option to false in your domain configuration :

 <jta>
 ...
 <checkpoint-interval-seconds>300</checkpoint-interval-seconds>
 <parallel-xa-enabled>false</parallel-xa-enabled>
 <unregister-resource-grace-period>30</unregister-resource-grace-period>
 ...
 </jta>

28.1.11.5 How do I make Atomikos work with Ehcache JTA's xa mode?

Atomikos has a bug which makes the xa mode's normal transaction termination mechanism
unreliable, see: http://fogbugz.atomikos.com/default.asp?community.6.802.3. There is an
alternative termination mechanism built in that transaction mode that is automatically enabled when
net.sf.ehcache.transaction.xa.alternativeTerminationMode is set to true or when
Atomikos is detected as the controlling transaction manager.

This alternative termination mode has strict requirement on the way threads are used by the
transaction manager and Atomikos's default settings won't work. You have to configure this property
to make it work: --- com.atomikos.icatch.threaded_2pc=false ---

http://fogbugz.atomikos.com/default.asp?community.6.802.3

2 9 S e a r c h 135

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

29 Search
...

29.1 Search

29.1.1 Ehcache Search API

The Ehcache Search API allows you to execute arbitrarily complex queries against either a standalone
cache or a Terracotta clustered cache with pre-built indexes. Searchable attributes may be extracted
from both keys and values. Keys, values, or summary values (Aggregators) can all be returned.

Here is a simple example: Search for 32 year old males and return the cache values.

Results results = cache.createQuery().includeValues()
 .addCriteria(age.eq(32).and(gender.eq("male"))).execute();

29.1.2 What is searchable?

Searches can be performed against Element keys and values.

Element keys and values are made searchable by extracting attributes with supported search types out
of the values.

It is the attributes themelves which are searchable.

29.1.3 How to make a cache searchable

29.1.3.1 By Configuration

Caches are made searchable by adding a <searchable/> tag to the ehcachel.xml.

<cache name="cache2" maxElementsInMemory="10000" eternal="true" overflowToDisk="false">
 <searchable/>
</cache>

This configuration will scan keys and vales and if they are of supported search types, add them as
attributes called "key" and "value" respectively. If you do not want automatic indexing of keys and
values you can disable it with:

<cache name="cache3" ...>
 <searchable keys="false" values="false">
 ...
 </searchable>
</cache>

You might want to do this if you have a mix of types for your keys or values. The automatic indexing
will throw an exception if types are mixed.

Lots of times keys or values will not be directly searchable and instead you will need to extract
searchable attributes out of them. The following example shows this more typical case. Attribute
Extractors are explained in more detail in the following section.

<cache name="cache3" maxElementsInMemory="10000" eternal="true" overflowToDisk="false">
 <searchable>
 <searchAttribute name="age" class="net.sf.ehcache.search.TestAttributeExtractor"/
>
 <searchAttribute name="gender" expression="value.getGender()"/>
 </searchable>

2 9 S e a r c h 136

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

</cache>

29.1.3.2 Programmatically

The following example shows how to programmatically create the cache configuration, with search
attributes.

Configuration cacheManagerConfig = new Configuration();
CacheConfiguration cacheConfig = new CacheConfiguration("myCache", 0).eternal(true);
Searchable searchable = new Searchable();
cacheConfig.addSearchable(searchable);

// Create attributes to use in queries.
searchable.addSearchAttribute(new SearchAttribute().name("age"));

// Use an expression for accessing values.
searchable.addSearchAttribute(new SearchAttribute()
 .name("first_name")
 .expression("value.getFirstName()"));

searchable.addSearchAttribute(new SearchAttribute().name("last_name").expression("value.getLastName()"));
 searchable.addSearchAttribute(new SearchAttribute().name("zip_code").expression("value.getZipCode()"));

cacheManager = new CacheManager(cacheManagerConfig);
cacheManager.addCache(new Cache(cacheConfig));

Ehcache myCache = cacheManager.getEhcache("myCache");

// Now create the attributes and queries, then execute.
...

To learn more about the Ehcache Search API, see the net.sf.ehcache.search* packages in this
Javadoc.

29.1.4 Attribute Extractors

Attributes are extracted from keys or values. This is done on put() into the cache using
AttributeExtractors in the clustered implementation and during search in the standalone
implementation

Extracted attributes must be one of the following supported types:

• Boolean
• Byte
• Character
• Double
• Float
• Integer
• Long
• Short
• String
• java.util.Date
• java.sql.Date
• Enum

http://ehcache.org/apidocs/index.html
http://ehcache.org/apidocs/index.html

2 9 S e a r c h 137

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

If an attribute cannot be extracted due to not being found or of being the wrong type an
AttributeExtractorException is thrown during the put() in the clustered implementation and on
search execution in the standalone implementation

29.1.4.1 Well-known Attributes

The parts of an Element are well-known attributes that can be referenced by some predefined, well-
known names.

If a keys and/or value is of a supported search type, they are added automatically as attributes with the
names "key" amd "value".

These well-known attributes have convenience constant attributes made available on the Query class.
So, for example, the attribute for "key" may be referenced in a query by Query.KEY. For even greater
readability it is recommended to statically import so that in this example you would just use KEY.

Well-known Attribute Name Attribute Constant

key Query.KEY

value Query.VALUE

29.1.4.2 ReflectionAttributeExtractor

The ReflectionAttributeExtractor is a built-in search attribute extractor which uses JavaBean
conventions and also understands a simple form of expression.

Where a JavaBean property is available and it is of a searchable type, it can be simply declared using:

<cache>
 <searchable>
 <searchAttribute name="age"/>
 </searchable>
</cache>

Finally, when things get more complicated, we have an expression language using method/value
dotted expression chains.

The expression chain must start with one of either "key", "value", or "element". From the starting
object a chain of either method calls or field names follows. Method calls and field names can be
freely mixed in the chain.

Some more examples:

<cache>
 <searchable>
 <searchAttribute name="age" expression="value.person.getAge()"/>
 </searchable>
</cache>
<cache>
 <searchable>
 <searchAttribute name="name" expression="element.toString()"/>
 </searchable>
</cache>

The method and field name portions of the expression are case sensitive.

2 9 S e a r c h 138

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

29.1.4.3 Custom AttributeExtractor

In more complex situations you can create your own attribute extractor by implementing the
AttributeExtractor interface. Providing your extractor class is shown in the following example:

<cache name="cache2" maxElementsInMemory="0" eternal="true" overflowToDisk="false">
 <searchable>
 <searchAttribute name="age" class="net.sf.ehcache.search.TestAttributeExtractor"/
>
 </searchable>
</cache>

If you need to pass state to your custom extractor you may do so with properties as shown in the
following example:

<cache>
 <searchable>
 <searchAttribute name="age"
 class="net.sf.ehcache.search.TestAttributeExtractor"
 properties="foo=this,bar=that,etc=12" />
 </searchable>
</cache>

If properties are provided then the attribute extractor implementation must have a public constructor
that accepts a single java.util.Properties instance

29.1.5 Query API

Ehcache Search introduces a fluent Object Oriented query API, following DSL principles, which
should feel familiar and natural to Java programmers.

Here is a simple example:

Query query = cache.createQuery().addCriteria(age.eq(35)).includeKeys().end();
Results results = query.execute();

29.1.5.1 Using attributes in queries

If declared and available, the well-known attributes are referenced by their name or the convenience
attributes are used directly as shown in this example:

Results results = cache.createQuery().addCriteria(Query.KEY.eq(35)).execute();
Results results = cache.createQuery().addCriteria(Query.VALUE.lt(10)).execute();

Other attributes are referenced by the names given them in the configuration. E.g.

Attribute<Integer> age = cache.getSearchAttribute("age");
Attribute<String> gender = cache.getSearchAttribute("gender");
Attribute<String> name = cache.getSearchAttribute("name");

29.1.5.2 Expressions

The Query to be searched for is built up using Expressions.

Expressions include logical operators such as and and or. It also includes comparison operators such
as ge (>=), between and like

addCriteria(...) is used to add a clause to a query. Adding a further clause automatically ands
the clauses

query = cache.createQuery().includeKeys().addCriteria(age.le(65)).add(gender.eq("male")).end();

Both logical and comparison operators implement the Criteria interface.

2 9 S e a r c h 139

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

To add a criteria with a different logical operator, you need to explicitly nest it within a new logical
operator Criteria Object.

e.g. to check for age = 35 or gender = female, do the following:

query.addCriteria(new Or(age.eq(35),
 gender.eq(Gender.FEMALE))
);

More complex compound expressions can be further created with extra nesting.

See the Expression JavaDoc for a complete list.

29.1.5.3 List of Operators

Operators are available as methods on attributes, so they are used by adding a ".". So, "lt" means less
than and is used as age.lt(10), which is a shorthand way of saying new LessThan(10).

The full listing of operator shorthand is shown below.

Shorthand Criteria Class Description

and And The Boolean AND logical operator

between Between A comparison operator meaning
between two values

eq EqualTo A comparison operator meaning
Java "equals to" condition

gt GreaterThan A comparison operator meaning
greater than.

ge GreaterThanOrEqual A comparison operator meaning
greater than or equal to.

in InCollection A comparison operator meaning in
the collection given as an argument

lt LessThan A comparison operator meaning
less than.

le LessThanOrEqual A comparison operator meaning
less than or equal to

ilike ILike A regular expression matcher. '?'
and "*" may be used. Note that
placing a wildcard in front of the
expression will cause a table scan.
ILike is always case insensitive.

not Not The Boolean NOT logical operator

ne NotEqualTo A comparison operator meaning
not the Java "equals to" condition

or Or The Boolean OR logical operator

29.1.5.4 Making queries immutable

By default a query can be executed and then modified and re-executed. If end is called the query is
made immutable.

http://ehcache.org/xref/net/sf/ehcache/search/expression/package-frame.html

2 9 S e a r c h 140

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

29.1.5.5 Ordering Results

Query results may be ordered in ascending or descending order by adding an addOrderBy clause to
the query, which takes as parameters the attribute to order by and the ordering direction.

e.g. to order the results by ages in ascending order --- query.addOrderBy(age,
Direction.ASCENDING); ---

29.1.5.6 Limiting the size of Results

By default a query will return an unlimited number of results. For example the following query will
return all keys in the cache.

Query query = cache.createQuery();
query.includeKeys();
query.execute();

If too many results are returned it could cause an OutOfMemoryError

The maxResults clause is used to limit the size of the results.

e.g. to limit the above query to the first 100 elements found:

Query query = cache.createQuery();
query.includeKeys();
query.maxResults(100);
query.execute();

If a returns a very large result, you can get it in chunks with Results.range().

29.1.6 Search Results

Queries return a Results object which contains a list of objects of class Result

29.1.6.1 Results

Either all results can be returned using results.all() to get the all in one chunk, or a range of
results using results.range(int start, int count) to achieve paging.

When you are done with the results, it is recommended to call discard(). This allows resources to
be freed. In the distributed implementation with Terracotta, resources may be used to hold results for
paging or return.

To determine what was returned by the query use one of the interrogation methods on Results:

• hasKeys()

• hasValues()

• hasAttributes()

• hasAggregators()

29.1.6.2 Result

Each Element in the cache found with a query will be represented as a Result object. So if a query
finds 350 elements there will be 350 Result objects. An exception to this if no keys or attributes are
included but aggregators are -- In this case there will be exactly one Result present

A Result object can contain:

• the Element key - when includeKeys() was added to the query
• the Element value - when includeValues() was added to the query

2 9 S e a r c h 141

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• predefined attribute(s) extracted from an Element value - when includeAttribute(...) was
added to the query. To access an attribute from Result, use getAttribute(Attribute<T>
attribute.

• aggregator results
Aggregator results are summaries computed for the search. They are available
Result.getAggregatorResults which returns a list of Aggregators in the same order in which
they were used in the Query.

29.1.6.3 Aggregators

Aggregators are added with query.includeAggregator(<attribute>.<aggregator>).

E.g. to find the sum of the age attribute:

query.includeAggregator(age.sum());

See the Aggregators JavaDoc for a complete list.

29.1.7 Sample Application

We have created a simple standalone sample application with few dependencies for you to easily get
started with Ehcache Search.

or check out the source:

git clone git://github.com/sharrissf/Ehcache-Search-Sample.git

The Ehcache Test Sources show lots of further examples on how to use each Ehcache Search feature.

29.1.8 Scripting Environments

Ehcache Search is readily amenable to scripting. The following example shows how to use it with
BeanShell:

Interpreter i = new Interpreter();
//
Auto discover the search attributes and add them to the interpreter's context
Map<String, SearchAttribute> attributes = cache.getCacheConfiguration().getSearchAttributes();
for (Map.Entry<String, SearchAttribute> entry : attributes.entrySet()) {
 i.set(entry.getKey(), cache.getSearchAttribute(entry.getKey()));
 LOG.info("Setting attribute " + entry.getKey());
}
//
Define the query and results. Add things which would be set in the GUI i.e.
//includeKeys and add to context
Query query = cache.createQuery().includeKeys();
Results results = null;
i.set("query", query);
i.set("results", results);
//This comes from the freeform text field
String userDefinedQuery = "age.eq(35)";
//Add the stuff on that we need
String fullQueryString = "results = query.addCriteria(" + userDefinedQuery + ").execute()";
i.eval(fullQueryString);
results = (Results) i.get("results");
assertTrue(2 == results.size());
for (Result result : results.all()) {
 LOG.info("" + result.getKey());

http://ehcache.org/xref/net/sf/ehcache/search/aggregator/package-frame.html
http://ehcache.org/xref-test/net/sf/ehcache/search/package-summary.html

2 9 S e a r c h 142

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

}

29.1.9 Concurrency Considerations

Unlike cache operations which has selectable concurrency control and/or transactions, the Search API
does not. This may change in a future release, however our survey of prospective users showed that
concurrency control in search indexes was not sought after.

The indexes are eventually consistent with the caches.

29.1.9.1 Index updating

Indexes will be updated asynchronously, so there state will lag slightly behind the state of the cache.
The only exception is when the updating thread then performs a search.

For caches with concurrency control, an index will not reflect the new state of the cache until:
• The change has been applied to the cluster.
• For a cache with transactions, when commit has been called.

29.1.9.2 Query Results

There are several ways unexpected results could present:
• A search returns an Element reference which no longer exists.
• Search criteria select an Element, but the Element has been updated and a new Search would no

longer match the Element.
• Aggregators, such as sum(), might disagree with the same calculation done by redoing the

calculation yourself by re-accessing the cache for each key and repeating the calculation.
• includeValues returns values. Under the covers the index contains a server value reference.

The reference gets returned with the search and Terracotta supplies the matching value. Because
the cache is always updated before the search index it is possible that a value reference may refer
to a value that has been removed from the cache. If this happens the value will be null but the
key and attributes which were supplied by the now stale cache index will be non-null. Because
values in Ehcache are also allowed to be null, you cannot tell whether your value is null because
it has been removed from the cache since the index was last updated or because it is a null value.

29.1.9.3 Recommendations

Because the state of the cache can change between search executions it is recommended to add all of
the Aggregators you want for a query at once so that the returned aggregators are consistent.

Use null guards when accessing a cache with a key returned from a search.

29.1.10 Implementations

29.1.10.1 Standalone Ehcache

The standalone Ehcache implementation does not use indexes. It uses fast iteration of the cache
instead, relying on the very fast access to do the equivalent of a table scan for each query. Each
element in the cache is only visited once.

Attributes are not extracted ahead of time. They are done during query execution.

29.Performance

Search operations perform in O(n) time.

Checkout https://svn.terracotta.org/repo/forge/offHeap-test/ terracotta_community_login, a Maven-
based performance test showing standalone cache performance. This test shows search performance

https://svn.terracotta.org/repo/forge/offHeap-test/

2 9 S e a r c h 143

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

of of an average of representative queries at 10ms per 10,000 entries. So, a typical query would take 1
second for a 1,000,000 entry cache.

Accordingly, standalone implementation is suitable for development and testing. For production it is
recommended to only standalone search for caches that are less than 1 million elements.

Performance of different Criteria vary. For example, here are some queries and their execute times
on a 200,000 element cache. (Note that these results are all faster than the times given above because
they execute a single Criteria).

 final Query intQuery = cache.createQuery();
 intQuery.includeKeys();
 intQuery.addCriteria(age.eq(35));
 intQuery.end();
 Execute Time: 62ms
 final Query stringQuery = cache.createQuery();
 stringQuery.includeKeys();
 stringQuery.addCriteria(state.eq("CA"));
 stringQuery.end();
 Execute Time: 125ms
 final Query iLikeQuery = cache.createQuery();
 iLikeQuery.includeKeys();
 iLikeQuery.addCriteria(name.ilike("H*"));
 iLikeQuery.end();
 Execute Time: 180ms

29.1.10.2 Ehcache backed by the Terracotta Server Array

This implementation uses indexes which are maintained on each Terracotta server. In Ehcache EX
the index is on a single active server. In Ehcache FX the cache is sharded across the number of active
nodes in the cluster. The index for each shard is maintained on that shard's server.

Searches are performed using the Scatter-Gather pattern. The query executes on each node and the
results are then aggregated back in the Ehcache that initiated the search.

29.Performance

Search operations perform in O(log n / number of shards) time.

Performance is excellent and can be improved simply by adding more servers to the FX array.

29.Network Effects

Search results are returned over the network. The data returned could potentially be very large, so
techniques to limit return size are recommended such as:

• limiting the results with maxResults or using the paging API Results.range(int start,
int length)

• Only including the data you need. Specifically only use includeKeys() and/or
includeAttribute() if those values are actually required for your application logic

• using a built-in Aggregator function when you only need a summary statistic
includeValues rates a special mention. Once a query requiring values is executed we push the
values from the server to the Ehcache CacheManager which requested it in batches for network
efficiency. This is done ahead as soon as possible reducing the risk that Result.getValue()
might have to wait for data over the network.

• turn off key and value indexing if you are not going to search against them as they will just chew
up space on the server.
You do this as follows:

2 9 S e a r c h 144

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

<cache name="cache3" ...>
 <searchable keys="false" values="false">
 ...
 </searchable>
</cache>

3 0 E h c a c h e M o n i t o r 145

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

30 Ehcache Monitor
...

30.1 Ehcache Monitor
This add-on tool for Ehcache provides enterprise-class monitoring and management capabilities for
use in both development and production. It is intended to help understand and tune cache usage,
detect errors, and provide an easy to use access point to integrate with production management
systems. It also provides administrative functionality such as the ability to forcefully remove items
from caches.

Simply install the Monitor on an Operations server, add the Monitor Probe jar to your app, add a few
lines of config in ehcache.xml and your done.

The package contains a probe and a server. The probe installs with your existing Ehcache cache
instance, and communicates to a central server. The server aggregates data from multiple probes. It
can be accessed via a simple web UI, as well as a scriptable API. In this way, it is easy to integrate
with common third party systems management tools (such as Hyperic, Nagios etc). The probe is
designed to be compatible with all versions of Ehcache from 1.5 and requires JDK 1.5 or 1.6.

Get the Ehcache Monitor now.

30.1.1 Installation And Configuration

First download and extract the Ehcache Monitor package.

The package consists of a lib directory with the probe and monitor server jars, a bin directory with
startup and shutdown scripts for the monitor server and an etc directory with an example monitor
server configuration file and a Jetty Server configuration file.

http://www.terracotta.org/ehcache.org/download-monitor
http://www.terracotta.org/ehcache.org/download-monitor

3 0 E h c a c h e M o n i t o r 146

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

30.1.2 Recommended Deployment Topology

It is recommended to place the Monitor on an Operations server separate to production. The Monitor
acts as an aggregation point for access by end users and for scripted connection from Operations tools
for data feeds and set up of alerts.

30.1.2.1 Probe

To include the probe in your Ehcache application, you need to perform two steps:
1 Add the ehcache-probe- version.jar to your application classpath (or war file). Do this in the

same way you added the core ehcache jar to your application.
If you are Maven based, the probe module is in the Terracotta public repository for easy
integration.

 <repository>
 <id>terracotta-releases</id>
 <url>http://www.terracotta.org/download/reflector/
releases</url>
 </repository>
 <dependency>
 <groupId>org.terracotta</groupId>

3 0 E h c a c h e M o n i t o r 147

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <artifactId>ehcache-probe</artifactId>
 <version>[version]</version>
 </dependency>

2 Configure Ehcache to communicate with the probe by specifying the class name of the probe, the
address (or hostname), the port that the monitor will be running on and whether to do memory
measurement. This is done by adding the following to ehcache.xml:

<cacheManagerPeerListenerFactory
 class="org.terracotta.ehcachedx.monitor.probe.ProbePeerListenerFactory"
 properties="monitorAddress=localhost, monitorPort=9889, memoryMeasurement=true" />

3 Include required SLF4J logging jars.
Ehcache 1.7.1 and above require SLF4J. Earlier versions used commons logging. The probe,
like all new Ehcache modules, uses SLF4J, which is becoming a new standard in open source
projects.

If you are using Ehcache 1.5 to 1.7.0, you will need to add slf4j-api and one concrete logger.

If you are using Ehcache 1.7.1 and above you should not need to do anything because you will
already be using slf4j-api and one concrete logger.

More information on SLF4J is available from http://www.slf4j.org.
4 Ensure that statistics capture in each cache is turned on for the probe to gather statistics.

Statistics were turned off by default from Ehcache 2.1 onwards.

<cache name="sampleCache2"
 maxElementsInMemory="1000"
 eternal="true"
 overflowToDisk="false"
 memoryStoreEvictionPolicy="FIFO"
 statistics="true"
 />

30.1.2.2 Monitor

Copy the monitor package to a monitoring server.

To start the monitor, run the startup script provided in the bin directory: startup.sh on Unix and
startup.bat on Microsoft Windows. The monitor port selected in this script should match the port
specified in ehcache.xml.

The monitor can be configured, including interface, port and simple security settings, in the etc/
ehcache-monitor.conf.

Note that if you are using the commercial version, you need to specify in ehcache-monitor.conf the
location of your license file.

e.g.

 license_file=/Users/karthik/Documents/workspace/lib/license/terracotta-
license.key

The monitor connection timeout can also be configured. If the monitor is frequently timing out
while attempting to connect to a node (due to long GC cycles, for example), then the default
timeout value may not be suitable for your environment. You can set the monitor timeout
using the system property ehcachedx.connection.timeout.seconds. For example, -
Dehcachedx.connection.timeout.seconds=60 sets the timeout to 60 seconds.

3 0 E h c a c h e M o n i t o r 148

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

30.1.3 Securing the Monitor

The Monitor can be secured in a variety of ways. The simplest method involves simply editing
ehcache-monitor.conf to specify a single user name and password. This method has the obvious
drawbacks that (1) it provides only a single login identity, and (2) the credentials are stored in clear-
text.

A more comprehensive security solution can be achieved by configuring the Jetty Server with one ore
more UserRealms as described by Jetty and JAAS. Simply edit etc/jetty.xml to use the appropriate
UserRealm implementation for your needs. To configure the Monitor to authenticate against an
existing LDAP server, first ensure that you have defined and properly registered a LoginConfig,
such as the following example:

MyExistingLDAPLoginConfig {
 com.sun.security.auth.module.LdapLoginModule REQUIRED
 java.naming.security.authentication="simple"
 userProvider="ldap://ldap-host:389"
 authIdentity="uid={USERNAME},ou=People,dc=myorg,dc=org"
 useSSL=false
 bindDn="cn=Manager"
 bindCredential="secretBindCredential"
 bindAuthenticationType="simple"
 debug=true;
};

Note: the LdapLoginModule is new with JDK 1.6.

JAAS supports many different types of login modules and it is up to the reader to provide a valid,
working JAAS environment. For more information regarding JAAS refer to JAAS Reference Guide.

For information on how to register your LoginConfig refer to $JAVA_HOME/jre/lib/security/
java.security.

Next, edit etc/jetty.xml like so:

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure//EN"
 "http://jetty.mortbay.org/configure.dtd">
<Configure id="Server" class="org.terracotta.ehcachedx.org.mortbay.jetty.Server">
 <Set name="UserRealms">
 <Array type="org.terracotta.ehcachedx.org.mortbay.jetty.security.UserRealm">
 <Item>
 <New class="org.terracotta.ehcachedx.org.mortbay.jetty.plus.jaas.JAASUserRealm">
 <Set name="Name">MyArbitraryLDAPRealmName</Set>
 <Set name="LoginModuleName">MyExistingLDAPLoginConfig</Set>
 </New>
 </Item>
 </Array>
 </Set>
</Configure>

The LoginModuleName you specify as the second constructor parameter to the JAASUserRealm
class must exactly match the name of your LoginModule. The realm name specified as the first
constructor parameter can be an arbitrary value.

Note: the version of Jetty used in the Monitor has been repackaged so be sure to prefix any standard
Jetty class names with org.terracotta.ehcachedx.

http://docs.codehaus.org/display/JETTY/JAAS
http://java.sun.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

3 0 E h c a c h e M o n i t o r 149

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

If the Jetty Server is found to have been configured with any security realms, the simple user name
and password from ehcache-monitor.conf is ignored.

30.1.4 Using the Web GUI

The web-based GUI is available by pointing your browser at http:// monitor-host-name: monitor-port/
monitor. For a default installation on the local machine, this would be http://localhost:9889/monitor

The GUI contains six tabs, described as follows:

30.1.4.1 Cache Managers

This tab shows aggregate statistics for the cache managers being monitored by probes connected to
the monitor server. Double-clicking on any cache manager drills down to the detailed Statistics tab for
that manager.

30.1.4.2 Statistics

This tab shows the statistics being gathered for each cache managed by the selected cache manager.

The Settings button permits you to add additional statistics fields to the display. Note: only displayed
fields are collected and aggregated by the probe. Adding additional display fields will increase the
processing required for probe and the monitor. The selected settings are stored in a preferences cookie
in your browser.

Double-clicking on any cache drills down to the Contents tab for that cache.

30.1.4.3 Configuration

This tab shows the key configuration information for each cache managed by the selected cache
manager.

30.1.4.4 Contents

This tab enables you to look inside the cache, search for elements via their keys and remove
individual or groups of elements from the cache.

The GUI is set to refresh at the same frequency that the probes aggregate their statistic samples which
is every 10 seconds by default. The progress bar at the bottom of the screen indicates the time until
the next refresh.

30.1.4.5 Charts

This tab contains various live charts of cache statistics. It gives you a feel for the trending of the each
statistic, rather than just the latest value.

30.Estimated Memory Use Chart

This chart shows the estimated memory use of the Cache.

Memory is estimated by sampling. The first 15 puts or updates are measured and then every 100th put
or update. Most caches contain objects of similar size. If this is not the case for your cache, then the
estimate will not be accurate.

Measurements are performed by walking the object graph of sampled elements through reflection. In
some cases such as classes not visible to the classloader, the measurement fails and 0 is recorded for
cache size. If you see a chart with 0 memory size values but the cache has data in it, then this is the
cause. For this release, caches distributed via Terracotta server show as 0.

3 0 E h c a c h e M o n i t o r 150

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

30.1.4.6 API

This tab contains a listing of the API methods. Each is a hyperlink, which may be clicked on. Some
will display data and some will require additional arguments. If additional arguments are required an
error message will be displayed with the details. This tab is meant for interative testing of the API.

30.1.5 Using the API

The Monitor provides a API over HTTP on the same port as the Web GUI.

The list of functions supported by the API can be accessed by pointing your browser at http://
monitor-host-name: monitor-port/monitor/list. For a default installation on the local machine, this
would be http://localhost:9889/monitor/list

The API returns data as either structured XML or plan text. The default format is txt.

For example, the getVersion function returns the software version of the monitor server. It can be
called as follows:

http://localhost:9889/monitor/getVersion

or, to receive the results as XML:

http://localhost:9889/monitor/getVersion?format=xml

To query the data collected by the monitor server from scripts that can then be used to pass the data to
enterprise system management frameworks, commands such as curl or wget can be used.

For example, on a Linux system, to query the list of probes that a local monitor on the default port is
currently aware of, and return the data in XML format, the following command could be used:

 $ curl http://localhost:9889/monitor/listProbes?format=xml

30.1.6 Licensing

Unless otherwise indicated, this module is licensed for usage in development.

For details see the license terms in the appropriate LICENSE.txt. To obtain a commercial license for
use in production, please contact sales@terracottatech.com

30.1.7 Limitations

30.1.7.1 History not Implemented

This release has server side history configuration in place, however history is not implemented. It is
anticipated it will be implemented in the next release. In the meantime, the charts with their recent
history provide trending.

30.1.7.2 Memory Measurement limitations

Unfortunately in Java, there is no JSR for memory measurement of objects. Implementations, such as
the sizeof one we use are subject to fragilities.

For example, Java 7 memory measurement is not supported at this time. You will get a
java.lang.NoSuchFieldException: header exception message if you use memory
measurement with Java 7.

Memory measurement can optionally be turned off by setting memoryMeasurement=false in the
probe configuration.

3 1 C a c h e M a n a g e r E v e n t L i s t e n e r s 151

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

31 CacheManager Event Listeners
...

31.1 CacheManager Event Listeners
CacheManager event listeners allow implementers to register callback methods that will be executed
when a CacheManager event occurs. Cache listeners implement the CacheManagerEventListener
interface.

The events include:
• adding a Cache
• removing a Cache

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on what
their listener is doing.

31.1.1 Configuration

One CacheManagerEventListenerFactory and hence one CacheManagerEventListener can be
specified per CacheManager instance.

The factory is configured as below:

<cacheManagerEventListenerFactory class="" properties=""/>

The entry specifies a CacheManagerEventListenerFactory which will be used to create a
CacheManagerPeerProvider, which is notified when Caches are added or removed from the
CacheManager.

The attributes of CacheManagerEventListenerFactory are:
• class - a fully qualified factory class name
• properties - comma separated properties having meaning only to the factory.

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on
what their listener is doing.

If no class is specified, or there is no cacheManagerEventListenerFactory element, no listener is
created. There is no default.

31.1.2 Implementing a CacheManagerEventListenerFactory and CacheManagerEventListener

CacheManagerEventListenerFactory is an abstract factory for creating cache manager listeners.
Implementers should provide their own concrete factory extending this abstract factory. It can then be
configured in ehcache.xml.

The factory class needs to be a concrete subclass of the abstract factory
CacheManagerEventListenerFactory, which is reproduced below:

/**
 * An abstract factory for creating {@link CacheManagerEventListener}s. Implementers should
 * provide their own concrete factory extending this factory. It can then be configured in
 * ehcache.xml
 *
 * @author Greg Luck
 * @version $Id: cachemanager_event_listeners.apt 3744 2011-03-04 02:58:18Z gluck $
 * @see "http://ehcache.org/documentation/
cachemanager_event_listeners.html"

3 1 C a c h e M a n a g e r E v e n t L i s t e n e r s 152

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 */
public abstract class CacheManagerEventListenerFactory {
 /**
 * Create a <code>CacheEventListener</code>
 *
 * @param properties implementation specific properties. These are configured as comma
 * separated name value pairs in ehcache.xml. Properties may be null
 * @return a constructed CacheManagerEventListener
 */
 public abstract CacheManagerEventListener
 createCacheManagerEventListener(Properties properties);
}

The factory creates a concrete implementation of CacheManagerEventListener, which is reproduced
below:

/**
 * Allows implementers to register callback methods that will be executed when a
 * <code>CacheManager</code> event occurs.
 * The events include:
 *
 * adding a <code>Cache</code>
 * removing a <code>Cache</code>
 *
 * <p/>
 * Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of
 * the implementer to safely handle the potential performance and thread safety issues
 * depending on what their listener is doing.
 * @author Greg Luck
 * @version $Id: cachemanager_event_listeners.apt 3744 2011-03-04 02:58:18Z gluck $
 * @since 1.2
 * @see CacheEventListener
 */
public interface CacheManagerEventListener {
/**
 * Called immediately after a cache has been added and activated.
 * <p/>
 * Note that the CacheManager calls this method from a synchronized method. Any attempt to
 * call a synchronized method on CacheManager from this method will cause a deadlock.
 * <p/>
 * Note that activation will also cause a CacheEventListener status change notification
 * from {@link net.sf.ehcache.Status#STATUS_UNINITIALISED} to
 * {@link net.sf.ehcache.Status#STATUS_ALIVE}. Care should be taken on processing that
 * notification because:
 *
 * the cache will not yet be accessible from the CacheManager.
 * the addCaches methods whih cause this notification are synchronized on the
 * CacheManager. An attempt to call {@link net.sf.ehcache.CacheManager#getCache(String)}
 * will cause a deadlock.
 *
 * The calling method will block until this method returns.
 * <p/>
 * @param cacheName the name of the <code>Cache</
code> the operation relates to
 * @see CacheEventListener

3 1 C a c h e M a n a g e r E v e n t L i s t e n e r s 153

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 */
void notifyCacheAdded(String cacheName);
/**
 * Called immediately after a cache has been disposed and removed. The calling method will
 * block until this method returns.
 * <p/>
 * Note that the CacheManager calls this method from a synchronized method. Any attempt to
 * call a synchronized method on CacheManager from this method will cause a deadlock.
 * <p/>
 * Note that a {@link CacheEventListener} status changed will also be triggered. Any
 * attempt from that notification to access CacheManager will also result in a deadlock.
 * @param cacheName the name of the <code>Cache</
code> the operation relates to
 */
void notifyCacheRemoved(String cacheName);
}

The implementations need to be placed in the classpath accessible to ehcache. Ehcache uses the
ClassLoader returned by Thread.currentThread().getContextClassLoader() to load
classes.

3 2 C a c h e E v e n t L i s t e n e r s 154

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

32 Cache Event Listeners
...

32.1 Cache Event Listeners
Cache listeners allow implementers to register callback methods that will be executed when a cache
event occurs. Cache listeners implement the CacheEventListener interface.

The events include:

• an Element has been put
• an Element has been updated. Updated means that an Element exists in the Cache with the same

key as the Element being put.
• an Element has been removed
• an Element expires, either because timeToLive or timeToIdle have been reached.

Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on what
their listener is doing.

Listeners are guaranteed to be notified of events in the order in which they occurred.

Elements can be put or removed from a Cache without notifying listeners by using the putQuiet and
removeQuiet methods.

In clustered environments event propagation can be configured to be propagated only locally, only
remotely, or both. The default is both, to be backwardly compatible.

32.1.1 Configuration

Cache event listeners are configured per cache. Each cache can have multiple listeners.

Each listener is configured by adding a cacheEventListenerFactory element as follows:

<cache ...>
<cacheEventListenerFactory class="" properties="" listenFor=""/>
...
</cache>

The entry specifies a CacheManagerEventListenerFactory which is used to create a
CachePeerProvider, which then receives notifications.

The attributes of CacheManagerEventListenerFactory are:

• class - a fully qualified factory class name
• properties - an optional comma separated properties having meaning only to the factory.
• listenFor - describes which events will be delivered in a clustered environment, defaults to 'all'.

These are the possible values:

• all - the default is to deliver all local and remote events
• local - deliver only events originating in the current node
• remote - deliver only events originating in other nodes

Callbacks to listener methods are synchronous and unsynchronized. It is the responsibility of the
implementer to safely handle the potential performance and thread safety issues depending on
what their listener is doing.

3 2 C a c h e E v e n t L i s t e n e r s 155

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

32.1.2 Implementing a CacheEventListenerFactory and CacheEventListener

CacheEventListenerFactory is an abstract factory for creating cache event listeners. Implementers
should provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class
CacheEventListenerFactory, which is reproduced below:

/**
 * An abstract factory for creating listeners. Implementers should provide their own
 * concrete factory extending this factory. It can then be configured in ehcache.xml
 *
 * @author Greg Luck
 * @version $Id: cache_event_listeners.apt 3789 2011-03-17 00:01:42Z gluck $
 */
public abstract class CacheEventListenerFactory {
/**
 * Create a <code>CacheEventListener</code>
 *
 * @param properties implementation specific properties. These are configured as comma
 * separated name value pairs in ehcache.xml
 * @return a constructed CacheEventListener
 */
public abstract CacheEventListener createCacheEventListener(Properties properties);
}

The factory creates a concrete implementation of the CacheEventListener interface, which is
reproduced below:

/**
 * Allows implementers to register callback methods that will be executed when a cache event
 * occurs.
 * The events include:
 *
 * put Element
 * update Element
 * remove Element
 * an Element expires, either because timeToLive or timeToIdle has been reached.
 *
 * <p/>
 * Callbacks to these methods are synchronous and unsynchronized. It is the responsibility of
 * the implementer to safely handle the potential performance and thread safety issues
 * depending on what their listener is doing.
 * <p/>
 * Events are guaranteed to be notified in the order in which they occurred.
 * <p/>
 * Cache also has putQuiet and removeQuiet methods which do not notify listeners.
 *
 * @author Greg Luck
 * @version $Id: cache_event_listeners.apt 3789 2011-03-17 00:01:42Z gluck $
 * @see CacheManagerEventListener
 * @since 1.2
 */
public interface CacheEventListener extends Cloneable {
/**

3 2 C a c h e E v e n t L i s t e n e r s 156

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * Called immediately after an element has been removed. The remove method will block until
 * this method returns.
 * <p/>
 * Ehcache does not chech for
 * <p/>
 * As the {@link net.sf.ehcache.Element} has been removed, only what was the key of the
 * element is known.
 * <p/>
 *
 * @param cache the cache emitting the notification
 * @param element just deleted
 */
void notifyElementRemoved(final Ehcache cache, final Element element) throws CacheException;
/**
 * Called immediately after an element has been put into the cache. The
 * {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method
 * will block until this method returns.
 * <p/>
 * Implementers may wish to have access to the Element's fields, including value, so the
 * element is provided. Implementers should be careful not to modify the element. The
 * effect of any modifications is undefined.
 *
 * @param cache the cache emitting the notification
 * @param element the element which was just put into the cache.
 */
void notifyElementPut(final Ehcache cache, final Element element) throws CacheException;
/**
 * Called immediately after an element has been put into the cache and the element already
 * existed in the cache. This is thus an update.
 * <p/>
 * The {@link net.sf.ehcache.Cache#put(net.sf.ehcache.Element)} method
 * will block until this method returns.
 * <p/>
 * Implementers may wish to have access to the Element's fields, including value, so the
 * element is provided. Implementers should be careful not to modify the element. The
 * effect of any modifications is undefined.
 *
 * @param cache the cache emitting the notification
 * @param element the element which was just put into the cache.
 */
void notifyElementUpdated(final Ehcache cache, final Element element) throws CacheException;
/**
 * Called immediately after an element is <i>found</i> to be expired. The
 * {@link net.sf.ehcache.Cache#remove(Object)} method will block until this method returns.
 * <p/>
 * As the {@link Element} has been expired, only what was the key of the element is known.
 * <p/>
 * Elements are checked for expiry in Ehcache at the following times:
 *
 * When a get request is made
 * When an element is spooled to the diskStore in accordance with a MemoryStore
 * eviction policy
 * In the DiskStore when the expiry thread runs, which by default is

3 2 C a c h e E v e n t L i s t e n e r s 157

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * {@link net.sf.ehcache.Cache#DEFAULT_EXPIRY_THREAD_INTERVAL_SECONDS}
 *
 * If an element is found to be expired, it is deleted and this method is notified.
 *
 * @param cache the cache emitting the notification
 * @param element the element that has just expired
 * <p/>
 * Deadlock Warning: expiry will often come from the <code>DiskStore</
code>
 * expiry thread. It holds a lock to the DiskStorea the time the
 * notification is sent. If the implementation of this method calls into a
 * synchronized <code>Cache</
code> method and that subsequently calls into
 * DiskStore a deadlock will result. Accordingly implementers of this method
 * should not call back into Cache.
 */
void notifyElementExpired(final Ehcache cache, final Element element);
/**
 * Give the replicator a chance to cleanup and free resources when no longer needed
 */
void dispose();
/**
 * Creates a clone of this listener. This method will only be called by Ehcache before a
 * cache is initialized.
 * <p/>
 * This may not be possible for listeners after they have been initialized. Implementations
 * should throw CloneNotSupportedException if they do not support clone.
 * @return a clone
 * @throws CloneNotSupportedException if the listener could not be cloned.
 */
public Object clone() throws CloneNotSupportedException;
}

The implementations need to be placed in the classpath accessible to Ehcache.

See the chapter on Classloading for details on how classloading of these classes will be done.

32.1.3 FAQ

32.1.3.1 Can I add a listener to an already running cache?

Yes.

 cache.getCacheEventNotificationService().registerListener(myListener);

3 3 C a c h e E x c e p t i o n H a n d l e r s 158

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

33 Cache Exception Handlers
...

33.1 Cache Exception Handlers
By default, most cache operations will propagate a runtime CacheException on failure. An
interceptor, using a dynamic proxy, may be configured so that a CacheExceptionHandler can be
configured to intercept Exceptions. Errors are not intercepted.

Caches with ExceptionHandling configured are of type Ehcache. To get the exception
handling behaviour they must be referenced using CacheManager.getEhcache(), not
CacheManager.getCache(), which returns the underlying undecorated cache.

CacheExceptionHandlers may be set either declaratively in the ehcache.xml configuration file or
programmatically.

33.1.1 Declarative Configuration

Cache event listeners are configured per cache. Each cache can have at most one exception handler.

An exception handler is configured by adding a cacheExceptionHandlerFactory element as shown in
the following example:

<cache ...>
 <cacheExceptionHandlerFactory
 class="net.sf.ehcache.exceptionhandler.CountingExceptionHandlerFactory"
 properties="logLevel=FINE"/>
</cache>

33.1.2 Implementing a CacheExceptionHandlerFactory and CacheExceptionHandler

CacheExceptionHandlerFactory is an abstract factory for creating cache exception handlers.
Implementers should provide their own concrete factory, extending this abstract factory. It can then be
configured in ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class
CacheExceptionHandlerFactory, which is reproduced below:

/**
 * An abstract factory for creating <code>CacheExceptionHandler</
code>s at configuration
 * time, in ehcache.xml.
 * <p/>
 * Extend to create a concrete factory
 *
 * @author Greg Luck
 * @version $Id: cache_exception_handlers.apt 3744 2011-03-04 02:58:18Z gluck $
 */
public abstract class CacheExceptionHandlerFactory {
/**
 * Create an <code>CacheExceptionHandler</code>
 *
 * @param properties implementation specific properties. These are configured as comma
 * separated name value pairs in ehcache.xml
 * @return a constructed CacheExceptionHandler
 */

3 3 C a c h e E x c e p t i o n H a n d l e r s 159

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

public abstract CacheExceptionHandler createExceptionHandler(Properties properties);
}

The factory creates a concrete implementation of the CacheExceptionHandler interface, which is
reproduced below:

/**
 * A handler which may be registered with an Ehcache, to handle exception on Cache operations.
 * <p/>
 * Handlers may be registered at configuration time in ehcache.xml, using a
 * CacheExceptionHandlerFactory, or * set at runtime (a strategy).
 * <p/>
 * If an exception handler is registered, the default behaviour of throwing the exception
 * will not occur. The handler * method <code>onException</
code> will be called. Of course, if
 * the handler decides to throw the exception, it will * propagate up through the call stack.
 * If the handler does not, it won't.
 * <p/>
 * Some common Exceptions thrown, and which therefore should be considered when implementing
 * this class are listed below:
 *
 * {@link IllegalStateException} if the cache is not
 * {@link net.sf.ehcache.Status#STATUS_ALIVE}
 * {@link IllegalArgumentException} if an attempt is made to put a null
 * element into a cache
 * {@link net.sf.ehcache.distribution.RemoteCacheException} if an issue occurs
 * in remote synchronous replication
 *
 *
 *
 *
 * @author Greg Luck
 * @version $Id: cache_exception_handlers.apt 3744 2011-03-04 02:58:18Z gluck $
 */
public interface CacheExceptionHandler {
/**
 * Called if an Exception occurs in a Cache method. This method is not called
 * if an <code>Error</code> occurs.
 *
 * @param Ehcache the cache in which the Exception occurred
 * @param key the key used in the operation, or null if the operation does not use a
 * key or the key was null
 * @param exception the exception caught
 */
void onException(Ehcache ehcache, Object key, Exception exception);
}

The implementations need to be placed in the classpath accessible to Ehcache.

See the chapter on Classloading for details on how classloading of these classes will be done.

33.1.3 Programmatic Configuration

The following example shows how to add exception handling to a cache then adding the cache back
into cache manager so that all clients obtain the cache handling decoration.

3 3 C a c h e E x c e p t i o n H a n d l e r s 160

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 CacheManager cacheManager = ...
 Ehcache cache = cacheManger.getCache("exampleCache");
 ExceptionHandler handler = new ExampleExceptionHandler(...);
 cache.setCacheLoader(handler);
 Ehcache proxiedCache = ExceptionHandlingDynamicCacheProxy.createProxy(cache);
 cacheManager.replaceCacheWithDecoratedCache(cache, proxiedCache);

3 4 C a c h e E x t e n s i o n s 161

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

34 Cache Extensions
...

34.1 Cache Extensions
CacheExtensions are a general purpose mechanism to allow generic extensions to a Cache.

CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the lifecycle
methods.

CacheExtensions are created using the CacheExtensionFactory which has a
codecreateCacheCacheExtension() /code method which takes as a parameter a Cache and properties.
It can thus call back into any public method on Cache, including, of course, the load methods.

CacheExtensions are suitable for timing services, where you want to create a timer to perform cache
operations. The other way of adding Cache behaviour is to decorate a cache.

See @link net.sf.ehcache.constructs.blocking.BlockingCache for an example of how to do this.

Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things such
as registering a CacheEventListener or even a CacheManagerEventListener, all from within a
CacheExtension, creating more opportunities for customisation.

34.1.1 Declarative Configuration

Cache extension are configured per cache. Each cache can have zero or more.

A CacheExtension is configured by adding a cacheExceptionHandlerFactory element as shown in the
following example:

<cache ...>
 <cacheExtensionFactory class="com.example.FileWatchingCacheRefresherExtensionFactory"
 properties="refreshIntervalMillis=18000, loaderTimeout=3000,
 flushPeriod=whatever, someOtherProperty=someValue ..."/>
</cache>

34.1.2 Implementing a CacheExtensionFactory and CacheExtension

CacheExtensionFactory is an abstract factory for creating cache extension. Implementers should
provide their own concrete factory, extending this abstract factory. It can then be configured in
ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class CacheExtensionFactory,
which is reproduced below:

/**
 * An abstract factory for creating <code>CacheExtension</
code>s. Implementers should
 * provide their own * concrete factory extending this factory. It can then be configured
 * in ehcache.xml.
 *
 * @author Greg Luck
 * @version $Id: cache_extensions.apt 3744 2011-03-04 02:58:18Z gluck $
 */
public abstract class CacheExtensionFactory {
/**
 * @param cache the cache this extension should hold a reference to, and to whose
 * lifecycle it should be bound.

3 4 C a c h e E x t e n s i o n s 162

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * @param properties implementation specific properties configured as delimiter separated
 * name value pairs in ehcache.xml
 */
public abstract CacheExtension createCacheExtension(Ehcache cache, Properties properties);
}

The factory creates a concrete implementation of the CacheExtension interface, which is reproduced
below:

/**
 * This is a general purpose mechanism to allow generic extensions to a Cache.
 * <p/>
 * CacheExtensions are tied into the Cache lifecycle. For that reason this interface has the
 * lifecycle methods.
 * <p/>
 * CacheExtensions are created using the CacheExtensionFactory which has a
 * <code>createCacheCacheExtension()</
code> method which takes as a parameter a Cache and
 * properties. It can thus call back into any public method on Cache, including, of course,
 * the load methods.
 * <p/>
 * CacheExtensions are suitable for timing services, where you want to create a timer to
 * perform cache operations. The other way of adding Cache behaviour is to decorate a cache.
 * See {@link net.sf.ehcache.constructs.blocking.BlockingCache} for an example of how to do
 * this.
 * <p/>
 * Because a CacheExtension holds a reference to a Cache, the CacheExtension can do things
 * such as registering a CacheEventListener or even a CacheManagerEventListener, all from
 * within a CacheExtension, creating more opportunities for customisation.
 *
 * @author Greg Luck
 * @version $Id: cache_extensions.apt 3744 2011-03-04 02:58:18Z gluck $
 */
public interface CacheExtension {
/**
 * Notifies providers to initialise themselves.
 * <p/>
 * This method is called during the Cache's initialise method after it has changed it's
 * status to alive. Cache operations are legal in this method.
 *
 * @throws CacheException
 */
void init();
/**
 * Providers may be doing all sorts of exotic things and need to be able to clean up on
 * dispose.
 * <p/>
 * Cache operations are illegal when this method is called. The cache itself is partly
 * disposed when this method is called.
 *
 * @throws CacheException
 */
void dispose() throws CacheException;
/**
 * Creates a clone of this extension. This method will only be called by Ehcache before a

3 4 C a c h e E x t e n s i o n s 163

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * cache is initialized.
 * <p/>
 * Implementations should throw CloneNotSupportedException if they do not support clone
 * but that will stop them from being used with defaultCache.
 *
 * @return a clone
 * @throws CloneNotSupportedException if the extension could not be cloned.
 */
public CacheExtension clone(Ehcache cache) throws CloneNotSupportedException;
/**
 * @return the status of the extension
 */
public Status getStatus();
}

The implementations need to be placed in the classpath accessible to ehcache.

See the chapter on Classloading for details on how class loading of these classes will be done.

34.1.3 Programmatic Configuration

Cache Extensions may also be programmatically added to a Cache as shown.

 TestCacheExtension testCacheExtension = new TestCacheExtension(cache, ...);
 testCacheExtension.init();
 cache.registerCacheExtension(testCacheExtension);

3 5 C a c h e L o a d e r s 164

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

35 Cache Loaders
...

35.1 Cache Loaders
A CacheLoader is an interface which specifies load and loadAll methods with a variety of
parameters.

CacheLoaders come from JCache, but are a frequently requested feature, so they have been
incorporated into the core Ehcache classes and can be configured in ehcache.xml.

CacheLoaders are invoked in the following Cache methods:

• getWithLoader (synchronous)
• getAllWithLoader (synchronous)
• load (asynchronous)
• loadAll (asynchronous)

They are also invoked in similar (though slightly differently named) JCache methods.

The methods will invoke a CacheLoader if there is no entry for the key or keys requested. By
implementing CacheLoader, an application form of loading can take place. The get... methods follow
the pull-through cache pattern. The load... methods are useful as cache warmers.

CacheLoaders are similar to the CacheEntryFactory used in SelfPopulatingCache. However
SelfPopulatingCache is a decorator to ehcache. The CacheLoader functionality is available right in a
Cache, Ehcache or JCache and follows a more industry standard convention.

CacheLoaders may be set either declaratively in the ehcache.xml configuration file or
programmatically. This becomes the default CacheLoader. Some of the methods invoking loaders
enable an override CacheLoader to be passed in as a parameter.

More than one cacheLoader can be registered, in which case the loaders form a chain which are
executed in order. If a loader returns null, the next in chain is called.

35.1.1 Declarative Configuration

cacheLoaderFactory - Specifies a CacheLoader, which can be used both asynchronously and
synchronously to load objects into a cache. More than one cacheLoaderFactory element can be added,
in which case the loaders form a chain which are executed in order. If a loader returns null, the next in
chain is called.

<cache ...>
 <cacheLoaderFactory class="com.example.ExampleCacheLoaderFactory"
 properties="type=int,startCounter=10"/
>
</cache>

35.1.2 Implementing a CacheLoaderFactory and CacheLoader

CacheLoaderFactory is an abstract factory for creating CacheLoaders. Implementers should provide
their own concrete factory, extending this abstract factory. It can then be configured in ehcache.xml

The factory class needs to be a concrete subclass of the abstract factory class CacheLoaderFactory,
which is reproduced below:

/**
 * An abstract factory for creating cache loaders. Implementers should provide their own
 * concrete factory extending this factory.

3 5 C a c h e L o a d e r s 165

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * <p/>
 * There is one factory method for JSR107 Cache Loaders and one for Ehcache ones. The Ehcache
 * loader is a sub interface of the JSR107 Cache Loader.
 * <p/>
 * Note that both the JCache and Ehcache APIs also allow the CacheLoader to be set
 * programmatically.
 * @author Greg Luck
 * @version $Id: cache_loaders.apt 3744 2011-03-04 02:58:18Z gluck $
 */
public abstract class CacheLoaderFactory {
/**
 * Creates a CacheLoader using the JSR107 creational mechanism.
 * This method is called from {@link net.sf.ehcache.jcache.JCacheFactory}
 *
 * @param environment the same environment passed into
 * {@link net.sf.ehcache.jcache.JCacheFactory}.
 * This factory can extract any properties it needs from the environment.
 * @return a constructed CacheLoader
 */
public abstract net.sf.jsr107cache.CacheLoader createCacheLoader(Map environment);
/**
 * Creates a CacheLoader using the Ehcache configuration mechanism at the time
 * the associated cache is created.
 *
 * @param properties implementation specific properties. These are configured as comma
 * separated name value pairs in ehcache.xml
 * @return a constructed CacheLoader
 */
public abstract net.sf.ehcache.loader.CacheLoader createCacheLoader(Properties properties);
/**
 * @param cache the cache this extension should hold a reference to,
 * and to whose lifecycle it should be bound.
 * @param properties implementation specific properties configured as delimiter
 * separated name value pairs in ehcache.xml
 * @return a constructed CacheLoader
 */
public abstract CacheLoader createCacheLoader(Ehcache cache, Properties properties);
}

The factory creates a concrete implementation of the CacheLoader interface, which is reproduced
below.

A CacheLoader is bound to the lifecycle of a cache, so that init() is called during cache
initialization, and dispose() is called on disposal of a cache.

/**
 * Extends JCache CacheLoader with load methods that take an argument in addition to a key
 * @author Greg Luck
 * @version $Id: cache_loaders.apt 3744 2011-03-04 02:58:18Z gluck $
 */
public interface CacheLoader extends net.sf.jsr107cache.CacheLoader {
/**
 * Load using both a key and an argument.
 * <p/>
 * JCache will call through to the load(key) method, rather than this method,

3 5 C a c h e L o a d e r s 166

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * where the argument is null.
 *
 * @param key the key to load the object for
 * @param argument can be anything that makes sense to the loader
 * @return the Object loaded
 * @throws CacheException
 */
Object load(Object key, Object argument) throws CacheException;
/**
 * Load using both a key and an argument.
 * <p/>
 * JCache will use the loadAll(key) method where the argument is null.
 *
 * @param keys the keys to load objects for
 * @param argument can be anything that makes sense to the loader
 * @return a map of Objects keyed by the collection of keys passed in.
 * @throws CacheException
 */
Map loadAll(Collection keys, Object argument) throws CacheException;
/**
 * Gets the name of a CacheLoader
 *
 * @return the name of this CacheLoader
 */
String getName();
/**
 * Creates a clone of this extension. This method will only be called by Ehcache before a
 * cache is initialized.
 * <p/>
 * Implementations should throw CloneNotSupportedException if they do not support clone
 * but that will stop them from being used with defaultCache.
 *
 * @return a clone
 * @throws CloneNotSupportedException if the extension could not be cloned.
 */
public CacheLoader clone(Ehcache cache) throws CloneNotSupportedException;
/**
 * Notifies providers to initialise themselves.
 * <p/>
 * This method is called during the Cache's initialise method after it has changed it's
 * status to alive. Cache operations are legal in this method.
 *
 * @throws net.sf.ehcache.CacheException
 */
void init();
/**
 * Providers may be doing all sorts of exotic things and need to be able to clean up on
 * dispose.
 * <p/>
 * Cache operations are illegal when this method is called. The cache itself is partly
 * disposed when this method is called.
 *
 * @throws net.sf.ehcache.CacheException

3 5 C a c h e L o a d e r s 167

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 */
void dispose() throws net.sf.ehcache.CacheException;
/**
 * @return the status of the extension
 */
public Status getStatus();
}

The implementations need to be placed in the classpath accessible to ehcache.

See the chapter on Classloading for details on how classloading of these classes will be done.

35.1.3 Programmatic Configuration

The following methods on Cache allow runtime interrogation, registration and unregistration of
loaders:

/**
 * Register a {@link CacheLoader} with the cache. It will then be tied into the cache
 * lifecycle.
 * <p/>
 * If the CacheLoader is not initialised, initialise it.
 *
 * @param cacheLoader A Cache Loader to register
 */
public void registerCacheLoader(CacheLoader cacheLoader) {
 registeredCacheLoaders.add(cacheLoader);
}
/**
 * Unregister a {@link CacheLoader} with the cache. It will then be detached from the cache
 * lifecycle.
 *
 * @param cacheLoader A Cache Loader to unregister
 */
public void unregisterCacheLoader(CacheLoader cacheLoader) {
 registeredCacheLoaders.remove(cacheLoader);
}
/**
 * @return the cache loaders as a live list
 */
public List<CacheLoader> getRegisteredCacheLoaders() {
 return registeredCacheLoaders;
}

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 168

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

36 Write-through and write-behind caching with
CacheWriters
...

36.1 Write-through and Write-behind Caching with the CacheWriter
Write-through caching is a caching pattern where writes to the cache cause writes to an underlying
resource. The cache acts as a facade to the underlying resource. With this pattern, it often makes sense
to read through the cache too.

Write-behind caching uses the same client API; however, the write happens asynchronously.

Ehcache-2.0 introduced write-through and write-behind caching.

While file systems or a web-service clients can underlie the facade of a write-through cache, the most
common underlying resource is a database. To simplify the discussion, we will use the database as the
example resource.

36.1.1 Potential Benefits of Write-Behind

The major benefit of write-behind is database offload. This can be achieved in a number of ways:

• time shifting - moving writes to a specific time or time interval. For example, writes could
be batched up and written overnight, or at 5 minutes past the hour, to avoid periods of peak
contention.

• rate limiting - spreading writes out to flatten peaks. Say a Point of Sale network has an end-of-
day procedure where data gets written up to a central server. All POS nodes in the same time
zone will write all at once. A very large peak will occur. Using rate limiting, writes could be
limited to 100 TPS, and the queue of writes are whittled down over several hours

• conflation - consolidate writes to create fewer transactions. For example, a value in a database
row is updated by 5 writes, incrementing it from 10 to 20 to 31 to 40 to 45. Using conflation, the
5 transactions are replaced by one to update the value from 10 to 45.
These benefits must be weighed against the limitations and constraints imposed.

36.1.2 Limitations & Constraints of Write-Behind

36.1.2.1 Transaction Boundaries

If the cache participates in a JTA transaction (ehcache-2.0 and higher), which means it is an
XAResource, then the cache can be made consistent with the database. A write to the database, and a
commit or rollback, happens with the transaction boundary.

In write-behind, the write to the resource happens after the write to the cache. The transaction
boundary is the write to the outstanding queue, not the write behind. In write-through mode, commit
can get called and both the cache and the underlying resource can get committed at once.

Because the database is being written to outside of the transaction, there is always a risk that a
failure on the eventual write will occur. While this can be mitigated with retry counts and delays,
compensating actions may be required.

36.1.2.2 Time delay

The obvious implication of asynchronous writes is that there is a delay between when the cache is
updated and when the database is updated. This introduces an inconsistency between the cache and
the database, where the cache holds the correct value and the database will be eventually consistent
with the cache. The data passed into the CacheWriter methods is a snapshot of the cache entry at the
time of the write to operation.

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 169

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

A read against the database will result in incorrect data being loaded.

36.1.2.3 Applications Tolerant of Inconsistency

The application must be tolerant of inconsistent data. The following examples illustrate this
requirement:

• The database is logging transactions and only appends are done.
• Reading is done by a part of the application that does not write, so there is no way that data can

be corrupted. The application is tolerant of delays. For example, a news application where the
reader displays the articles that are written.

Note if other applications are writing to the database, then a cache can often be inconsistent with the
database.

36.1.2.4 Node time synchronisation

Ideally node times should be synchronised. The write-behind queue is generally written to the
underlying resource in timestamp order, based on the timestamp of the cache operation, although
there is no guaranteed ordering.

The ordering will be more consistent if all nodes are using the same time. This can easily be achieved
by configuring your system clock to synchronise with a time authority using Network Time Protocol.

36.1.2.5 No ordering guarantees

The items on the write-behind queue are generally in order, but this isn't guaranteed. In certain
situations and more particularly in clustered usage, the items can be processed out of order.
Additionally, when batching is used, write and delete collections are aggregated separately and can be
processed inside the CacheWriter in a different order than the order that was used by the queue.

Your application must be tolerant of item reordering or you need to compensate for this in your
implementation of the CacheWriter. Possible examples are:

• Working with versioning in the cache elements.
• Verifications with the underlying resource to check if the scheduled write-behind operation is

still relevant.

36.1.3 Using a combined Read-Through and Write-Behind Cache

For applications that are not tolerant of inconsistency, the simplest solution is for the application to
always read through the same cache that it writes through. Provided all database writes are through
the cache, consistency is guaranteed. And in the distributed caching scenario, using Terracotta
clustering extends the same guarantee to the cluster.

If using transactions, the cache is the XAResource, and a commit is a commit to the cache.

The cache effectively becomes the System Of Record ("SOR"). Terracotta clustering provides HA and
durability and can easily act as the SOR. The database then becomes a backup to the SOR.

The following aspects of read-through with write-behind should be considered:

36.1.3.1 Lazy Loading

The entire data set does not need to be loaded into the cache on startup. a read-through cache uses
a CacheLoader that loads data into the cache on demand. In this way the cache can be populated
lazily.

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 170

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

36.1.3.2 Caching of a Partial Dataset

If the entire dataset cannot fit in the cache, then some reads will miss the cache and fall through to
the CacheLoader which will in turn hit the database. If a write has occurred but has not yet hit the
database due to write-behind, then the database will be inconsistent.

The simplest solution is to ensure that the entire dataset is in the cache. This then places some
implications on cache configuration in the areas of expiry and eviction.

36.Eviction

Eviction occurs when the maximum elements for the cache have been exceeded. Ensure
that the maxElementsInMemory and, if using the DiskStore or Terracotta clustering, the
maxElementsOnDisk exceeds the required size, so that eviction does not not occur.

36.Expiry

Even if all of the dataset can fit in the cache, it could be evicted if Elements expire. Accordingly, both
timeToLive and timeToIdle should be set to eternal ("0") to prevent this from happening.

36.1.4 Introduction Video

Alex Snaps the primary author of Write Behind presents an introductory video on Write Behind.

36.1.5 Sample Application

We have created a sample web application for a raffle which fully demonstrates how to use write
behind.

You can also checkout the Ehcache Raffle application, that demonstrates Cache Writers and Cache
Loaders from github.com.

36.1.6 Ehcache Versions

Both Ehcache standalone (DX) and with Terracotta Server Array (Ehcache EX and FX) are supported.

36.1.6.1 Ehcache DX (Standalone Ehcache)

The write-behind queue is stored locally in memory. It supports all configuration options, but any data
in the queue will be lost on JVM shutdown.

36.1.6.2 Ehcache EX and FX

36.Durable HA write-behind Queue

EX and FX when used with the Terracotta Server Array will store the queue on the Terracotta Server
Array and can thus be configured for durability and HA. The data is still kept in the originating node
for performance.

36.1.7 Configuration

There are many configuration options. See the CacheWriterConfiguration for properties that
may be set and their effect.

Below is an example of how to configure the cache writer in XML:

<cache name="cacheName" eternal="false" maxElementsInMemory="1000" overflowToDisk="false">
 <cacheWriter writeMode="write_behind" maxWriteDelay="8" rateLimitPerSecond="5"
 writeCoalescing="true" writeBatching="true" writeBatchSize="20"
 retryAttempts="2" retryAttemptDelaySeconds="2">

http://vimeo.com/21193026
https://github.com/alexsnaps/Ehcache-Raffle

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 171

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <cacheWriterFactory class="com.company.MyCacheWriterFactory"
 properties="just.some.property=test; another.property=test2" propertySeparator=";"/
>
 </cacheWriter>
</cache>

Further examples:

<cache name="writeThroughCache1" eternal="false" maxElementsInMemory="1000" overflowToDisk="false"/
>
<cache name="writeThroughCache2" eternal="false" maxElementsInMemory="1000" overflowToDisk="false">
 <cacheWriter/>
</cache>
<cache name="writeThroughCache3" eternal="false" maxElementsInMemory="1000" overflowToDisk="false">
 <cacheWriter writeMode="write_through" notifyListenersOnException="true" maxWriteDelay="30"
 rateLimitPerSecond="10" writeCoalescing="true" writeBatching="true" writeBatchSize="8"
 retryAttempts="20" retryAttemptDelaySeconds="60"/>
</cache>
<cache name="writeThroughCache4" eternal="false" maxElementsInMemory="1000" overflowToDisk="false">
 <cacheWriter writeMode="write_through" notifyListenersOnException="false" maxWriteDelay="0"
 rateLimitPerSecond="0" writeCoalescing="false" writeBatching="false" writeBatchSize="1"
 retryAttempts="0" retryAttemptDelaySeconds="0">
 <cacheWriterFactory class="net.sf.ehcache.writer.WriteThroughTestCacheWriterFactory"/
>
 </cacheWriter>
</cache>
<cache name="writeBehindCache5" eternal="false" maxElementsInMemory="1000" overflowToDisk="false">
 <cacheWriter writeMode="write-
behind" notifyListenersOnException="true" maxWriteDelay="8" rateLimitPerSecond="5"
 writeCoalescing="true" writeBatching="false" writeBatchSize="20"
 retryAttempts="2" retryAttemptDelaySeconds="2">
 <cacheWriterFactory class="net.sf.ehcache.writer.WriteThroughTestCacheWriterFactory"
 properties="just.some.property=test; another.property=test2" propertySeparator=";"/
>
 </cacheWriter>
</cache>

This configuration can also be achieved through the Cache constructor in Java:

Cache cache = new Cache(
 new CacheConfiguration("cacheName", 10)
 .cacheWriter(new CacheWriterConfiguration()
 .writeMode(CacheWriterConfiguration.WriteMode.WRITE_BEHIND)
 .maxWriteDelay(8)
 .rateLimitPerSecond(5)
 .writeCoalescing(true)
 .writeBatching(true)
 .writeBatchSize(20)
 .retryAttempts(2)
 .retryAttemptDelaySeconds(2)
 .cacheWriterFactory(new CacheWriterConfiguration.CacheWriterFactoryConfiguration()
 .className("com.company.MyCacheWriterFactory")
 .properties("just.some.property=test; another.property=test2")
 .propertySeparator(";"))));

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 172

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

Instead of relying on a CacheWriterFactoryConfiguration>> to create a
<<<CacheWriter, it's also possible to explicitly register a CacheWriter instance from within Java
code. This allows you to refer to local resources like database connections or file handles.

 Cache cache = manager.getCache("cacheName");
 MyCacheWriter writer = new MyCacheWriter(jdbcConnection);
 cache.registerCacheWriter(writer);

36.1.7.1 Configuration Attributes

The CacheWriterFactory supports the following attributes:

36.All modes

• write-mode [write-through | write-behind] - Whether to run in write-behind or write-through
mode. The default is write-through.

36.write-through mode only

• notifyListenersOnException - Whether to notify listeners when an exception occurs on a store
operation. Defaults to false. If using cache replication, set this attribute to "true" to ensure that
changes to the underlying store are replicated.

36.write-behind mode only

• writeBehindMaxQueueSize - The maximum number of elements allowed per
queue, or per bucket (if the queue has multiple buckets). "0" means unbounded
(default). When an attempt to add an element is made, the queue size (or bucket
size) is checked, and if full then the operation is blocked until the size drops by one.
Note that elements or a batch currently being processed (and coalesced elements)
are not included in the size value. Programmatically, this attribute can be set with
net.sf.ehcache.config.CacheWriterConfiguration.setWriteBehindMaxQueueSize().

• writeBehindConcurrency - The number of thread-bucket pairs on the node
for the given cache (default is 1). Each thread uses the settings configured for
write-behind. For example, if rateLimitPerSecond is set to 100, each thread-
bucket pair will perform up to 100 operations per second. In this case, setting
writeBehindConcurrency="4" means that up to 400 operations per second will occur
on the node for the given cache. Programmatically, this attribute can be set with
net.sf.ehcache.config.CacheWriterConfiguration.setWriteBehindConcurrency().

• maxWriteDelaySeconds - The maximum number of seconds to wait before writing behind.
Defaults to 0. If set to a value greater than 0, it permits operations to build up in the queue to
enable effective coalescing and batching optimisations.

• rateLimitPerSecond - The maximum number of store operations to allow per second.
• writeCoalescing - Whether to use write coalescing. Defaults to false. When set to true, if multiple

operations on the same key are present in the write-behind queue, then only the latest write is
done (the others are redundant). This can dramatically reduce load on the underlying resource.

• writeBatching - Whether to batch write operations. Defaults to false. If set to true, storeAll and
deleteAll will be called rather than store and delete being called for each key. Resources such as
databases can perform more efficiently if updates are batched to reduce load.

• writeBatchSize - The number of operations to include in each batch. Defaults to 1. If there are
less entries in the write-behind queue than the batch size, the queue length size is used. Note that
batching is split across operations. For example, if the batch size is 10 and there were 5 puts and
5 deletes, the CacheWriter is invoked. It does not wait for 10 puts or 10 deletes.

• retryAttempts - The number of times to attempt writing from the queue. Defaults to 1.
• retryAttemptDelaySeconds - The number of seconds to wait before retrying.

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 173

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

36.1.8 API

CacheLoaders are exposed for API use through the cache.getWithLoader(...)
method. CacheWriters are exposed with cache.putWithWriter(...) and
cache.removeWithWriter(...) methods.

For example, following is the method signature for cache.putWithWriter(...).

/**
 * Put an element in the cache writing through a CacheWriter. If no CacheWriter has been
 * set for the cache, then this method has the same effect as cache.put().
 * <p/>
 * Resets the access statistics on the element, which would be the case if it has previously
 * been gotten from a cache, and is now being put back.
 * <p/>
 * Also notifies the CacheEventListener, if the writer operation succeeds, that:
 *
 * the element was put, but only if the Element was actually put.
 * if the element exists in the cache, that an update has occurred, even if the element
 * would be expired if it was requested
 *
 *
 * @param element An object. If Serializable it can fully participate in replication and the
 * DiskStore.
 * @throws IllegalStateException if the cache is not {@link net.sf.ehcache.Status#STATUS_ALIVE}
 * @throws IllegalArgumentException if the element is null
 * @throws CacheException
 */
void putWithWriter(Element element) throws IllegalArgumentException, IllegalStateException,
 CacheException;

See the Cache JavaDoc for the complete API.

36.1.9 SPI

The Ehcache write-through SPI is the CacheWriter interface. Implementers perform writes to the
underlying resource in their implementation.

/**
 * A CacheWriter is an interface used for write-through and write-
behind caching to a
 * underlying resource.
 * <p/>
 * If configured for a cache, CacheWriter's methods will be called on a cache operation.
 * A cache put will cause a CacheWriter write
 * and a cache remove will cause a writer delete.
 * <p>
 * Implementers should create an implementation which handles storing and deleting to an
 * underlying resource.
 * </p>
 * <h4>Write-Through</h4>
 * In write-
through mode, the cache operation will occur and the writer operation will occur
 * before CacheEventListeners are notified. If
 * the write operation fails an exception will be thrown. This can result in a cache which
 * is inconsistent with the underlying resource.

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 174

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * To avoid this, the cache and the underlying resource should be configured to participate
 * in a transaction. In the event of a failure
 * a rollback can return all components to a consistent state.
 * <p/>
 * <h4>Write-Behind</h4>
 * In write-behind mode, writes are written to a write-
behind queue. They are written by a
 * separate execution thread in a configurable
 * way. When used with Terracotta Server Array, the queue is highly available. In addition
 * any node in the cluster may perform the
 * write-behind operations.
 * <p/>
 * <h4>Creation and Configuration</h4>
 * CacheWriters can be created using the CacheWriterFactory.
 * <p/>
 * The manner upon which a CacheWriter is actually called is determined by the
 * {@link net.sf.ehcache.config.CacheWriterConfiguration} that is set up for cache
 * that is using the CacheWriter.
 * <p/>
 * See the CacheWriter chapter in the documentation for more information on how to use writers.
 *
 * @author Greg Luck
 * @author Geert Bevin
 * @version $Id: $
 */
public interface CacheWriter {
 /**
 * Creates a clone of this writer. This method will only be called by ehcache before a
 * cache is initialized.
 * <p/>
 * Implementations should throw CloneNotSupportedException if they do not support clone
 * but that will stop them from being used with defaultCache.
 *
 * @return a clone
 * @throws CloneNotSupportedException if the extension could not be cloned.
 */
 public CacheWriter clone(Ehcache cache) throws CloneNotSupportedException;
 /**
 * Notifies writer to initialise themselves.
 * <p/>
 * This method is called during the Cache's initialise method after it has changed it's
 * status to alive. Cache operations are legal in this method.
 *
 * @throws net.sf.ehcache.CacheException
 */
 void init();
 /**
 * Providers may be doing all sorts of exotic things and need to be able to clean up on
 * dispose.
 * <p/>
 * Cache operations are illegal when this method is called. The cache itself is partly
 * disposed when this method is called.
 */

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 175

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 void dispose() throws CacheException;
 /**
 * Write the specified value under the specified key to the underlying store.
 * This method is intended to support both key/
value creation and value update for a
 * specific key.
 *
 * @param element the element to be written
 */
 void write(Element element) throws CacheException;
 /**
 * Write the specified Elements to the underlying store. This method is intended to
 * support both insert and update.
 * If this operation fails (by throwing an exception) after a partial success,
 * the convention is that entries which have been written successfully are to be removed
 * from the specified mapEntries, indicating that the write operation for the entries left
 * in the map has failed or has not been attempted.
 *
 * @param elements the Elements to be written
 */
 void writeAll(Collection<Element> elements) throws CacheException;
 /**
 * Delete the cache entry from the store
 *
 * @param entry the cache entry that is used for the delete operation
 */
 void delete(CacheEntry entry) throws CacheException;
 /**
 * Remove data and keys from the underlying store for the given collection of keys, if
 * present. If this operation fails * (by throwing an exception) after a partial success,
 * the convention is that keys which have been erased successfully are to be removed from
 * the specified keys, indicating that the erase operation for the keys left in the collection
 * has failed or has not been attempted.
 *
 * @param entries the entries that have been removed from the cache
 */
 void deleteAll(Collection<CacheEntry> entries) throws CacheException;
}

36.1.10 FAQ

36.1.10.1 Is there a way to monitor the write-behind queue size?

Use the method
net.sf.ehcache.statistics.LiveCacheStatistics#getWriterQueueLength(). This
method returns the number of elements on the local queue (in all local buckets) that are waiting to
be processed, or -1 if no write-behind queue exists. Note that elements or a batch currently being
processed (and coalesced elements) are not included in the returned value.

36.1.10.2 What happens if an exception occurs when the writer is called?

In the clustered async implementation inside the Terracotta Toolkit this is implemented as such:

 try {

3 6 W r i t e - t h r o u g h a n d w r i t e - b e h i n d c a c h i n g w i t h C a c h e W r i t e r s 176

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 processItems();
 } catch (final Throwable e) {
 errorHandler.onError(ProcessingBucket.this, e);
 continue;
 }

This works since there's a concept of error handlers that isn't present in the non-clustered write behind
implementation in Ehcache core. The default error handler simply logs the exceptions that occurred.

In standalone Ehcache, users should be careful to catch Exceptions. One solution is to put the item
back on the queue with a call to cache.write().

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 177

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

37 Cache Server with SOAP and RESTful Web
Services
...

37.1 Cache Server

37.1.1 Introduction

Ehcache now comes with a Cache Server, available as a WAR for most web containers, or as a
standalone server. The Cache Server has two APIs: RESTful resource oriented, and SOAP. Both
support clients in any programming language.

(A Note on terminology: Leonard Richardson and Sam Ruby have done a great job of clarifying the
different Web Services architectures and distinguishing them from each other. We use their taxonomy
in describing web services. See http://www.oreilly.com/catalog/9780596529260/.)

37.1.2 RESTful Web Services

Roy Fielding coined the acronym REST, denoting Representational State Transfer, in his PhD thesis.

The Ehcache implementation strictly follows the RESTful resource-oriented architecture style.

Specifically:

• The HTTP methods GET, HEAD, PUT/POST and DELETE are used to specify the method of
the operation. The URI does not contain method information.

• The scoping information, used to identify the resource to perform the method on, is contained in
the URI path.

• The RESTful Web Service is described by and exposes a WADL (Web Application Description
Language) file. It contains the URIs you can call, and what data to pass and get back. Use the
OPTIONS method to return the WADL.
Roy is on the JSR311 expert group. JSR311 and Jersey, the reference implementation, are used
to deliver RESTful web services in Ehcache server.

37.1.2.1 RESTFul Web Services API

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically has
been configured in ehcache.xml or an IoC container. Multiple CacheManagers are not supported.

Resources are identified using a URI template. The value in parentheses should be substituted with a
literal to specify a resource.

Response codes and response headers strictly follow HTTP conventions.

37.1.2.2 CacheManager Resource Operations

37.OPTIONS /{cache}}

Retrieves the WADL for describing the available CacheManager operations.

37. GET /

Lists the Caches in the CacheManager.

37.1.2.3 Cache Resource Operations

37.OPTIONS /{cache}}

Retrieves the WADL describing the available Cache operations.

http://www.oreilly.com/catalog/9780596529260/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 178

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

37.HEAD /{cache}}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body
returned.

37.GET /{cache}

Gets a cache representation. This includes useful metadata such as the configuration and cache
statistics.

37. PUT /{cache}

Creates a Cache using the defaultCache configuration.

37. DELETE / {cache}

Deletes the Cache.

37.1.2.4 Element Resource Operations

37.OPTIONS /{cache}}

Retrieves the WADL describing the available Element operations.

37.HEAD /{cache}/{element}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is no body
returned.

37.GET /{cache}/{element}

Gets the element value.

37.HEAD /{cache}/{element}

Gets the element's metadata.

37.PUT /{cache}/{element}

Puts an element into the Cache.

The time to live of new Elements defaults to that for the cache. This may be overridden by setting the
HTTP request header ehcacheTimeToLiveSeconds. Values of 0 to 2147483647 are accepted. A
value of 0 means eternal.

37.DELETE / {cache}/{element}

Deletes the element from the cache.

The resource representation for all elements is *. DELETE/{cache}/* will call
<<<cache.removeAll().

37.1.2.5 Resource Representations

We deal with resource representations rather than resources themselves.

37.Element Resource Representations

When Elements are PUT into the cache, a MIME Type should be set in the request header. The
MIME Type is preserved for later use.

The new MimeTypeByteArray is used to store the byte[] and the MimeType in the value field of
Element.

Some common MIME Types which are expected to be used by clients are:

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 179

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

text/plain Plain text

text/xml Extensible Markup Language. Defined in RFC 3023

application/json JavaScript Object Notation
JSON. Defined in RFC 4627

application/x-java-serialized-object A serialized Java object

Because Ehcache is a distributed Java cache, in some configurations the Cache server may contain
Java objects that arrived at the Cache server via distributed replication. In this case no MIME Type
will be set and the Element will be examined to determine its MIME Type.

Because anything that can be PUT into the cache server must be Serializable, it can also be distributed
in a cache cluster i.e. it will be Serializable.

37.1.2.6 RESTful Code Samples

These are RESTful code samples in multiple languages.

37.Curl Code Samples

These samples use the popular curl command line utility.

37.OPTIONS

This example shows how calling OPTIONS causes Ehcache server to respond with the WADL for
that resource

curl --request OPTIONS http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
<resources base="http://localhost:8080/ehcache/rest/">
<resource path="sampleCache2/2">
<method name="HEAD"><response><representation mediaType="
 ...
</resource>
</resources>
</application>
37.HEAD

curl --head http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

HTTP/1.1 200 OK
X-Powered-By: Servlet/2.5
Server: GlassFish/v3
Last-Modified: Sun, 27 Jul 2008 08:08:49 GMT
ETag: "1217146129490"
Content-Type: text/plain; charset=iso-8859-1
Content-Length: 157
Date: Sun, 27 Jul 2008 08:17:09 GMT
37.PUT

echo "Hello World" | curl -S -T - http://localhost:8080/ehcache/rest/
sampleCache2/3

The server will put Hello World into sampleCache2 using key 3.

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 180

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

37.GET

curl http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:

<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>

37.Ruby Code Samples

37.GET

require 'rubygems'
require 'open-uri'
require 'rexml/document'
response = open('http://localhost:8080/ehcache/rest/sampleCache2/2')
xml = response.read
puts xml

The server responds with:

<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>
</oldjoke>

37.Python Code Samples

37.GET

import urllib2
f = urllib2.urlopen('http://localhost:8080/ehcache/rest/sampleCache2/2')
print f.read()

The server responds with:

<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>
</oldjoke>

37.Java Code Samples

37.Create and Get a Cache and Entry

package samples;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.HttpURLConnection;

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 181

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

import java.net.URL;
/**
 * A simple example Java client which uses the built-
in java.net.URLConnection.
 *
 * @author BryantR
 * @author Greg Luck
 */
public class ExampleJavaClient {
 private static String TABLE_COLUMN_BASE =
 "http://localhost:8080/ehcache/rest/tableColumn";
 private static String TABLE_COLUMN_ELEMENT =
 "http://localhost:8080/ehcache/rest/tableColumn/1";
 /**
 * Creates a new instance of EHCacheREST
 */
 public ExampleJavaClient() {
 }
 public static void main(String[] args) {
 URL url;
 HttpURLConnection connection = null;
 InputStream is = null;
 OutputStream os = null;
 int result = 0;
 try {
 //create cache
 URL u = new URL(TABLE_COLUMN_BASE);
 HttpURLConnection urlConnection = (HttpURLConnection) u.openConnection();
 urlConnection.setRequestMethod("PUT");
 int status = urlConnection.getResponseCode();
 System.out.println("Status: " + status);
 urlConnection.disconnect();
 //get cache
 url = new URL(TABLE_COLUMN_BASE);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.connect();
 is = connection.getInputStream();
 byte[] response1 = new byte[4096];
 result = is.read(response1);
 while (result != -1) {
 System.out.write(response1, 0, result);
 result = is.read(response1);
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {
 }
 System.out.println("reading cache: " + connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();
 //create entry
 url = new URL(TABLE_COLUMN_ELEMENT);

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 182

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestProperty("Content-Type", "text/plain");
 connection.setDoOutput(true);
 connection.setRequestMethod("PUT");
 connection.connect();
 String sampleData = "Ehcache is way cool!!!";
 byte[] sampleBytes = sampleData.getBytes();
 os = connection.getOutputStream();
 os.write(sampleBytes, 0, sampleBytes.length);
 os.flush();
 System.out.println("result=" + result);
 System.out.println("creating entry: " + connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();
 //get entry
 url = new URL(TABLE_COLUMN_ELEMENT);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.connect();
 is = connection.getInputStream();
 byte[] response2 = new byte[4096];
 result = is.read(response2);
 while (result != -1) {
 System.out.write(response2, 0, result);
 result = is.read(response2);
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {
 }
 System.out.println("reading entry: " + connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (os != null) try {
 os.close();
 } catch (Exception ignore) {
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {
 }
 if (connection != null) connection.disconnect();
 }
 }
}

37.Scala Code Samples

37.GET

 import java.net.URL
 import scala.io.Source.fromInputStream

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 183

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 object ExampleScalaGet extends Application {
 val url = new URL("http://localhost:8080/ehcache/rest/sampleCache2/2")
 fromInputStream(url.openStream).getLines.foreach(print)
 }

Run it with:

 scala -e ExampleScalaGet

The program outputs:

 <?xml version="1.0"?>
 <oldjoke>
 <burns>Say <quote>goodnight</quote>,
 Gracie.</burns>
 <allen><quote>Goodnight,
 Gracie.</quote></allen>
 <applause/>

37.PHP Code Samples

37.GET

 <?php
 $ch = curl_init();
 curl_setopt ($ch, CURLOPT_URL, "http://localhost:8080/ehcache/rest/
sampleCache2/3");
 curl_setopt ($ch, CURLOPT_HEADER, 0);
 curl_exec ($ch);
 curl_close ($ch);
 ?>

The server responds with:

Hello Ingo
37.PUT

 <?php
$url = "http://localhost:8080/ehcache/rest/sampleCache2/3";
$localfile = "localfile.txt";
$fp = fopen ($localfile, "r");
$ch = curl_init();
curl_setopt($ch, CURLOPT_VERBOSE, 1);
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_PUT, 1);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_INFILE, $fp);
curl_setopt($ch, CURLOPT_INFILESIZE, filesize($localfile));
$http_result = curl_exec($ch);
$error = curl_error($ch);
$http_code = curl_getinfo($ch ,CURLINFO_HTTP_CODE);
curl_close($ch);
fclose($fp);
print $http_code;
print "

$http_result";
if ($error) {
 print "

$error";
}
?>

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 184

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The server responds with:

* About to connect() to localhost port 8080 (#0)
* Trying ::1... * connected
* Connected to localhost (::1) port 8080 (#0)
> PUT /ehcache/rest/sampleCache2/3 HTTP/1.1
Host: localhost:8080
Accept: */*
Content-Length: 11
Expect: 100-continue
< HTTP/1.1 100 Continue
< HTTP/1.1 201 Created
< Location: http://localhost:8080/ehcache/rest/sampleCache2/3
< Content-Length: 0
< Server: Jetty(6.1.10)
<
* Connection #0 to host localhost left intact
* Closing connection #0

37.1.3 Creating Massive Caches with Load Balancers and Partitioning

The RESTful Ehcache Server is designed to achieve massive scaling using data partitioning - all from
a RESTful interface. The largest Ehcache single instances run at around 20GB in memory. The largest
disk stores run at 100Gb each. Add nodes together, with cache data partitioned across them, to get
larger sizes. 50 nodes at 20GB gets you to 1 Terabyte.

Two deployment choices need to be made:

• where is partitoning performed, and
• is redundancy required?

These choices can be mixed and matched with a number of different deployment topologies.

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 185

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

37.1.3.1 Non-redundant, Scalable with client hash-based routing

This topology is the simplest. It does not use a load balancer. Each node is accessed directly by the
cache client using REST. No redundancy is provided.

The client can be implemented in any language because it is simply a HTTP client.

It must work out a partitioning scheme. Simple key hashing, as used by memcached, is sufficient.

Here is a Java code sample:

String[] cacheservers = new String[]
{"cacheserver0.company.com", "cacheserver1.company.com",
 "cacheserver2.company.com", "cacheserver3.company.com", "cacheserver4.company.com",
 "cacheserver5.company.com"};
Object key = "123231";
int hash = Math.abs(key.hashCode());
int cacheserverIndex = hash % cacheservers.length;
String cacheserver = cacheservers[cacheserverIndex];

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 186

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

37.1.3.2 Redundant, Scalable with client hash-based routing

Redundancy is added as shown in the above diagram by: Replacing each node with a cluster of two
nodes. One of the existing distributed caching options in Ehcache is used to form the cluster. Options
in Ehcache 1.5 are RMI and JGroups-based clusters. Ehcache-1.6 will add JMS as a further option.
Put each Ehcache cluster behind VIPs on a load balancer.

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 187

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

37.1.3.3 Redundant, Scalable with load balancer hash-based routing

Many content-switching load balancers support URI routing using some form of regular expressions.

So, you could optionally skip the client-side hashing to achieve partitioning in the load balancer itself.

For example:

 /ehcache/rest/sampleCache1/[a-h]* => cluster1
 /ehcache/rest/sampleCache1/[i-z]* => cluster2

Things get much more sophisticated with F5 load balancers, which let you create iRules in the TCL
language. So rather than regular expression URI routing, you could implement key hashing-based
URI routing. Remember in Ehcache's RESTful server, the key forms the last part of the URI. e.g. In
the URI http://cacheserver.company.com/ehcache/rest/sampleCache1/3432 , 3432 is the key.

You hash using the last part of the URI.

See http://devcentral.f5.com/Default.aspx?
tabid=63&PageID=153&ArticleID=135&articleType=ArticleView for how to implment a URI
hashing iRule on F5 load balancers.

37.1.4 W3C (SOAP) Web Services

The W3C (http://www.w3.org/ is a standards body that defines Web Services as

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 188

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The World Wide Web is more and more used for application to application communication.
The programmatic interfaces made available are referred to as Web services.

They provide a set of recommendations for achieving this. See http://www.w3.org/2002/ws/.

An interoperability organisation, WS-I http://www.ws-i.org/, seeks to achieve interoperabilty between
W3C Web Services. The W3C specifications for SOAP and WSDL are required to meet the WS-I
definition.

Ehcache is using Glassfish's libraries to provide it's W3C web services. The project known as Metro
follows the WS-I definition.

Finally, OASIS (http://oasis-open.org), defines a Web Services Security specification for SOAP:
WS-Security. The current version is 1.1. It provides three main security mechanisms: ability to send
security tokens as part of a message, message integrity, and message confidentiality.

Ehcache's W3C Web Services support the stricter WS-I definition and use the SOAP and WSDL
specfications.

Specifically:

• The method of operation is in the entity-body of the SOAP envelope and a HTTP header. POST
is always used as the HTTP method.

• The scoping information, used to identify the resource to perform the method on, is contained
in the SOAP entity-body. The URI path is always the same for a given Web Service - it is the
service "endpoint".

• The Web Service is described by and exposes a WSDL (Web Services Description Language)
file. It contains the methods, their arguments and what data types are used.

• The WS-Security SOAP extensions are supported

37.1.4.1 W3C Web Services API

The Ehcache RESTFul Web Services API exposes the singleton CacheManager, which typically has
been configured in ehcache.xml or an IoC container. Multiple CacheManagers are not supported.

The API definition is as follows:

• WSDL - EhcacheWebServiceEndpointService.wsdl
• Types - EhcacheWebServiceEndpointService_schema1.xsd

37.1.4.2 Security

By default no security is configured. Because it is simply a Servlet 2.5 web application, it can be
secured in all the usual ways by configuration in the web.xml.

In addition the cache server supports the use of XWSS 3.0 to secure the Web Service. See https://
xwss.dev.java.net/. All required libraries are packaged in the war for XWSS 3.0.

A sample, commented out server_security_config.xml is provided in the WEB-INF directory. XWSS
automatically looks for this configuration file.

A simple example, based on an XWSS example,
net.sf.ehcache.server.soap.SecurityEnvironmentHandler, which looks for a password
in a System property for a given username is included. This is not recommended for production use
but is handy when you are getting started with XWSS.

To use XWSS:

Add configuration in accordance with XWSS to the server_security_config.xml file. Create a class
which implements the CallbackHandler interface and provide its fully qualified path in the
SecurityEnvironmentHandler element.

http://ehcache.org/wsdl/EhcacheWebServiceEndpointService.wsdl
http://ehcache.org/wsdl/EhcacheWebServiceEndpointService_schema1.xsd
https://xwss.dev.java.net/
https://xwss.dev.java.net/

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 189

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

The integration test EhcacheWebServiceEndpoint test shows how to use the XWSS client side.
On the client side, configuration must be provided in a file called client_security_config.xml
must be in the root of the classpath.

To add client credentials into the SOAP request do:

cacheService = new EhcacheWebServiceEndpointService().getEhcacheWebServiceEndpointPort();
//add security credentials
((BindingProvider)cacheService).getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
 "Ron");
((BindingProvider)cacheService).getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
 "noR");
String result = cacheService.ping();

37.1.5 Requirements

37.1.5.1 Java

Java 5 or 6

37.1.5.2 Web Container (WAR packaged version only)

The standalone server comes with its own embedded Glassfish web container.

The web container must support the Servlet 2.5 specification.

The following web container configuration have been tested:

• Glassfish V2/V3
• Tomcat 6
• Jetty 6

37.1.6 Downloading

The server is available as follows:

37.1.6.1 Sourceforge

Download here.

There are two tarball archives in tar.gz format:

• ehcache-server - this contains the WAR file which must be deployed in your own web container.
• ehcache-standalone-server - this contains a complete standalone directory structure with an

embedded Glassfish V3 web container together with shell scripts for starting and stopping.

37.1.6.2 Maven

The Ehcache Server is in the central Maven repository packaged as type war. Use the following
Maven pom snippet:

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-server</artifactId>
 <version>enter_version_here</version>
 <type>war</type>
 </dependency>

http://sourceforge.net/project/showfiles.php?group_id=93232

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 190

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

It is also available as a jaronly version, which makes it easier to embed. This version excludes all
META-INF and WEB-INF configuration files, and also excludes the ehcache.xml. You need to
provide these in your maven project.

 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-server</artifactId>
 <version>enter_version_here</version>
 <type>jar</type>
 <classifier>jaronly</classifier>
 </dependency>

37.1.7 Installation

37.1.7.1 Installing the WAR

Use your Web Container's instructions to install the WAR or include the WAR in your project with
Maven's war plugin.

Web Container specific configuration is provided in the WAR as follows:

• sun-web.xml - Glassfish V2/V3 configuration
• jetty-web.xml - Jetty V5/V6 configuration

Tomcat V6 passes all integration tests. It does not require a specific configuration.

37.1.7.2 Configuring the Web Application

Expand the WAR.

Edit the web.xml.

37.Disabling the RESTful Web Service

Comment out the RESTful web service section.

37.Disabling the SOAP Web Service

Comment out the RESTful web service section.

37.Configuring Caches

The ehcache.xml configuration file is located in WEB-INF/classes/ehcache.xml.

Follow the instructions in this config file, or the core Ehcache instructions to configure.

37.SOAP Web Service Security

37.1.8 Installing the Standalone Server

The WAR also comes packaged with a standalone server, based on Glassfish V3 Embedded.

The quick start is:

• Untar the download
• bin/start.sh to start. By default it will listen on port 8080, with JMX listening on port 8081,

will have both RESTful and SOAP web services enabled, and will use a sample Ehcache
configuration from the WAR module.

• bin/stop.sh to stop

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 191

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

37.1.8.1 Configuring the Standalone Server

Configuration is by editing the war/web.xml file as per the instructions for the WAR packaging.

37.1.8.2 Starting and Stopping the Standalone Server

37.Using Commons Daemon jsvc

jsvc creates a daemon which returns once the service is started. jsvc works on all common Unix-based
operating systems including Linux, Solaris and Mac OS X.

It creates a pid file in the pid directory.

This is a Unix shell script that starts the server as a daemon.

To use jsvc you must install the native binary jsvc from the Apache Commons Daemon project. The
source for this is distributed in the bin directory as jsvc.tar.gz. Untar it and follow the instructions for
building it or download a binary from the Commons Daemon project.

Convenience shell scripts are provided as follows:

start - daemon_start.sh

stop - daemon_stop.sh

jsvc is designed to integrate with Unix System 5 initialization scripts. (/etc/rc.d)

You can also send Unix signals to it. Meaningful ones for the Ehcache Standalone Server are:

No Meaning

1 HUP

2 INT

9 KILL

15 TERM

37.Executable jar

The server is also packaged as an executable jar for developer convenience which will work on all
operating systems.

A convenience shell script is provided as follows:

start - startup.sh

From the bin directory you can also invoke the following command directly:

 unix - java -jar ../lib/ehcache-standalone-server-0.7.jar 8080 ../
war
 windows - java -jar ..\lib\ehcache-standalone-server-0.7.jar 8080 ..
\war

37.1.9 Monitoring

The CacheServer registers Ehcache MBeans with the platform MBeanServer.

Remote monitoring of the MBeanServer is the responsibility of the Web Container or Application
Server vendor.

For example, some instructions for Tomcat are here: https://wiki.internet2.edu/confluence/display/
CPD/Monitoring+Tomcat+with+JMX

https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX
https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 192

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

See your Web Container documentation for how to do this for your web container.

37.1.9.1 Remotely Monitoring the Standalone Server with JMX

The standalone server automatically exposes the MBeanServer on a port 1 higher than the HTTP
listening port.

To connect with JConsole simply fire up JConsole, enter the host in the Remote field and portIn the
above example that is

192.168.1.108:8686

Then click Connect.

To see the Ehcache MBeans, click on the Mbeans tab and expand the net.sf.ehcache tree node.

You will see something like the following.

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 193

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

CacheStatistics MBeans in JConsole

Of course, from there you can hook the Cache Server up to your monitoring tool of choice. See the
chapter on JMX Management and Monitoring for more information.

37.1.10 Download

Download the ehcache-standalone-server from http://sourceforge.net/projects/ehcache/files/ehcache-
server.

http://sourceforge.net/projects/ehcache/files/ehcache-server
http://sourceforge.net/projects/ehcache/files/ehcache-server

3 7 C a c h e S e r v e r w i t h S O A P a n d R E S T f u l W e b S e r v i c e s 194

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

37.1.11 FAQ

37.1.11.1 Does Cache Server work with WebLogic?

Yes (we have tested 10.3.2), but the SOAP libraries are not compatible. Either comment out the
SOAP service from web.xml or do the following:

1 Unzip ehcache-server.war to a folder called ehcache
2 Remove the following jars from WEB-INF/lib: jaxws-rt-2.1.4.jar metro-webservices-api-1.2.jar

metro-webservices-rt-1.2.jar metro-webservices-tools-1.2.jar
3 Deploy the folder to WebLogic.
4 Use the soapUI GUI in WebLogic to add a project from: http:// hostname: port/ehcache/soap/

EhcacheWebServiceEndpoint?wsdl

3 8 E x p l i c i t L o c k i n g A P I 195

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

38 Explicit Locking API
...

38.1 Explicit Locking
This package contains an implementation of an Ehcache which provides for explicit locking, using
Read and Write locks.

It is possible to get more control over Ehcache's locking behaviour to allow business logic to apply
an atomic change with guaranteed ordering across one or more keys in one or more caches. It can
theefore be used as a custom alternative to XA Transactions or Local transactions.

With that power comes a caution. It is possible to create deadlocks in your own business logic using
this API.

Note that prior to Ehcache 2.4, this API was implemented as a CacheDecorator and was available in
the ehcache-explicitlocking module. It is now built into the core module.

38.1.1 The API

The following methods are available on Cache and Ehcache.

 /**
 * Acquires the proper read lock for a given cache key
 *
 * @param key - The key that retrieves a value that you want to protect via locking
 */
 public void acquireReadLockOnKey(Object key) {
 this.acquireLockOnKey(key, LockType.READ);
 }
 /**
 * Acquires the proper write lock for a given cache key
 *
 * @param key - The key that retrieves a value that you want to protect via locking
 */
 public void acquireWriteLockOnKey(Object key) {
 this.acquireLockOnKey(key, LockType.WRITE);
 }
 /**
 * Try to get a read lock on a given key. If can't get it in timeout millis then
 * return a boolean telling that it didn't get the lock
 *
 * @param key - The key that retrieves a value that you want to protect via locking
 * @param timeout - millis until giveup on getting the lock
 * @return whether the lock was awarded
 * @throws InterruptedException
 */
 public boolean tryReadLockOnKey(Object key, long timeout) throws InterruptedException {
 Sync s = getLockForKey(key);
 return s.tryLock(LockType.READ, timeout);
 }
 /**
 * Try to get a write lock on a given key. If can't get it in timeout millis then
 * return a boolean telling that it didn't get the lock
 *

3 8 E x p l i c i t L o c k i n g A P I 196

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 * @param key - The key that retrieves a value that you want to protect via locking
 * @param timeout - millis until giveup on getting the lock
 * @return whether the lock was awarded
 * @throws InterruptedException
 */
 public boolean tryWriteLockOnKey(Object key, long timeout) throws InterruptedException {
 Sync s = getLockForKey(key);
 return s.tryLock(LockType.WRITE, timeout);
 }
 /**
 * Release a held read lock for the passed in key
 *
 * @param key - The key that retrieves a value that you want to protect via locking
 */
 public void releaseReadLockOnKey(Object key) {
 releaseLockOnKey(key, LockType.READ);
 }
 /**
 * Release a held write lock for the passed in key
 *
 * @param key - The key that retrieves a value that you want to protect via locking
 */
 public void releaseWriteLockOnKey(Object key) {
 releaseLockOnKey(key, LockType.WRITE);
 }

38.1.2 Example

Here is a brief example:

 String key = "123";
 Foo val = new Foo();
 cache.acquireWriteLockOnKey(key);
 try {
 cache.put(new Element(key, val));
 } finally {
 cache.releaseWriteLockOnKey(key);
 }
 ...sometime later
 String key = "123";
 cache.acquireWriteLockOnKey(key);
 try {
 Object cachedVal = cache.get(key).getValue();
 cachedVal.setSomething("abc");
 cache.put(new Element(key, cachedVal));
 } finally {
 cache.releaseWriteLockOnKey(key);
 }

38.1.3 Supported Topologies

Explicit Locking is supported in Ehcache standalone and also in Distributed Ehcache when the cache
is configured with consistency=strong.

It is not supported in Replicated Ehcache.

3 8 E x p l i c i t L o c k i n g A P I 197

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

38.1.4 How it works

A READ lock does not prevent other READers from also acquiring a READ lock and reading. A
READ lock cannot be obtained if there is an outstanding WRITE lock - it will queue.

A WRITE lock cannot be obtained while there are outstanding READ locks - it will queue.

In each case the lock should be released after use to avoid locking problems. The lock release should
be in a finally block.

If before each read you acquire a READ lock and then before each write you acquire a WRITE lock,
then an isolation level akin to READ_COMMITTED is achieved.

3 9 B l o c k i n g C a c h e a n d S e l f P o p u l a t i n g C a c h e 198

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

39 BlockingCache and SelfPopulatingCache
...

39.1 BlockingCache and SelfPopulatingCache
The net.sf.ehcache.constructs package contains some applied caching classes which use the
core classes to solve everyday caching problems.

39.1.1 Blocking Cache

Imagine you have a very busy web site with thousands of concurrent users. Rather than being evenly
distributed in what they do, they tend to gravitate to popular pages. These pages are not static, they
have dynamic data which goes stale in a few minutes. Or imagine you have collections of data which
go stale in a few minutes. In each case the data is extremely expensive to calculate.

Let's say each request thread asks for the same thing. That is a lot of work. Now, add a cache. Get
each thread to check the cache; if the data is not there, go and get it and put it in the cache. Now,
imagine that there are so many users contending for the same data that in the time it takes the first
user to request the data and put it in the cache, 10 other users have done the same thing. The upstream
system, whether a JSP or velocity page, or interactions with a service layer or database are doing 10
times more work than they need to.

Enter the BlockingCache.

It is blocking because all threads requesting the same key wait for the first thread to complete. Once
the first thread has completed the other threads simply obtain the cache entry and return.

The BlockingCache can scale up to very busy systems. Each thread can either wait indefinitely, or
you can specify a timeout using the timeoutMillis constructor argument.

39.1.2 SelfPopulatingCache

You want to use the BlockingCache, but the requirement to always release the lock creates gnarly
code. You also want to think about what you are doing without thinking about the caching.

Enter the SelfPopulatingCache. The name SelfPopulatingCache is synonymous with Pull-through
cache, which is a common caching term. SelfPopulatingCache though always is in addition to a
BlockingCache.

SelfPopulatingCache uses a CacheEntryFactory, that given a key, knows how to populate the
entry.

Note: JCache inspired getWithLoader and getAllWithLoader directly in Ehcache which work with a
CacheLoader may be used as an alternative to SelfPopulatingCache.

4 0 O p e n J P A C a c h i n g 199

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

40 OpenJPA Caching
...

40.1 OpenJPA Caching Provider
Ehcache easily integrates with the OpenJPA persistence framework.

40.1.1 Installing

To use it, add a Maven dependency for ehcache-openjpa.

 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-openjpa</artifactId>
 <version>0.1</version>

or download from downloads.

40.1.2 Configuration

Set OpenJPA#s openjpa.QueryCache to ehcache and openjpa.DataCacheManager to
ehcache. That#s it!

See http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/
ref_guide_caching.html for more on caching in OpenJPA.

40.1.3 Default Cache

As with Hibernate, Ehcache's OpenJPA module (from 0.2) uses the defaultCache configured in
ehcache.xml to create caches.

For production, we recommend configuring a cache configuration in ehcache.xml for each cache, so
that it may be correctly tuned.

http://openjpa.apache.org/
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html
http://openjpa.apache.org/builds/1.0.2/apache-openjpa-1.0.2/docs/manual/ref_guide_caching.html

4 1 G r a i l s C a c h i n g 200

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

41 Grails Caching
...

41.1 Using Grails and Ehcache

41.1.1 Using Ehcache as a Second Level Caching Provider for Hibernate within Grails

Grails 1.2RC1 and higher use Ehcache as the default Hibernate second level cache. However earlier
versions of Grails ship with the Ehcache library and are very simple to enable.

The following steps show how to configure Grails to use Ehcache. For 1.2RC1 and higher some of
these steps are already done for you.

41.1.2 Configuring Ehcache as the second level Hibernate cache

Edit DataSource.groovy as follows:

 hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=true
 cache.provider_class='org.hibernate.cache.EhCacheProvider'
}

41.1.3 Overriding defaults by specifying cache configurations

As is usual with Hibernate, it will use the defaultCache configuration as a template to create new
caches as required. For production use you often want to customise the cache configuration. To do
so, add an ehcache.xml configuration file to the conf directory (the same directory that contains
DataSource.groovy).

A sample ehcache.xml which works with the Book demo app and is good as a starter configuration for
Grails is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd" >
 <diskStore path="java.io.tmpdir"/>
 <cacheManagerEventListenerFactory class="" properties=""/>
 <defaultCache
 maxElementsInMemory="10000"
 eternal="false"
 timeToLiveSeconds="120"
 overflowToDisk="false"
 diskPersistent="false"
 />
 <cache name="Book"
 maxElementsInMemory="10000"
 timeToIdleSeconds="300"
 />
 <cache name="org.hibernate.cache.UpdateTimestampsCache"
 maxElementsInMemory="10000"
 timeToIdleSeconds="300"
 />
 <cache name="org.hibernate.cache.StandardQueryCache"
 maxElementsInMemory="10000"

4 1 G r a i l s C a c h i n g 201

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 timeToIdleSeconds="300"
 />
</ehcache>

41.1.4 Springcache Plugin

The Springcache plugin allows you to easily add the following functionality to your Grails project:

• Caching of Spring bean methods (typically Grails service methods).
• Caching of page fragments generated by Grails controllers.
• Cache flushing when Spring bean methods or controller actions are invoked.

The plugin depends on the EhCache and EhCache-Web libraries.

See Springcache Plugin}, part of the Grails project for more information.

41.1.5 Clustering Web Sessions

This is not handled by Ehcache, but by a sister product from Terracotta, web sessions.

See http://gquick.blogspot.com/2010/03/clustering-grails-app-with-terracotta.html for a great intro on
getting this going with Grails and Tomcat.

http://grails.org/plugin/springcache
http://gquick.blogspot.com/2010/03/clustering-grails-app-with-terracotta.html

4 2 J R u b y C a c h i n g 202

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

42 JRuby Caching
...

42.1 Rails and JRuby Caching
jruby-ehcache is a JRuby Ehcache library which makes a commonly used subset of Ehcache's API
available to JRuby. All of the strength of Ehcache is there, including BigMemory and the ability to
cluster with Terracotta.

It can be used directly via its own API, or as a Rails caching provider.

42.1.1 Installation

Ehcache JRuby integration is provided by the jruby-ehcache gem. To install it simply execute (note:
you may need to use "sudo" to install gems on your system):

jgem install jruby-ehcache

If you also want Rails caching support, also install the correct gem for your Rails version:

 jgem install jruby-ehcache-rails2 # for Rails 2
 jgem install jruby-ehcache-rails3 # for Rails 3

42.1.2 Configuring Ehcache

Configuring Ehcache for JRuby is done using the same ehcache.xml file as used for native Java
Ehcache. The ehcache.xml file can be placed either in your CLASSPATH or, alternatively, can be
placed in the same directory as the Ruby file in which you create the CacheManager object from your
Ruby code. In a Rails application, the ehcache.xml file should reside in the config directory of the
Rails application.

42.1.3 Dependencies

• JRuby 1.5 and higher
• Rails 2 for the jruby-ehcache-rails2
• Rails 3 for the jruby-ehcache-rails3
• Ehcache 2.4.2 is the declared dependency, although any version of Ehcache will work

As usual these should all be installed with jgem

42.1.4 Using the jruby-ehcache API directly

42.1.4.1 To make Ehcache available to JRuby

 require 'ehcache'

Note that, because jruby-ehcache is provided as a Ruby Gem, you must make your Ruby interpreter
aware of Ruby Gems in order to load it. You can do this by either including -rubygems on your jruby
command line, or you can make Ruby Gems available to JRuby globally by setting the RUBYOPT
environment variable as follows:

 export RUBYOPT=rubygems

42.1.4.2 Creating a CacheManager

To create a CacheManager, which you do once when the application starts:

manager = Ehcache::CacheManager.new

4 2 J R u b y C a c h i n g 203

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

42.1.4.3 Accessing an existing Cache

To access a cache called "sampleCache1":

 cache = manager.cache("sampleCache1")

42.1.4.4 Creating a Cache

To create a new cache from the defaultCache

 cache = manager.cache

42.1.4.5 Putting in a cache

 cache.put("key", "value", {:ttl => 120})

42.1.4.6 Getting from a cache

 cache.get("key") # Returns the Ehcache Element object
 cache["key"] # Returns the value of the element directly

42.1.4.7 Shutting down the CacheManager

This is only when you shut your application down.

It is only necessary to call this if the cache is diskPersistent or is clustered with Terracotta, but it
is always a good idea to do it.

 manager.shutdown

42.1.5 Complete Example

class SimpleEhcache
 #Code here
 require 'ehcache'
 manager = Ehcache::CacheManager.new
 cache = manager.cache
 cache.put("answer", "42", {:ttl => 120})
 answer = cache.get("answer")
 puts "Answer: #{answer.value}"
 question = cache["question"] || 'unknown'
 puts "Question: #{question}"
 manager.shutdown
end

As you can see from the example, you create a cache using CacheManager.new, and you can control
the "time to live" value of a cache entry using the :ttl option in cache.put. Note that not all of the
Ehcache API is currently exposed in the JRuby API, but most of what you need is available and we
plan to add a more complete API wrapper in the future.

42.1.6 Using ehcache from within Rails

42.1.6.1 The ehcache.xml file

Configuration of Ehcache is still done with the ehcache.xml file, but for Rails applications you must
place this file in the config directory of your Rails app.

Also note that you must use JRuby to execute your Rails application, as these gems utilize JRuby's
Java integration to call the Ehcache API.

4 2 J R u b y C a c h i n g 204

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

With this configuration out of the way, you can now use the Ehcache API directly from your Rails
controllers and/or models. You could of course create a new Cache object everywhere you want to
use it, but it is better to create a single instance and make it globally accessible by creating the Cache
object in your Rails environment.rb file.

For example, you could add the following lines to config/environment.rb:

require 'ehcache'
EHCACHE = Ehcache::CacheManager.new.cache

By doing so, you make the EHCACHE constant available to all Rails-managed objects in your
application. Using the Ehcache API is now just like the above JRuby example.

If you are using Rails 3 then you have a better option at your disposal: the built-in Rails 3 caching
API. This API provides an abstraction layer for caching underneath which you can plug in any one of
a number of caching providers. The most common provider to date has been the memcached provider,
but now you can also use the Ehcache provider.

Switching to the Ehcache provider requires only one line of code in your Rails environment file (e.g.
development.rb or production.rb):

 config.cache_store = :ehcache_store, {
 :cache_name => 'rails_cache',
 :ehcache_config => 'ehcache.xml'
 }

This configuration will cause the Rails.cache API to use Ehcache as its cache store. The :cache_name
and :ehcache_config are both optional parameters, the default values for which are shown in the
above example. The value of the :ehcache_config parameter can be either an absolute path or a
relative path, in which case it is interpreted relative to the Rails app's config directory.

A very simple example of the Rails caching API is as follows:

 Rails.cache.write("answer", "42")
 Rails.cache.read("answer") # => '42'

Using this API, your code can be agnostic about the underlying provider, or even switch providers
based on the current environment (e.g. memcached in development mode, Ehcache in production).

The write method also supports options in the form of a Hash passed as the final parameter. The
following options are supported:

• unlessExist, ifAbsent (boolean) - If true, use the putIfAbsent method
• elementEvictionData (ElementEvictionData)
• eternal (boolean)
• timeToIdle, tti (int)
• timeToLive, ttl, expiresIn (int)
• version (long)

These options are passed to the write method as Hash options using either camelCase or underscore
notation, as in the following example:

Rails.cache.write('key', 'value', :time_to_idle => 60.seconds, :timeToLive => 600.seconds)

42.1.6.2 Turn on caching in your controllers

You can also configure Rails to use Ehcache for its automatic action caching and fragment caching,
which is the most common method for caching at the controller level. To enable this, you must
configure Rails to perform controller caching, and then set Ehcache as the provider in the same way
as for the Rails cache API:

 config.action_controller.perform_caching = true

4 2 J R u b y C a c h i n g 205

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 config.action_controller.cache_store = :ehcache_store

42.1.7 Sample Rails application

The easiest way to get started is to play with a simple sample app. We provide a simple Rails
application which stores an integer value in a cache along with increment and decrement operations.

The sample app shows you how to use Ehcache as a caching plugin and how to use it directly from
the Rails caching API. It is a simple demo application demonstrating the use of Ehcache in a Rails 3
environment. This demo requires JRuby 1.5.0 or later.

42.1.7.1 Checking it out

svn checkout http://svn.terracotta.org/svn/forge/projects/ehcache-rails-
demo/trunk ehcache-rails-demo

42.1.7.2 Dependencies

To start the demo, make sure you are using JRuby 1.5.0 or later.

The demo uses sqlite3 which needs to be installed on your OS (it is by default on Mac OS X).

There is a Gemfile which will pull down all of the required Ruby dependencies using Bundler.

From the ehcache-rails-demo directory:

 jgem install bundler
 jruby -S bundle install

42.1.7.3 Starting the demo

You can start the demo application with the following command:

jruby -S rails server -e production

42.1.7.4 Exploring the demo

To use the demo application, open a web browser to the following URL:

http://localhost:3000/cache/index

This will display a simple screen allowing you to manipulate cached values either through the
Ehcache API directly, or through the Rails.cache API backed by Ehcache.

42.1.8 Leveraging the power of Ehcache

Once you have the Ruby/Rails caching modules up and running with Ehcache you can then go on to
leverage the power of Ehcache through for example creating a distributed cache backed by Terracotta.

There are no limits on what you can do. Please see the rest of this documentation.

http://localhost:3000/cache/index

4 3 G l a s s f i s h H o w T o 206

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

43 Glassfish HowTo
...

43.1 Glassfish How To & FAQ
The maintainer uses Ehcache in production with Glassfish. This chapter provides a Glassfish
HOWTO.

43.1.1 Versions

Ehcache has been tested with and is used in production with Glassfish V1, V2 and V3.

In particular:

• Ehcache 1.4 - 1.7 has been tested with Glassfish 1 and 2.
• Ehcache 2.0 has been tested with Glassfish 3.

43.1.2 Usage and Troubleshooting

43.1.2.1 How To Package A Sample Application Using Ehcache and Deploy to Glassfish

Ehcache comes with a sample web application which is used to test the page caching. The page
caching is the only area that is sensitive to the Application Server. For Hibernate and general caching,
it is only dependent on your Java version.

From a checkout of Ehcache run the following from the core directory:

You need:

• a Glassfish installation.
• a GLASSFISH_HOME environment variable defined.
• $GLASSFISH_HOME/bin added to your PATH

Do the following:

 # To package and deploy to domain1:
 ant deploy-default-web-app-glassfish
 # Start domain1:
 asadmin start-domain domain1
 # Stop domain1:
 asadmin stop-domain domain1
 # Overwrite the config with our own which changes the port to 9080:
 ant glassfish-configuration
 # Start domain1:
 asadmin start-domain domain1

You can then run the web tests in the web package or point your browser at http://
localhost:9080.

See for a quickstart to Glassfish.

43.1.2.2 How to get around the EJB Container restrictions on thread creation

When Ehcache is running in the EJB Container, for example for Hibernate caching, it is in technical
breach of the EJB rules. Some app servers let you override this restriction.

I am not exactly sure how this in done in Glassfish. For a number of reasons we run Glassfish without
the Security Manager, and we do not have any issues.

In domain.xml ensure that the following is not included.

https://glassfish.dev.java.net/downloads/quickstart/index.html

4 3 G l a s s f i s h H o w T o 207

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <jvm-options>-Djava.security.manager</jvm-options>

43.1.3 Glassfish FAQ

43.1.3.1 Ehcache page caching versions below Ehcache 1.3 get an IllegalStateException in Glassfish.

This issue was fixed in Ehcache 1.3.

43.1.3.2 I get a Could not ungzip. Heartbeat will not be working. Not in GZIP
format reported from PayloadUtil exception when using Ehcache with my Glassfish cluster. Why?

Ehcache and Glassfish clustering have nothing to do with each other. The error is caused because
Ehcache has received a multicast message from the Glassfish cluster. Ensure that Ehcache clustering
has its own unique multicast address different to Glassfish.

4 4 G o o g l e A p p E n g i n e C a c h i n g 208

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

44 Google App Engine Caching
...

44.1 Google App Engine Caching

44.1.1 Using Ehcache on Google App Engine (GAE)

The ehcache-googleappengine module combines the speed of Ehcache with the scale of Google's
memcache and provide the best of both worlds:

• Speed - Ehcache cache operations take a few microseconds, versus around 60ms for Google's
provided client-server cache, memcacheg.

• Cost - Because it uses way less resources, it is also cheaper.
• Object Storage - Ehcache in-process cache works with Objects that are not Serializable.

44.1.2 Compatibility

Ehcache is compatible and works with Google App Engine.

Google App Engine provides a constrained runtime which restricts networking, threading and file
system access.

44.1.3 Limitations

All features of Ehcache can be used except for the DiskStore and replication. Having said that, there
are workarounds for these limitations. See the Recipes section below.

As of June 2009, Google App Engine appears to be limited to a heap size of 100MB. (See http://
gregluck.com/blog/?s=limitations for the evidence of this).

44.1.4 Dependencies

Version 2.3 and higher of Ehcache are compatible with Google App Engine.

Older versions will not work.

44.1.5 Configuring ehcache.xml

Make sure the following elements are commented out:
• diskStore path="java.io.tmpdir"/
• cacheManagerPeerProviderFactory class= ../
• cacheManagerPeerListenerFactory class= ../

Within each cache element, ensure that:
• overFlowToDisk=false or overFlowToDisk is omitted
• diskPersistent=false or diskPersistent is omitted
• no replicators are added
• there is no bootstrapCacheLoaderFactory
• there is no Terracotta configuration

Copy and past this one to get started.

 <?xml version="1.0" encoding="UTF-8"?>
 <Ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd" >
 <cacheManagerEventListenerFactory class="" properties=""/>

http://gregluck.com/blog/?s=limitations
http://gregluck.com/blog/?s=limitations

4 4 G o o g l e A p p E n g i n e C a c h i n g 209

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <defaultCache
 maxElementsInMemory="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 overflowToDisk="false"
 diskPersistent="false"
 memoryStoreEvictionPolicy="LRU"
 />
 <!--Example sample cache-->
 <cache name="sampleCache1"
 maxElementsInMemory="10000"
 maxElementsOnDisk="1000"
 eternal="false"
 timeToIdleSeconds="300"
 timeToLiveSeconds="600"
 memoryStoreEvictionPolicy="LFU"
 />
 </ehcache>

44.1.6 Recipes

44.1.6.1 Setting up Ehcache as a local cache in front of memcacheg

The idea here is that your caches are set up in a cache hierarchy. Ehcache sits in front and memcacheg
behind. Combining the two lets you elegantly work around limitations imposed by Googe App
Engine. You get the benefits of the #s speed of Ehcache together with the umlimited size of
memcached.

Ehcache contains the hooks to easily do this.

To update memcached, use a CacheEventListener.

To search against memcacheg on a local cache miss, use cache.getWithLoader() together with a
CacheLoader for memcacheg.

44.1.6.2 Using memcacheg in place of a DiskStore

In the CacheEventListener, ensure that when notifyElementEvicted() is called, which it will
be when a put exceeds the MemoryStore's capacity, that the key and value are put into memcacheg.

44.1.6.3 Distributed Caching

Configure all notifications in CacheEventListener to proxy throught to memcacheg.

Any work done by one node can then be shared by all others, with the benefit of local caching of
frequently used data.

44.1.6.4 Dynamic Web Content Caching

Google App Engine provides acceleration for files declared static in appengine-web.xml.

e.g.

 <static-files>
 <include path="/**.png" />
 <exclude path="/data/**.png" />
 </static-files>

4 4 G o o g l e A p p E n g i n e C a c h i n g 210

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

You can get acceleration for dynamic files using Ehcache's caching filters as you usually would.

See the Web Caching chapter.

44.1.7 Google App Engine FAQ

44.1.7.1 I get an error java.lang.NoClassDefFoundError: java.rmi.server.UID is a
restricted class

You are using a version of Ehcache prior to 1.6.

44.1.8 Sample application

The easiest way to get started is to play with a simple sample app. We provide a simple Rails
application which stores an integer value in a cache along with increment and decrement operations.

The sample app shows you how to use ehcache as a caching plugin and how to use it directly from the
Rails caching API.

Checkout http://svn.terracotta.org/svn/forge/projects/ehcache-rails-demo/
terracotta_community_login a Maven-based performance comparisons between different store
configurations.

http://svn.terracotta.org/svn/forge/projects/ehcache-rails-demo/

4 5 T o m c a t I s s u e s a n d B e s t P r a c t i c e s 211

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

45 Tomcat Issues and Best Practices
...

45.1 Tomcat Issues and Best Practices
Ehcache is probably used most commonly with Tomcat. This chapter documents some known issues
with Tomcat and recommended practices.

Ehcache's own caching and gzip filter integration tests run against Tomcat 5.5 and Tomcat 6. Tomcat
will continue to be tested against ehcache. Accordingly Tomcat is tier one for ehcache.

45.1.1 Tomcat Known Issues

Because Tomcat is so widely used, over time a list of known issues has been compiled. These issues
and their solutions are listed below.

45.1.1.1 Problem rejoining a cluster after a reload

If I restart/reload a web application in Tomcat that has a CacheManager that is part of a cluster, the
CacheManager is unable to rejoin the cluster. If I set logging for net.sf.ehcache.distribution to FINE I
see the following exception: "FINE: Unable to lookup remote cache peer for Removing from peer
list. Cause was: error unmarshalling return; nested exception is: java.io.EOFException.

The Tomcat and RMI class loaders do not get along that well. Move ehcache.jar to
$TOMCAT_HOME/common/lib. This fixes the problem. This issue happens with anything that uses
RMI, not just ehcache.

45.1.1.2 In development, there appear to be class loader memory leak as I continually redeploy my web
application.

There are lots of causes of memory leaks on redeploy. Moving Ehcache out of the WAR and into
$TOMCAT/common/lib fixes this leak.

45.1.1.3 net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer ...

I get net.sf.ehcache.CacheException: Problem starting listener for RMICachePeer ...
java.rmi.UnmarshalException: error unmarshalling arguments; nested exception is:
java.net.MalformedURLException: no protocol: Files/Apache. What is going on?

This issue occurs to any RMI listener started on Tomcat whenever Tomcat has spaces in its
installation path.

It is is a JDK bug which can be worked around in Tomcat.

See http://archives.java.sun.com/cgi-bin/wa?A2=ind0205&L=rmi-users&P=797 and http://
www.ontotext.com/kim/doc/sys-doc/faq-howto-bugs/known-bugs.html.

The workaround is to remove the spaces in your tomcat installation path.

45.1.1.4 Multiple Host Entries in Tomcat's server.xml stops replication from occurring

The presence of multiple Host entries in Tomcat's server.xml prevents replication from occuring.
The issue is with adding multiple hosts on a single Tomcat connector. If one of the hosts is localhost
and another starts with v, then the caching between machines when hitting localhost stops working
correctly.

The workaround is to use a single Host entry or to make sure they don't start with "v".

Why this issue occurs is presently unknown, but is Tomcat specific.

4 6 J S R 1 0 7 (J C A C H E) S u p p o r t 212

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

46 JSR107 (JCACHE) Support
...

46.1 JSR107 (JCACHE) Support

46.1.1 JSR107 Implementation

Ehcache provides a preview implementation of JSR107 via the net.sf.cache.jcache package.

WARNING: JSR107 is still being drafted with the Ehcache maintainer as Co Spec Lead. This
package will continue to change until JSR107 is finalised. No attempt will be made to maintain
backward compatiblity between versions of the package. It is therefore recommended to use
Ehcache's proprietary API directly.

46.1.2 Using JCACHE

46.1.2.1 Creating JCaches

JCaches can be created in two ways:

• as an Ehcache decorator
• from JCache's CacheManager

46.Creating a JCache using an Ehcache decorator

manager in the following sample is an net.sf.ehcache.CacheManager

net.sf.jsr107cache.Cache cache = new JCache(manager.getCache("sampleCacheNoIdle"), null);

46.Creating a JCache from an existing Cache in Ehcache's CacheManager

This is the recommended way of using JCache. Caches can be configured in ehcache.xml and
wrapped as JCaches with the getJCache method of CacheManager.

manager in the following sample is an net.sf.ehcache.CacheManager

 net.sf.jsr107cache.Cache cache = manager.getJCache("sampleCacheNoIdle");

46.Adding a JCache to Ehcache's CacheManager

manager in the following sample is an net.sf.ehcache.CacheManager

 Ehcache Ehcache = new net.sf.ehcache.Cache(...);
 net.sf.jsr107cache.Cache cache = new JCache(ehcache);
 manager.addJCache(cache);

46.Creating a JCache using the JCache CacheManager

Warning: The JCache CacheManager is unworkable and will very likely be dropped in the final
JCache as a Class. It will likely be replaced with a CacheManager interface.

The JCache CacheManager only works as a singleton. You obtain it with getInstance

The CacheManager uses a CacheFactory to create Caches. The CacheFactory is specified using the
Service Provider Interface mechanism introduced in JDK1.3.

The factory is specified in the META-INF/services/net.sf.jsr107cache.CacheFactory
resource file. This would normally be packaged in a jar. The default value for the Ehcache
implementation is net.sf.ehcache.jcache.JCacheFactory

The configuration for a cache is assembled as a map of properties. Valid properties can be found in
the JavaDoc for the JCacheFactory.createCache() method.

http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service%20Provider
http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html#Service%20Provider
http://ehcache.org/xref/net/sf/ehcache/jcache/JCacheFactory.html#74

4 6 J S R 1 0 7 (J C A C H E) S u p p o r t 213

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

See the following full example.

 CacheManager singletonManager = CacheManager.getInstance();
 CacheFactory cacheFactory = singletonManager.getCacheFactory();
 assertNotNull(cacheFactory);
 Map config = new HashMap();
 config.put("name", "test");
 config.put("maxElementsInMemory", "10");
 config.put("memoryStoreEvictionPolicy", "LFU");
 config.put("overflowToDisk", "true");
 config.put("eternal", "false");
 config.put("timeToLiveSeconds", "5");
 config.put("timeToIdleSeconds", "5");
 config.put("diskPersistent", "false");
 config.put("diskExpiryThreadIntervalSeconds", "120");
 Cache cache = cacheFactory.createCache(config);
 singletonManager.registerCache("test", cache);

46.1.2.2 Getting a JCache

Once a cache is registered in CacheManager, you get it from there.

The following example shows how to get a Cache.

 manager = CacheManager.getInstance();
 Ehcache Ehcache = new net.sf.ehcache.Cache("UseCache", 10,
 MemoryStoreEvictionPolicy.LFU,
 false, null, false, 10, 10, false, 60, null);
 manager.registerCache("test", new JCache(ehcache, null));
 Cache cache = manager.getCache("test");

46.1.2.3 Using a JCache

The JavaDoc is the best place to learn how to use a JCache.

The main point to remember is that JCache implements Map and that is the best way to think about it.

JCache also has some interesting asynchronous methods such as load and loadAll which can be
used to preload the JCache.

46.1.3 Problems and Limitations in the early draft of JSR107

If you are used to the richer API that Ehcache provides, you need to be aware of some problems and
limitations in the draft specification.

You can generally work around these by getting the Ehcache backing cache. You can then access the
extra features available in ehcache.

Of course the biggest limitation is that JSR107 (as of Augut 2007) is a long way from final.

 /**
 * Gets the backing Ehcache
 */
 public Ehcache getBackingCache() {
 return cache;
 }

The following is both a critique of JCache and notes on the Ehcache implementation. As a member of
the JSR107 Expert Group these notes are also intended to be used to improve the specification.

http://ehcache.org/apidocs/net/sf/ehcache/jcache/JCache.html

4 6 J S R 1 0 7 (J C A C H E) S u p p o r t 214

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

46.1.3.1 net.sf.jsr107cache.CacheManager

CacheManager does not have the following features:

• shutdown the CacheManager - there is no way to free resources or persist. Implementations may
utilise a shutdown hook, but that does not work for application server redeployments, where a
shutdown listener must be used.

• List caches in the CacheManager. There is no way to iterate over, or get a list of caches.
• remove caches from the CacheManager - once its there it is there until JVM shutdown. This does

not work well for dynamic creation, destruction and recreation of caches.
• CacheManager does not provide a standard way to configure caches. A Map can be populated

with properties and passed to the factory, but there is no way a configuration file can be
configured. This should be standardised so that declarative cache configuration, rather than
programmatic, can be achieved.

46.1.3.2 net.sf.jsr107cache.CacheFactory

A property is specified in the resource services/net.sf.jsr107cache.CacheFactory for a CacheFactory.

The factory then resolves the CacheManager which must be a singleton.

A singleton CacheManager works in simple scenarios. But there are many where you want multiple
CacheManagers in an application. Ehcache supports both singleton creation semantics and instances
and defines the way both can coexist.

The singleton CacheManager is a limitation of the specification.

(Alternatives: Some form of annotation and injection scheme)

Pending a final JSR107 implementation, the Ehcache configuration mechanism is used to create
JCaches from ehcache.xml config.

46.1.3.3 net.sf.jsr107cache.Cache

• The spec is silent on whether a Cache can be used in the absence of a CacheManager. Requiring
a CacheManager makes a central place where concerns affecting all caches can be managed, not
just a way of looking them up. For example, configuration for persistence and distribution.

• Cache does not have a lifecycle. There is no startup and no shutdown. There is no way, other
than a shutdown hook, to free resources or perform persistence operations. Once again this will
not work for redeployment of applications in an app server.

• There is no mechanism for creating a new cache from a default configuration such as a public
void registerCache(String cacheName) on CacheManager. This feature is considered
indispensable by frameworks such as Hibernate.

• Cache does not have a getName() method. A cache has a name; that is how it is retrieved from
the CacheManager. But it does not know its own name. This forces API users to keep track of
the name themselves for reporting exceptions and log messages.

• Cache does not support setting a TTL override on a put. e.g. put(Object key, Object
value, long timeToLive). This is a useful feature.

• The spec is silent on whether the cache accepts null keys and elements. Ehcache allows all
implementations. i.e.
 cache.put(null, null);
 assertNull(cache.get(null));
 cache.put(null, "value");
 assertEquals("value", cache.get(null));
 cache.put("key", null);
 assertEquals(null, cache.get("key"));

4 6 J S R 1 0 7 (J C A C H E) S u p p o r t 215

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

null is effectively a valid key. However because null id not an instance of Serializable
null-keyed entries will be limited to in-process memory.

• The load(Object key), loadAll(Collection keys) and getAll(Collection
collection) methods specify in the javadoc that they should be asynchronous. Now, most
load methods work off a database or some other relatively slow resource (otherwise there would
be no need to have a cache in the first place).
To avoid running out of threads, these load requests need to be queued and use a finite number
of threads. The Ehcache implementation does that. However, due to the lack of lifecycle
management, there is no immediate way to free resources such as thread pools.

• The load method ignores a request if the element is already loaded in for that key.
• get and getAll are inconsistent. getAll throws CacheException, but get does not. They both

should.
 /**
 * Returns a collection view of the values contained in this map. The
 * collection is backed by the map, so changes to the map are reflected in
 * the collection, and vice-versa. If the map is modified while an
 * iteration over the collection is in progress (except through the
 * iterator's own <tt>remove</tt> operation), the results of the
 * iteration are undefined. The collection supports element removal,
 * which removes the corresponding mapping from the map, via the
 * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
 * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</
tt> operations.
 * It does not support the add or <tt>addAll</tt> operations.
 * <p/>
 *
 * @return a collection view of the values contained in this map.
 */
 public Collection values() {

It is not practical or desirable to support this contract. Ehcache has multiple maps for storage of
elements so there is no single backing map. Allowing changes to propagate from a change in
the collection maps would break the public interface of the cache and introduce subtle threading
issues.

The Ehcache implementation returns a new collection which is not connected to internal
structures in ehcache.

46.1.3.4 net.sf.jsr107cache.CacheEntry

• getHits() returns int. It should return long because production cache systems have entries hit
more than Integer.MAX_VALUE times.
Once you get to Integer.MAX_VALUE the counter rolls over. See the following test:

 @Test public void testIntOverflow() {
 long value = Integer.MAX_VALUE;
 value += Integer.MAX_VALUE;
 value += 5;
 LOG.info("" + value);
 int valueAsInt = (int) value;
 LOG.info("" + valueAsInt);
 assertEquals(3, valueAsInt);
 }

4 6 J S R 1 0 7 (J C A C H E) S u p p o r t 216

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• getCost() requirs the CacheEntry to know where it is. If it is in a DiskStore then its cost of
retrieval could be higher than if it is in heap memory. Ehcache elements do not have this concept,
and it is not implemented. i.e. getCost always returns 0. Also, if it is in the DiskStore, when you
retrieve it is in then in the MemoryStore and its retrieval cost is a lot lower. I do not see the point
of this method.

• getLastUpdateTime() is the time the last "update was made". JCACHE does not support
updates, only puts

46.1.3.5 net.sf.jsr107cache.CacheStatistics

• getObjectCount() is a strange name. How about getSize()? If a cache entry is an object graph
each entry will have more than one "object" in it. But the cache size is what is really meant, so
why not call it that?

• Once again getCacheHits and getCacheMisses should be longs.
public interface CacheStatistics {
 public static final int STATISTICS_ACCURACY_NONE = 0;
 public static final int STATISTICS_ACCURACY_BEST_EFFORT = 1;
 public static final int STATISTICS_ACCURACY_GUARANTEED = 2;
 public int getStatisticsAccuracy();
 public int getObjectCount();
 public int getCacheHits();
 public int getCacheMisses();
 public void clearStatistics();

• There is a getStatisticsAccuracy() method but not a corresponding setStatisticsAccuracy
method on Cache, so that you can alter the accuracy of the Statistics returned.
Ehcache supports this behaviour.

• There is no method to estimate memory use of a cache. Ehcache serializes each Element to a
byte[] one at a time and adds the serialized sizes up. Not perfect but better than nothing and
works on older JDKs.

• CacheStatistics is obtained using cache.getCacheStatistics() It then has getters for
values. In this way it feels like a value object. The Ehcache implementation is Serializable so that
it can act as a DTO. However it also has a clearStatistics() method. This method clear counters
on the Cache. Clearly CacheStatistics must hold a reference to Cache to enable this to happen.
But what if you are really using it as a value object and have serialized it? The Ehcache
implementation marks the Cache reference as transient. If clearStatistics() is called when the
cache reference is no longer there, an IllegalStateException is thrown.

A much better solution would be to move clearStatistics() to Cache.

46.1.3.6 net.sf.jsr107cache.CacheListener

/**
 * Interface describing various events that can happen as elements are added to
 * or removed from a cache
 */
public interface CacheListener {
 /
** Triggered when a cache mapping is created due to the cache loader being consulted */
 public void onLoad(Object key);
 /
** Triggered when a cache mapping is created due to calling Cache.put() */
 public void onPut(Object key);
 /** Triggered when a cache mapping is removed due to eviction */

4 6 J S R 1 0 7 (J C A C H E) S u p p o r t 217

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 public void onEvict(Object key);
 /
** Triggered when a cache mapping is removed due to calling Cache.remove() */
 public void onRemove(Object key);
 public void onClear();
}

• Listeners often need not just the key, but the cache Entry itself. This listener interface is
extremely limiting.

• There is no onUpdate notification method. These are mapped to JCACHE's onPut notification.
• There is no onExpired notification method. These are mapped to JCACHE's onEvict notification.

46.1.3.7 net.sf.jsr107cache.CacheLoader

• JCache can store null values against a key. In this case, on JCache# get or getAll should an
implementation attempt to load these values again? They might have been null in the system
the CacheLoader loads from, but now aren't. The Ehcache implementation will still return nulls,
which is probably the correct behaviour. This point should be clarified.

46.1.4 Other Areas

46.1.4.1 JMX

JSR107 is silent on JMX which has been included in the JDK since 1.5.

4 7 B u i l d i n g F r o m S o u r c e 218

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

47 Building From Source
...

47.1 Building from Source
These instructions work for each of the modules, except for JMS Replication, which requires
installation of a message queue. See that module for details.

47.1.1 Building an Ehcache distribution from source

To build Ehcache from source:

1 Check the source out from the subversion repository.
2 Ensure you have a valid JDK and Maven 2 installation.
3 From within the ehcache/core directory, type mvn -Dmaven.test.skip=true install

47.1.2 Running Tests for Ehcache

To run the test suite for Ehcache:

1 Check the source out from the subversion repository.
2 Ensure you have a valid JDK and Maven 2 installation.
3 From within the ehcache/core directory, type mvn test
4 If some performance tests fail, add a -D net.sf.ehcache.speedAdjustmentFactor=x

System property to your command line, where x is how many times your machine is slower than
the reference machine. Try setting it to 5 for a start.

47.1.3 Deploying Maven Artifacts

Ehcache has a repository and snapshot repository at oss.sonatype.org.

The repository is synced with the Maven Central Repository.

To deploy:

 mvn deploy

This will fail because SourceForge has disabled ssh exec. You need to create missing directories
manually using sftp access sftp gregluck,ehcache@web.sourceforge.net

47.1.4 Building the Site

(These instructions are for project maintainers)

To build the site use:

 mvn -Dmaven.test.skip=true package site

The site needs to be deployed from the target/site directory using:

rsync -v -r * ehcache-stage.terracotta.lan:/export1/ehcache.org

sudo -u maven -H /usr/local/bin/syncEHcache.sh

47.1.5 Deploying a release

47.1.5.1 Maven Release

 mvn deploy

4 7 B u i l d i n g F r o m S o u r c e 219

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

47.1.5.2 Sourceforge Release

 mvn assembly:assembly

then manually upload to SourceForge

sftp gregluck@frs.sourceforge.net

and complete the file release process

4 8 F A Q 220

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

48 FAQ
...

48.1 Ehcache - Frequently Asked Questions

48.1.1 Does Ehcache run on JDK1.3/ JDK1.4?

Older versions run on 1.3. Ehcache 1.5 runs on 1.4. Ehcache 1.6 required JDK 1.5.

48.1.2 Can you use more than one instance of Ehcache in a single VM?

As of ehcache-1.2, yes. Create your CacheManager using new CacheManager(...) and keep hold of
the reference. The singleton approach accessible with the getInstance(...) method is still available too.
Remember that Ehcache can support hundreds of caches within one CacheManager. You would use
separate CacheManagers where you want different configurations.

The Hibernate EhCacheProvider has also been updated to support this behaviour.

48.1.3 Can you use Ehcache with Hibernate and outside of Hibernate at the same time?

Yes. You use 1 instance of Ehcache and 1 ehcache.xml. You configure your caches with Hibernate
names for use by Hibernate. You can have other caches which you interact with directly outside of
Hibernate.

That is how I use Ehcache in the original project it was developed in. For Hibernate we have about 80
Domain Object caches, 10 StandardQueryCaches, 15 Domain Object Collection caches.

We have around 5 general caches we interact with directly using BlockingCacheManager. We have
15 general caches we interact with directly using SelfPopulatingCacheManager. You can use one of
those or you can just use CacheManager directly.

See the tests for example code on using the caches directly. Look at CacheManagerTest, CacheTest
and SelfPopulatingCacheTest.

48.1.4 What happens when maxElementsInMemory is reached? Are the oldest items expired when
new ones come in?

When the maximum number of elements in memory is reached, the least recently used ("LRU")
element is removed. Used in this case means inserted with a put or accessed with a get.

If the overflowToDisk cache attribute is false, the LRU Element is evicted. If true, it is flushed
asynchronously to the DiskStore.

48.1.5 Is it thread-safe to modify Element values after retrieval from a Cache?

Remember that a value in a cache element is globally accessible from multiple threads. It is inherently
not thread safe to modify the value. It is safer to retrieve a value, delete the cache element and then
reinsert the value.

The UpdatingCacheEntryFactory does work by modifying the contents of values in place in the
cache. This is outside of the core of Ehcache and is targeted at high-performance CacheEntryFactories
for SelfPopulatingCaches.

48.1.6 Can non-Serializable objects be stored in a cache?

As of ehcache-1.2, they can be stored in caches with MemoryStores.

http://ehcache.org/apidocs/net/sf/ehcache/constructs/blocking/UpdatingCacheEntryFactory.html

4 8 F A Q 221

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

If an attempt is made to replicate or overflow a non-serializable element to disk, the element is
removed and a warning logged.

48.1.7 Why is there an expiry thread for the DiskStore but not for the MemoryStore?

Because the memory store has a fixed maximum number of elements, it will have a maximum
memory use equal to the number of elements * the average size. When an element is added beyond
the maximum size, the LRU element gets pushed into the DiskStore.

While we could have an expiry thread to expire elements periodically, it is far more efficient to only
check when we need to. The tradeoff is higher average memory use.

The expiry thread keeps the disk store clean. There is hopefully less contention for the DiskStore's
locks because commonly used values are in the MemoryStore. We mount our DiskStore on Linux
using RAMFS so it is using OS memory. While we have more of this than the 2GB 32 bit process size
limit it is still an expensive resource. The DiskStore thread keeps it under control.

If you are concerned about cpu utilisation and locking in the DiskStore, you can set the
diskExpiryThreadIntervalSeconds to a high number - say 1 day. Or you can effectively turn it off by
setting the diskExpiryThreadIntervalSeconds to a very large value.

48.1.8 What elements are mandatory in ehcache.xml?

The documentation has been updated with comprehensive coverage of the schema for Ehcache and
all elements and attributes, including whether they are mandatory. See the Declarative Configuration
chapter.

48.1.9 Can I use Ehcache as a memory cache only?

Yes. Just set the overflowToDisk attribute of cache to false.

48.1.10 Can I use Ehcache as a disk cache only?

As of Ehcache 2.0 this is not possible. You can set the maxElementsInMemory to 1, but setting the
max size to 0 now gives an infinite capacity.

48.1.11 Where is the source code?

The source code is distributed in the root directory of the download. It is called ehcache-x.x.zip. It is
also available from SourceForge online or through SVN.

48.1.12 How do you get an Element without affecting statistics?

Use the Cache.getQuiet() method. It returns an Element without updating statistics.

48.1.13 How do you get WebSphere to work with ehcache?

It has been reported that IBM Websphere 5.1 running on IBM JDK1.4 requires commons-
collection.jar in its classpath even though Ehcache will not use it for JDK1.4 and JDK5. (This is for
versions of Ehcache lower than 1.6)

48.1.14 Do you need to call CacheManager.getInstance().shutdown() when you finish with ehcache?

Yes, it is recommended. If the JVM keeps running after you stop using ehcache, you should call
CacheManager.getInstance().shutdown() so that the threads are stopped and cache memory released

http://ehcache.org/documentation/#mozTocId258426
http://ehcache.svn.sourceforge.net/viewvc/ehcache/
http://sourceforge.net/svn/?group_id=93232
http://ehcache.org/apidocs/net/sf/ehcache/Cache.html#getQuiet%28java.io.Serializable%29
http://sourceforge.net/tracker/index.php?func=detail&aid=1025128&group_id=93232&atid=603559

4 8 F A Q 222

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

back to the JVM. Calling shutdown also insures that your persistent disk stores get written to disk in a
consistent state and will be usable the next time they are used.

If the CacheManager does not get shutdown it should not be a problem. There is a shutdown hook
which calls the shutdown on JVM exit. This is explained in the documentation here.

48.1.15 Can you use Ehcache after a CacheManager.shutdown()?

Yes. When you call CacheManager.shutdown() is sets the singleton in CacheManager to null. If you
try an use a cache after this you will get a CacheException.

You need to call CacheManager.create(). It will create a brand new one good to go. Internally the
CacheManager singleton gets set to the new one. So you can create and shutdown as many times as
you like.

There is a test which expliciyly confirms this behaviour. See
CacheManagerTest#testCreateShutdownCreate()

48.1.16 I have created a new cache and its status is STATUS_UNINITIALISED. How do I initialise it?

You need to add a newly created cache to a CacheManager before it gets intialised. Use code like the
following:

 CacheManager manager = CacheManager.create();
 Cache myCache = new Cache("testDiskOnly", 0, true, false, 5, 2);
 manager.addCache(myCache);

48.1.17 Is there a simple way to disable Ehcache when testing?

Yes. There is a System Property based method of disabling ehcache. If disabled no elements will be
added to a cache. Set the property "net.sf.ehcache.disabled=true" to disable ehcache.

This can easily be done using -Dnet.sf.ehcache.disabled=true> in the command line.

48.1.18 How do I dynamically change Cache attributes at runtime?

You can't but you can achieve the same result as follows:

 Cache cache = new Cache("test2", 1, true, true, 0, 0, true, 120, ...);
 cacheManager.addCache(cache);

See the JavaDoc for the full parameters, also reproduced here:

Having created the new cache, get a list of keys using cache.getKeys, then get each one and put it in
the new cache. None of this will use much memory because the new cache element have values that
reference the same data as the original cache. Then use cacheManager.removeCache("oldcachename")
to remove the original cache.

48.1.19 I get net.sf.ehcache.distribution.RemoteCacheException: Error doing put to
remote peer. Message was: Error unmarshaling return header; nested exception is:
java.net.SocketTimeoutException: Read timed out. What does this mean.

It typically means you need to increase your socketTimeoutMillis. This is the amount of time a sender
should wait for the call to the remote peer to complete. How long it takes depends on the network and
the size of the Elements being replicated.

The configuration that controls this is the socketTimeoutMillis setting in
cacheManagerPeerListenerFactory. 120000 seems to work well for most scenarios.

http://ehcache.org/documentation/#mozTocId183156

4 8 F A Q 223

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

 <cacheManagerPeerListenerFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"
 properties="hostName=fully_qualified_hostname_or_ip,
 port=40001,
 socketTimeoutMillis=120000"/>

48.1.20 Should I use this directive when doing distributed caching?
cacheManagerEventListenerFactory class="" properties=""/

No. It is unrelated. It is for listening to changes in your local CacheManager.

48.1.21 What is the minimum config to get distributed caching going?

The minimum configuration you need to get distributed caching going is:

 <cacheManagerPeerProviderFactory
 class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
 properties="peerDiscovery=automatic,
 multicastGroupAddress=230.0.0.1,
 multicastGroupPort=4446"/>
<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>

and then at least one cache declaration with

<cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>>>>

in it. An example cache is:

 <cache name="sampleDistributedCache1"
 maxElementsInMemory="10"
 eternal="false"
 timeToIdleSeconds="100"
 timeToLiveSeconds="100"
 overflowToDisk="false">
 <cacheEventListenerFactory
 class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
 </cache>

Each server in the cluster can have the same config.

48.1.22 How can I see if distributed caching is working?

You should see the listener port open on each server.

You can use the distributed debug tool to see what is going on. (See http://ehcache.org/
documentation/remotedebugger.html).

48.1.23 Why can't I run multiple applications using Ehcache on one machine?

Because of an RMI bug, in JDKs before JDK1.5 such as JDK1.4.2, Ehcache is limited
to one CacheManager operating in distributed mode per virtual machine. (The bug limits
the number of RMI registries to one per virtual machine). Because this is the expected
deployment configuration, however, there should be no practical effect. The tell tail error is
java.rmi.server.ExportException: internal error: ObjID already in use

http://ehcache.org/documentation/remotedebugger.html
http://ehcache.org/documentation/remotedebugger.html

4 8 F A Q 224

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

On JDK1.5 and higher it is possible to have multiple CacheManagers per VM each participating in the
same or different clusters. Indeed the replication tests do this with 5 CacheManagers on the same VM
all run from JUnit.

48.1.24 How many threads does Ehcache use, and how much memory does that consume?

The amount of memory consumed per thread is determined by the Stack Size. This is set using -Xss.
The amount varies by OS. It is 512KB for Linux. I tend to override the default and set it to 100kb.

The threads are created per cache as follows:

• DiskStore expiry thread - if DiskStore is used
• DiskStore spool thread - if DiskStore is used
• Replication thread - if asynchronous replication is configured.

If you are not doing any of the above, no extra threads are created

48.1.25 I am using Tomcat 5, 5.5 or 6 and I am having a problem. What can I do?

Tomcat is such a common deployment option for applications using Ehcache that there is a chapter on
known issues and recommended practices.

See the Using Ehcache with Tomcat chapter. (http://ehcache.org/documentation/tomcat.html)

48.1.26 I am using Java 6 and getting a java.lang.VerifyError on the Backport Concurrent classes.
Why?

The backport-concurrent library is used in Ehcache to provide java.util.concurrency facilities for Java
4 - Java 6. Use either the Java 4 version which is compatible with Java 4-6 or use the version for your
JDK.

48.1.27 How do I get a memory only-cache to persist to disk between VM restarts?

While disk persistence between restarts is a feature of the DiskStore only, you can get the same
behaviour for a memory only cache by setting up a cache with maxElementsInMemory set to
Integer.MAX_VALUE, 2147483647 and diskPersistent set to true.

You can manually call flush() to flush to disk. It is a good idea to set clearOnFlush to false so that
the MemoryStore is not cleared each time. You can then call flush() to persist whenever you wish.

48.1.28 I get a javax.servlet.ServletException: Could not initialise servlet filter when using
SimplePageCachingFilter. Why?

If you use this default implementation, the cache name is called "SimplePageCachingFilter". You
need to define a cache with that name in ehcache.xml. If you override CachingFilter you are required
to set your own cache name.

48.1.29 Why is there a warning in my application's log that a new CacheManager is using a resource
already in use by another CacheManager.

WARN CacheManager ... Creating a new instance of CacheManager using the diskStorePath
 "C:\temp\tempcache" which is already used by an existing CacheManager.

This means, that for some reason, your application is trying to create a second or more instance of
Ehcache's CacheManager with the same configuration. Ehcache is automatically resolving the Disk
path conflict, which works fine.

To eliminate the warning:

http://ehcache.org/documentation/tomcat.html

4 8 F A Q 225

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• Use a separate configuration per instance
• If you only want one instance use the singleton creation methods i.e
CacheManager.getInstance(). In Hibernate there is a special provider for this called
net.sf.ehcache.hibernate.SingletonEhCacheProvider.

See the Hibernate page for details.

48.1.30 How do I add a CacheReplicator to a cache that already exists? The cache event listening
works but it does not get plumbed into the peering mechanism.

The current API does not have a CacheManager event for cache configuration change. You can
however make it work by calling the notifyCacheAdded event.

getCache().getCacheManager().getCacheManagerEventListenerRegistry()
 .notifyCacheAdded("cacheName");

48.1.31 I am using the RemoteDebugger to monitor cluster messages but all I see is "Cache size: 0"

If you see nothing happening, but cache operations should be going through, enable trace (LOG4J) or
finest (JDK) level logging on codenet.sf.ehcache.distribution /code in the logging configuration being
used by the debugger. A large volume of log messages will appear. The normal problem is that the
CacheManager has not joined the cluster. Look for the list of cache peers.

Finally, the debugger in ehcache-1.5 has been improved to provide far more information on the caches
that are replicated and events which are occurring.

48.1.32 With distributed replication on Ubuntu or Debian, I see the following warning,

WARN [Replication Thread] RMIAsynchronousCacheReplicator.flushReplicationQueue(324)
| Unable to send message to remote peer.
Message was: Connection refused to host: 127.0.0.1; nested exception is:
java.net.ConnectException: Connection refused
java.rmi.ConnectException: Connection refused to host: 127.0.0.1; nested exception is:
java.net.ConnectException: Connection refused

This is caused by a 2008 change to the Ubuntu/Debian linux default network configuration.

Essentially, this java call: InetAddress.getLocalHost(); always returns the loopback address,
which is 127.0.0.1. Why? Because in these recent distros, a system call of $ hostname always returns
an address mapped onto the loopback device. Which causes ehcache's RMI Peer creation logic to
always assign the loopback address, which causes the error you are seeing.

All you need to do is crack open the network config and make sure that the hostname of the machine
returns a valid network address accessible by other peers on the network.

48.1.33 I see log messages about SoftReferences. What are these about and how do I stop getting
the messages?

Ehcache uses SoftReferences with asynchronous RMI based replication, so that replicating caches
do not run out of memory if the network is interrupted. Elements scheduled for replication will be
collected instead. If this is happening, you will see warning messages from the replicator. It is also
possible that a SoftReference can be reclaimed during the sending in which case you will see a debug
level message in the receiving CachePeer.

Some things you can do to fix them:

• Set -Xms equal to -Xms. SoftReferences are also reclaimed in preference to increasing the heap
size, which is a problem when an application is warming up.

4 8 F A Q 226

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

• Set the -Xmx to a high enough value so that SoftReferences do not get reclaimed.
Having done the above, SoftReferences will then only be reclaimed if there is some interruption
to replication and the message queue gets dangerously high.

48.1.34 My Hibernate Query caches entries are replicating but the other caches in the cluster are
not using them.

This is a Hibernate 3 bug. See http://opensource.atlassian.com/projects/hibernate/browse/HHH-3392
for tracking. It is fixed in 3.3.0.CR2 which was released in July 2008.

48.1.35 Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 where it does not cleanup temporary queues,
even though they have been deleted. That bug appears to be long standing but was though to have
been fixed.

See:

• http://www.nabble.com/Memory-Leak-Using-Temporary-Queues-td11218217.html#a11218217
• http://issues.apache.org/activemq/browse/AMQ-1255

The JMSCacheLoader uses temporary reply queues when loading. The Active MQ issue is
readily reproduced in Ehcache integration testing. Accordingly, use of the JMSCacheLoader with
ActiveMQ is not recommended. Open MQ tests fine.

48.1.36 Is Ehcache compatible with Google App Engine?

Version 1.6 is compatible. See Google App Engine Caching.

48.1.37 Can my app server use JMS Replication?

Some App Servers do not permit the creation of message listeners. This issue has been reported on
Websphere 5. Websphere 4 did allow it. Tomcat allows it. Glassfish Allows it. Jetty allows it.

Usually there is a way to turn off strict EJB compliance checks in your app server. See your vendor
documentation.

48.1.38 Why does Ehcache 1.6 use more memory than 1.5?

ConcurrentHashMap does not provide an eviction mechanism. We add that ourselves. For caches
larger than 5000 elements, we create an extra ArrayList equal to the size of the cache which holds
keys. This can be an issue with larger keys. An optimisation which cache clients can use is:

 http://www.codeinstructions.com/2008/09/instance-pools-with-
weakhashmap.html
 To reduce the number of key instances in memory to just one per logical
 key, all puts to the underlying ConcurrentHashMap could be replaced by
 map.put(pool.replace(key), value), as well as keyArray.set(index,
 pool.replace(key))
 You can take this approach when producing the keys before handing them over to EhCache.

Even with this approach there is still some added overhead consumed by a reference consumed by
each ArrayList element.

Update: Ehcache 2.0 will introduce a new implementation for MemoryStore based on a custom
ConcurrentHashMap. This version provides fast iteration and does away with the need for
the keyArray thus bringing memory use back down to pre 1.6 levels. And with other memory

4 8 F A Q 227

© 2 0 1 1 , T e r r a c o t t a , I n c . • A L L R I G H T S R E S E R V E D .

optimisations made to Element in 1.7, memory use will actually be considerably lower than pre 1.6
levels.

48.1.39 What does this mean? "Caches cannot be added by name when default cache config is not
specified in the config. Please add a default cache config in the configuration."

From Ehcache 2.4, we have made the defaultCache optional. When you try to add a cache
by name, CacheManager.add(String name), a default cache is expected to exist in the
CacheManager configuration.

	Table of Contents
	Preface
	Introduction
	Getting Started
	Dependencies
	Cache Concepts
	Configuration
	Storage Options
	Cache Consistency Options
	Cache Eviction Algorithms
	Big Memory:Off-Heap Store
	JDBC Caching
	Spring Caching with Ehcache
	Code Samples
	Class loading and Class Loaders
	Tuning Garbage Collection
	Cache Decorators
	Hibernate Caching
	Web Caching
	Using ColdFusion with Ehcache
	Cache Topologies
	Replicated Caching With RMI
	Replicated Caching With JGroups
	Replicated Caching With JMS
	Shutting Down Ehcache
	Logging
	Remote Network replication debugging: RMI Replicated Caches
	JMX Management And Monitoring
	JTA And Transactions
	Search
	Ehcache Monitor
	CacheManager Event Listeners
	Cache Event Listeners
	Cache Exception Handlers
	Cache Extensions
	Cache Loaders
	Write-through and write-behind caching with CacheWriters
	Cache Server with SOAP and RESTful Web Services
	Explicit Locking API
	BlockingCache and SelfPopulatingCache
	OpenJPA Caching
	Grails Caching
	JRuby Caching
	Glassfish HowTo
	Google App Engine Caching
	Tomcat Issues and Best Practices
	JSR107 (JCACHE) Support
	Building From Source
	FAQ

