
Ehcache Configuration Guide

Version 2.10.2

April 2016

This document applies to Ehcache Version 2.10.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EHC-CG-2102-20160415

http://documentation.softwareag.com/legal/
http://softwareag.com/licenses/
http://documentation.softwareag.com/legal/

M
Table of Contents

Ehcache Configuration Guide Version 2.10.2 3

Table of Contents

Configuring Cache...5
About Ehcache Configuration...6
XML Configuration.. 6
Dynamically Changing Cache Configuration..8
Passing Copies Instead of References..9

Configuring Storage Tiers.. 11
About Storage Tiers..12
Configuring Memory Store..12
Configuring Disk Store..13

Sizing Storage Tiers.. 17
The Sizing Attributes.. 18
Pooling Resources Versus Sizing Individual Caches...19
Sizing Examples... 20
Pinning and Size Limitations.. 23
Built-In Sizing Computation and Enforcement..23
Eviction When Using CacheManager-Level Storage... 25

Managing Data Life..27
Configuration Options that Affect Data Life..28
Setting Expiration..28
Pinning Data... 29
How Configuration Affects Element Flushing and Eviction.. 30
Data Freshness and Expiration..31

Configuring Restartability and Persistence.. 33
About Restartability and Persistence... 34
Cache Persistence Implementation..34
Configuration Examples..35
Compatibility with Previous Versions..36

Configuring the Update Checker... 39
Configuring the Update Checker..40

System Properties... 41
Special System Properties... 42

M
Even Header

Ehcache Configuration Guide Version 2.10.2 4

M
Odd Header

Configuring Cache

Ehcache Configuration Guide Version 2.10.2 5

1 Configuring Cache

■ About Ehcache Configuration .. 6

■ XML Configuration ... 6

■ Dynamically Changing Cache Configuration ... 8

■ Passing Copies Instead of References ... 9

M
Even Header

Configuring Cache

Ehcache Configuration Guide Version 2.10.2 6

About Ehcache Configuration
Ehcache supports declarative configuration via an XML configuration file, as well as
programmatic configuration via class-constructor APIs. Choosing one approach over
the other can be a maer of preference or a requirement, such as when an application
requires a certain run-time context to determine appropriate configuration seings.

If your project permits the separation of configuration from run time use, there are
advantages to the declarative approach:

Cache configuration can be changed more easily at deployment time.

Configuration can be centrally organized for greater visibility.

Configuration lifecycle can be separated from application-code lifecycle.

Configuration errors are checked at startup rather than causing an unexpected
runtime error.

If the configuration file is not provided, a default configuration is always loaded at
runtime.

This guide focuses on XML declarative configuration. Programmatic configuration
is explored in certain examples and is documented in the Javadoc at hp://
www.ehcache.org/apidocs/2.10.1/.

XML Configuration
By default, Ehcache looks for an ASCII or UTF8 encoded XML configuration file called
ehcache.xml at the top level of the Java classpath. You may specify alternate paths
and filenames for the XML configuration file by using the various CacheManager
constructors as described in the CacheManager Javadoc at hp://www.ehcache.org/
apidocs/2.10.1/.

To avoid resource conflicts, one XML configuration is required for each CacheManager
that is created. For example, directory paths and listener ports require unique values.
Ehcache will aempt to resolve conflicts, and, if one is found, it will emit a warning
reminding the user to use separate configurations for multiple CacheManagers.

A sample ehcache.xml file is included in the Ehcache distribution. It contains full
commentary on how to configure each element. This file can also be downloaded from
hp://ehcache.org/ehcache.xml.

Note: Prior to ehcache-1.6, Ehcache only supported ASCII ehcache.xml
configuration files. Starting with ehcache-1.6, UTF8 is supported, so that
configuration can use Unicode. Because UTF8 is backwardly compatible with
ASCII, no conversion is necessary.

http://www.ehcache.org/apidocs/2.10.1/
http://www.ehcache.org/apidocs/2.10.1/
http://www.ehcache.org/apidocs/2.10.1/
http://www.ehcache.org/apidocs/2.10.1/
http://ehcache.org/ehcache.xml

M
Odd Header

Configuring Cache

Ehcache Configuration Guide Version 2.10.2 7

Note: Some elements documented in the ehcache.xml sample file pertain only to the
Terracoa BigMemory products and are not valid for the open-source version
of Ehcache.

ehcache.xsd

Ehcache configuration files must comply with the Ehcache XML schema, ehcache.xsd,
which can be downloaded from hp://ehcache.org/ehcache.xsd.

The Ehcache distribution also contains a copy of ehcache.xsd.

Note: Note that some elements documented by the Ehcache XML schema pertain
only to the Terracoa BigMemory products and are not valid for the open-
source version of Ehcache.

ehcache-failsafe.xml

If the CacheManager default constructor or factory method is called, Ehcache looks for a
file called ehcache.xml in the top level of the classpath. Failing that, it looks for ehcache-
failsafe.xml in the classpath. The ehcache-failsafe.xml file is packaged in the Ehcache
JAR and should always be found.

ehcache-failsafe.xml provides a simple default configuration to enable users to get
started before they create their own ehcache.xml.

When ehcache-failsafe.xml is used, Ehcache will emit a warning, reminding the user to
set up a proper configuration. The meaning of the elements and aributes are explained
in the section on ehcache.xml.
<ehcache>
 <diskStore path="java.io.tmpdir"/>
 <defaultCache
 maxEntriesLocalHeap="10000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="120"
 maxEntriesLocalDisk="10000000"
 diskExpiryThreadIntervalSeconds="120"
 memoryStoreEvictionPolicy="LRU">
 <persistence strategy="localTempSwap"/>
 </defaultCache>
</ehcache>

About Default Cache

The defaultCache configuration is applied to any cache that is not explicitly configured.
The defaultCache appears in the ehcache-failsafe.xml file by default, and can also be
added to any Ehcache configuration file.

While the defaultCache configuration is not required, an error is generated if caches are
created by name (programmatically) with no defaultCache loaded.

http://ehcache.org/ehcache.xsd

M
Even Header

Configuring Cache

Ehcache Configuration Guide Version 2.10.2 8

Dynamically Changing Cache Configuration
While most of the Ehcache configuration is not changeable after startup, since Ehcache
2.0, certain cache configuration parameters can be modified dynamically at runtime.
These include the following:

Expiration seings

timeToLive – The maximum number of seconds an element can exist in the cache
regardless of access. The element expires at this limit and will no longer be
returned from the cache. The default value is 0, which means no TTL eviction
takes place (infinite lifetime).

timeToIdle – The maximum number of seconds an element can exist in the cache
without being accessed. The element expires at this limit and will no longer be
returned from the cache. The default value is 0, which means no TTI eviction
takes place (infinite lifetime).

Note that the eternal aribute, when set to "true", overrides timeToLive and
timeToIdle so that no expiration can take place.

Local sizing aributes

maxEntriesLocalHeap

maxBytesLocalHeap

maxEntriesLocalDisk

maxBytesLocalDisk.

memory-store eviction policy.

CacheEventListeners can be added and removed dynamically

This example shows how to dynamically modify the cache configuration of a running
cache:
Cache cache = manager.getCache("sampleCache");
CacheConfiguration config = cache.getCacheConfiguration();
config.setTimeToIdleSeconds(60);
config.setTimeToLiveSeconds(120);
config.setmaxEntriesLocalHeap(10000);
config.setmaxEntriesLocalDisk(1000000);

Dynamic cache configurations can also be disabled to prevent future changes:
Cache cache = manager.getCache("sampleCache");
cache.disableDynamicFeatures();

In ehcache.xml, you can disable dynamic configuration by seing the <ehcache>
element's dynamicConfig aribute to "false".

M
Odd Header

Configuring Cache

Ehcache Configuration Guide Version 2.10.2 9

Passing Copies Instead of References
By default, a get() operation on a store returns a reference to the requested data, and any
changes to that data are immediately reflected in the memory store. In cases where an
application requires a copy of data rather than a reference to it, you can configure the
store to return a copy. This allows you to change a copy of the data without affecting the
original data in the memory store.

This is configured using the copyOnRead and copyOnWrite aributes of the <cache> and
<defaultCache> elements in your configuration, or programmatically as follows:
CacheConfiguration config = new CacheConfiguration("copyCache", 1000)
 .copyOnRead(true).copyOnWrite(true);
Cache copyCache = new Cache(config);

The default configuration is "false" for both options.

To copy elements on put()-like and/or get()-like operations, a copy strategy is used.
The default implementation uses serialization to copy elements. You can provide
your own implementation of net.sf.ehcache.store.compound.CopyStrategy using the
<copyStrategy> element:
<cache name="copyCache"
 maxEntriesLocalHeap="10"
 eternal="false"
 timeToIdleSeconds="5"
 timeToLiveSeconds="10"
 copyOnRead="true"
 copyOnWrite="true">
 <copyStrategy class="com.company.ehcache.MyCopyStrategy"/>
</cache>

A single instance of your CopyStrategy is used per cache. Therefore, in your
implementation of CopyStrategy.copy(T), T must be thread-safe.

A copy strategy can be added programmatically in the following way:
CacheConfiguration cacheConfiguration = new CacheConfiguration("copyCache", 10);
CopyStrategyConfiguration copyStrategyConfiguration = new CopyStrategyConfiguration();
copyStrategyConfiguration.setClass("com.company.ehcache.MyCopyStrategy");
cacheConfiguration.addCopyStrategy(copyStrategyConfiguration);

M
Even Header

Ehcache Configuration Guide Version 2.10.2 10

M
Odd Header

Configuring Storage Tiers

Ehcache Configuration Guide Version 2.10.2 11

2 Configuring Storage Tiers

■ About Storage Tiers ... 12

■ Configuring Memory Store ... 12

■ Configuring Disk Store ... 13

M
Even Header

Configuring Storage Tiers

Ehcache Configuration Guide Version 2.10.2 12

About Storage Tiers
Ehcache has three storage tiers, summarized here:

Memory store – Heap memory that holds a copy of the hoest subset of data from the
off-heap store. Subject to Java GC.

Off-heap store – Limited in size only by available RAM. Not subject to Java GC. Can
store serialized data only. Provides overflow capacity to the memory store.

Disk store – Backs up in-memory data and provides overflow capacity to the other
tiers. Can store serialized data only.

This document defines the standalone storage tiers and their suitable element types and
then details the configuration for each storage tier.

Before running in production, it is strongly recommended that you test the tiers with the
actual amount of data you expect to use in production. For information about sizing the
tiers, refer to "Sizing Storage Tiers" on page 17.

Configuring Memory Store
The memory store is always enabled and exists in heap memory. For the best
performance, allot as much heap memory as possible without triggering garbage
collection (GC) pauses, and use the off-heap store to hold the data that cannot fit in heap
(without causing GC pauses).

The memory store has the following characteristics:

Accepts all data, whether serializable or not

Fastest storage option

Thread safe for use by multiple concurrent threads

The memory store is the top tier and is automatically used by Ehcache to store the data
hotset because it is the fastest store. It requires no special configuration to enable, and
its overall size is taken from the Java heap size. Since it exists in the heap, it is limited by
Java GC constraints.

Memory Use, Spooling, and Expiry Strategy in the Memory Store

All caches specify their maximum in-memory size, in terms of the number of elements,
at configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an
existing element is either deleted, if overflow is not enabled, or evaluated for spooling to
another tier, if overflow is enabled. The overflow options are overflowToOffHeap and
<persistence> (disk store).

M
Odd Header

Configuring Storage Tiers

Ehcache Configuration Guide Version 2.10.2 13

If overflow is enabled, a check for expiry is carried out. If it is expired it is deleted; if not
it is spooled. The eviction of an item from the memory store is based on the optional
MemoryStoreEvictionPolicy aribute specified in the configuration file. Legal values
are LRU (default), LFU and FIFO:

Least Recently Used (LRU)—LRU is the default seing. The last-used timestamp is
updated when an element is put into the cache or an element is retrieved from the
cache with a get call.

Least Frequently Used (LFU) —For each get call on the element the number of hits is
updated. When a put call is made for a new element (and assuming that the max
limit is reached for the memory store) the element with least number of hits, the Less
Frequently Used element, is evicted.

First In First Out (FIFO) — Elements are evicted in the same order as they come in.
When a put call is made for a new element (and assuming that the max limit is
reached for the memory store) the element that was placed first (First-In) in the store
is the candidate for eviction (First-Out).

For all the eviction policies there are also putQuiet() and getQuiet() methods which do
not update the last used timestamp.

When there is a get() or a getQuiet() on an element, it is checked for expiry. If expired,
it is removed and null is returned. Note that at any point in time there will usually be
some expired elements in the cache. Memory sizing of an application must always take
into account the maximum size of each cache.

Tip: calculateInMemorySize() is a convenient method that can provide an estimate
of the size (in bytes) of the memory store. It returns the serialized size of the
cache, providing a rough estimate. Do not use this method in production as it
is has a negative effect on performance.

An alternative is to have an expiry thread. This is a trade-off between lower
memory use and short locking periods and CPU utilization. The design is in
favor of the laer. For those concerned with memory use, simply reduce the
tier size. For more information, refer to "Sizing Storage Tiers" on page 17.

Configuring Disk Store
The disk store provides a thread-safe disk-spooling facility that can be used for either
additional storage or persisting data through system restarts.

This section describes local disk usage. You can find additional information about
configuring the disk store in "Configuring Restartability and Persistence" on page 33.

Serialization

Only data that is Serializable can be placed in the disk store. Writes to and from the disk
use ObjectInputStream and the Java serialization mechanism. Any non-serializable data
overflowing to the disk store is removed and a NotSerializableException is thrown.

M
Even Header

Configuring Storage Tiers

Ehcache Configuration Guide Version 2.10.2 14

Serialization speed is affected by the size of the objects being serialized and their type. It
has been found that:

The serialization time for a Java object consisting of a large Map of String arrays was
126ms, where the serialized size was 349,225 bytes.

The serialization time for a byte[] was 7ms, where the serialized size was 310,232
bytes.

Byte arrays are 20 times faster to serialize, making them a beer choice for increasing
disk-store performance.

Configuring the Disk Store

Disk stores are configured on a per CacheManager basis. If one or more caches requires
a disk store but none is configured, a default directory is used and a warning message is
logged to encourage explicit configuration of the disk store path.

Configuring a disk store is optional. If all caches use only memory, then there is no
need to configure a disk store. This simplifies configuration, and uses fewer threads.
This also makes it unnecessary to configure multiple disk store paths when multiple
CacheManagers are being used.

Two disk store options are available:

Temporary store (localTempSwap)

Persistent store (localRestartable)

localTempSwap

The localTempSwap persistence strategy allows the memory store to overflow to disk
when it becomes full. This option makes the disk a temporary store because overflow
data does not survive restarts or failures. When the node is restarted, any existing data
on disk is cleared because it is not designed to be reloaded.

If the disk store path is not specified, a default path is used, and the default will be auto-
resolved in the case of a conflict with another CacheManager.

The localTempSwap disk store creates a data file for each cache on startup called
"<cache_name> .data".

localRestartable

This option implements a restartable store for all in-memory data. After any restart, the
data set is automatically reloaded from disk to the in-memory stores.

The path to the directory where any required disk files will be created is configured
with the <diskStore> sub-element of the Ehcache configuration. In order to use the
restartable store, a unique and explicitly specified path is required.

M
Odd Header

Configuring Storage Tiers

Ehcache Configuration Guide Version 2.10.2 15

The diskStore Configuration Element

Files are created in the directory specified by the <diskStore> configuration element.
The <diskStore> element has one aribute called path.
<diskStore path="/path/to/store/data"/>

Legal values for the path aribute are legal file system paths. For example, for Unix:
/home/application/cache

The following system properties are also legal, in which case they are translated:

user.home - User's home directory

user.dir- User's current working directory

java.io.tmpdir - Default temp file path

ehcache.disk.store.dir- A system property you would normally specify on the
command line—for example, java -Dehcache.disk.store.dir=/u01/myapp/
diskdir.

Subdirectories can be specified below the system property, for example:
user.dir/one

To programmatically set a disk store path:
DiskStoreConfiguration diskStoreConfiguration = new DiskStoreConfiguration();
diskStoreConfiguration.setPath("/my/path/dir");
// Already created a configuration object ...
configuration.addDiskStore(diskStoreConfiguration);
CacheManager mgr = new CacheManager(configuration);

Note: A CacheManager's disk store path cannot be changed once it is set in
configuration. If the disk store path is changed, the CacheManager must be
recycled for the new path to take effect.

Disk Store Expiry and Eviction

Expired elements are eventually evicted to free up disk space. The element is also
removed from the in-memory index of elements.

One thread per cache is used to remove expired elements. The optional aribute
diskExpiryThreadIntervalSeconds sets the interval between runs of the expiry
thread.

Important: Seing diskExpiryThreadIntervalSeconds to a low value can cause
excessive disk-store locking and high CPU utilization. The default value is
120 seconds.

If a cache's disk store has a limited size, Elements will be evicted from the disk store
when it exceeds this limit. The LFU algorithm is used for these evictions. It is not
configurable or changeable.

M
Even Header

Configuring Storage Tiers

Ehcache Configuration Guide Version 2.10.2 16

Note: With the localTempSwap strategy, you can use maxEntriesLocalDisk or
maxBytesLocalDisk at either the Cache or CacheManager level to control the
size of the disk tier.

Turning off Disk Stores

To turn off disk store path creation, comment out the diskStore element in
ehcache.xml.

The default Ehcache configuration, ehcache-failsafe.xml, uses a disk store. To avoid use
of a disk store, specify a custom ehcache.xml with the diskStore element commented
out.

M
Odd Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 17

3 Sizing Storage Tiers

■ The Sizing Attributes .. 18

■ Pooling Resources Versus Sizing Individual Caches .. 19

■ Sizing Examples ... 20

■ Pinning and Size Limitations .. 23

■ Built-In Sizing Computation and Enforcement ... 23

■ Eviction When Using CacheManager-Level Storage ... 25

M
Even Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 18

The Sizing Attributes
Tuning Ehcache often involves sizing the data storage tiers appropriately. You can size
the different data tiers in a number of ways using simple sizing aributes. These sizing
aributes affect memory and disk resources.

The following table summarizes the sizing aributes you can use.

Tier Attribute Description

Memory
Store
(Heap)

maxEntriesLocalHeapmax
BytesLocalHeap The maximum number of entries

or bytes a data set can use in
local heap memory, or when
set at the CacheManager level
(maxBytesLocalHeap only), as a
pool available to all data sets under
that CacheManager. This seing is
required for every cache or at the
CacheManager level.

Pooling is available at the
CacheManager level using
maxBytesLocalHeap only.

Off-heap
Store

maxBytesLocalOffHeap
The maximum number of bytes a data
set can use in off-heap memory, or
when set at the CacheManager level, as
a pool available to all data sets under
that CacheManager.

Pooling is available at the
CacheManager level.

Disk
Store

maxEntriesLocalDiskmax
BytesLocalDisk The maximum number of entries or

bytes a data set can use on the local
disk, or when set at the CacheManager
level (maxBytesLocalDisk only), as a
pool available to all data sets under
that CacheManager. Note that these
seings apply to temporary disk usage
(localTempSwap); these seings do not
apply to disk persistence.

Pooling is available at the
CacheManager level using
maxBytesLocalDisk only.

M
Odd Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 19

Aributes that set a number of entries or elements take an integer. Aributes that set
a memory size (bytes) use the Java -Xmx syntax (for example: "500k", "200m", "2g") or
percentage (for example: "20%"). Percentages, however, can be used only in the case
where a CacheManager-level pool has been configured.

The following diagram illustrates the tiers and their effective sizing aributes.

Pooling Resources Versus Sizing Individual Caches
You can constrain the size of any cache on a specific tier in that cache's configuration.
You can also constrain the size of all of a CacheManager's caches in a specific tier by
configuring an overall size at the CacheManager level.

If there is no CacheManager-level pool specified for a tier, an individual cache claims
the amount of that tier specified in its configuration. If there is a CacheManager-level
pool specified for a tier, an individual cache claims that amount from the pool. In this case,
caches with no size configuration for that tier receive an equal share of the remainder of
the pool (after caches with explicit sizing configuration have claimed their portion).

For example, if CacheManager with eight caches pools one gigabyte of heap, and two
caches each explicitly specify 200MB of heap while the remaining caches do not specify
a size, the remaining caches will share 600MB of heap equally. Note that caches must
use bytes-based aributes to claim a portion of a pool; entries-based aributes such as
maxEntriesLocal cannot be used with a pool.

On startup, the sizes specified by caches are checked to ensure that any CacheManager-
level pools are not over-allocated. If over-allocation occurs for any pool, an
InvalidConfigurationException is thrown. Note that percentages should not add up to
more than 100% of a single pool.

If the sizes specified by caches for any tier take exactly the entire CacheManager-level
pool specified for that tier, a warning is logged. In this case, caches that do not specify a
size for that tier cannot use the tier as nothing is left over.

M
Even Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 20

Memory Store (Heap)

A size must be provided for the heap, either in the CacheManager (maxBytesLocalHeap
only) or in each individual cache (maxBytesLocalHeap or maxEntriesLocalHeap). Not
doing so causes an InvalidConfigurationException.

If a pool is configured, it can be combined with a heap seing in an individual cache.
This allows the cache to claim a specified portion of the heap seing configured in the
pool. However, in this case the cache seing must use maxBytesLocalHeap (same as the
CacheManager).

In any case, every cache must have a heap seing, either configured explicitly or taken
from the pool configured in the CacheManager.

Local Disk Store

The local disk can be used as a data tier, either for temporary storage or for disk
persistence, but not both at once.

To use the disk as a temporary tier during BigMemory operation, set the
persistenceStrategy to "localTempSwap", and use the maxBytesLocalDisk seing to
configure the size of this tier. For more information about using the disk as a temporary
tier, see "Configuring Disk Store" on page 13.

For information about using the disk store for data persistence, see "Cache Persistence
Implementation" on page 34.

Sizing Examples
The following examples illustrate both pooled and individual cache-sizing
configurations.

Note: Some of the following examples include allocations for off-heap storage. Off-
heap data storage (i.e., the off-heap tier) is only available with the Terracoa
BigMemory products.

Pooled Resources

The following configuration sets pools for all of this CacheManager's caches:
<ehcache xmlns...
 Name="CM1"
 maxBytesLocalHeap="100M"
 maxBytesLocalOffHeap="10G"
 maxBytesLocalDisk="50G">
...
<cache name="Cache1" ... </cache>
<cache name="Cache2" ... </cache>
<cache name="Cache3" ... </cache>
</ehcache>

M
Odd Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 21

CacheManager CM1 automatically allocates these pools equally among its three caches.
Each cache gets one third of the allocated heap, off-heap, and local disk. Note that at the
CacheManager level, resources can be allocated in bytes only.

Explicitly Sizing Caches

You can explicitly allocate resources to specific caches:
<ehcache xmlns...
 Name="CM1"
 maxBytesLocalHeap="100M"
 maxBytesLocalOffHeap="10G"
 maxBytesLocalDisk="60G">
...
<cache name="Cache1" ...
 maxBytesLocalHeap="50M"
 ...
 </cache>
<cache name="Cache2" ...
 maxBytesLocalOffHeap="5G"
 ...
 </cache>
<cache name="Cache3" ... </cache>
</ehcache>

In the example above, Cache1 reserves 50Mb of the 100Mb local-heap pool; the other
caches divide the remaining portion of the pool equally. Cache2 takes half of the local
off-heap pool; the other caches divide the remaining portion of the pool equally. Cache3
receives 25Mb of local heap, 2.5Gb of off-heap, and 20Gb of the local disk.

Caches that reserve a portion of a pool are not required to use that portion. Cache1, for
example, has a fixed portion of the local heap but may have any amount of data in heap
up to the configured value of 50Mb.

Note that caches must use the same sizing aributes used to create the pool. Cache1, for
example, cannot use maxEntriesLocalHeap to reserve a portion of the pool.

Mixed Sizing Configurations

If a CacheManager does not pool a particular resource, that resource can still be
allocated in cache configuration, as shown in the following example.
<ehcache xmlns...
 Name="CM2"
 maxBytesLocalHeap="100M">
...
<cache name="Cache4" ...
 maxBytesLocalHeap="50M"
 maxEntriesLocalDisk="100000"
 ...
 </cache>
<cache name="Cache5" ...
 maxBytesLocalOffHeap="10G"
 ...
 </cache>
<cache name="Cache6" ... </cache>
</ehcache>

M
Even Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 22

CacheManager CM2 creates one pool (local heap). Its caches all use the local heap and
are constrained by the pool seing, as expected. However, cache configuration can
allocate other resources as desired. In this example, Cache4 allocates disk space for its
data, and Cache5 allocates off-heap space for its data. Cache6 gets 25Mb of local heap
only.

Using Percents

The following configuration sets pools for each tier:
<ehcache xmlns...
 Name="CM1"
 maxBytesLocalHeap="1G"
 maxBytesLocalOffHeap="10G"
 maxBytesLocalDisk="50G">
...
<!-- Cache1 gets 400Mb of heap, 2.5Gb of off-heap, and 5Gb of disk. -->
<cache name="Cache1" ...
maxBytesLocalHeap="40%">
</cache>
<!-- Cache2 gets 300Mb of heap, 5Gb of off-heap, and 5Gb of disk. -->
<cache name="Cache2" ...
maxBytesLocalOffHeap="50%">
</cache>
<!-- Cache2 gets 300Mb of heap, 2.5Gb of off-heap, and 40Gb of disk. -->
<cache name="Cache3" ...
maxBytesLocalDisk="80%">
</cache>
</ehcache>

Note: You can use a percentage of the total JVM heap for the CacheManager
maxBytesLocalHeap. The CacheManager percentage, then, is a portion of
the total JVM heap, and in turn, the Cache percentage is the portion of the
CacheManager pool for that tier.

Sizing Without a Pool

The CacheManager in this example does not pool any resources.
<ehcache xmlns...
 Name="CM3"
 ... >
...
<cache name="Cache7" ...
 maxBytesLocalHeap="50M"
 maxEntriesLocalDisk="100000"
 ...
 </cache>
<cache name="Cache8" ...
 maxEntriesLocalHeap="1000"
 maxBytesLocalOffHeap="10G"
 ...
 </cache>
<cache name="Cache9" ...
 maxBytesLocalHeap="50M"
...
</cache>
</ehcache>

M
Odd Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 23

Caches can be configured to use resources as necessary. Note that every cache in this
example must declare a value for local heap. This is because no pool exists for the local
heap; implicit (CacheManager configuration) or explicit (cache configuration) local-heap
allocation is required.

Pinning and Size Limitations
Pinned caches can override the limits set by cache-configuration sizing aributes,
potentially causing OutOfMemory errors. This is because pinning prevents flushing
of cache entries to lower tiers. For more information on pinning, see "Pinning Data" on
page 29.

Built-In Sizing Computation and Enforcement
Internal Ehcache mechanisms track data-element sizes and enforce the limits set by
CacheManager sizing pools.

Sizing of Elements

Elements put in a memory-limited cache will have their memory sizes measured. The
entire Element instance added to the cache is measured, including key and value, as
well as the memory footprint of adding that instance to internal data structures. Key and
value are measured as object graphs – each reference is followed and the object reference
also measured. This goes on recursively.

Shared references will be measured by each class that references it. This will result in an
overstatement. Shared references should therefore be ignored.

Ignoring for Size Calculations

For the purposes of measurement, references can be ignored using the @IgnoreSizeOf
annotation. The annotation may be declared at the class level, on a field, or on a package.
You can also specify a file containing the fully qualified names of classes, fields, and
packages to be ignored.

This annotation is not inherited, and must be added to any subclasses that should also
be excluded from sizing.

The following example shows how to ignore the Dog class.
@IgnoreSizeOf
public class Dog {
 private Gender gender;
 private String name;
}

The following example shows how to ignore the sharedInstance field.
public class MyCacheEntry {
 @IgnoreSizeOf
 private final SharedClass sharedInstance;

M
Even Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 24

 ...
}

Packages may be also ignored if you add the @IgnoreSizeOf annotation to appropriate
package-info.java of the desired package. Here is a sample package-info.java for and in
the com.pany.ignore package:
@IgnoreSizeOf
package com.pany.ignore;
import net.sf.ehcache.pool.sizeof.filter.IgnoreSizeOf;

Alternatively, you may declare ignored classes and fields in a file and specify a
net.sf.ehcache.sizeof.filter system property to point to that file.
That field references a common graph between all cached entries
com.pany.domain.cache.MyCacheEntry.sharedInstance
This will ignore all instances of that type
com.pany.domain.SharedState
This ignores a package
com.pany.example

Note that these measurements and configurations apply only to on-heap storage. Once
Elements are moved to disk, they are serialized as byte arrays. The serialized size is then
used as the basis for measurement.

Configuration for Limiting the Traversed Object Graph

As noted above, sizing caches involves traversing object graphs, a process that can be
limited with annotations. This process can also be controlled at both the CacheManager
and cache levels.

Size-Of Limitation at the CacheManager Level

Control how deep the size-of engine can go when sizing on-heap elements by adding the
following element at the CacheManager level:
<sizeOfPolicy maxDepth="100" maxDepthExceededBehavior="abort"/>

This element has the following aributes

maxDepth – Controls how many linked objects can be visited before the size-of
engine takes any action. This aribute is required.

maxDepthExceededBehavior – Specifies what happens when the max depth is
exceeded while sizing an object graph:

"continue" – (DEFAULT) Forces the size-of engine to log a warning and continue
the sizing operation. If this aribute is not specified, "continue" is the behavior
used.

"abort" – Forces the SizeOf engine to abort the sizing, log a warning, and
mark the cache as not correctly tracking memory usage. With this seing,
Ehcache.hasAbortedSizeOf() returns true.

The SizeOf policy can be configured at the CacheManager level (directly under
<ehcache>) and at the cache level (under <cache> or <defaultCache>). The cache
policy always overrides the CacheManager if both are set.

M
Odd Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 25

Size-Of Limitation at the Cache level

Use the <sizeOfPolicy> as a sub-element in any <cache> block to control how deep
the size-of engine can go when sizing on-heap elements belonging to the target cache.
This cache-level seing overrides the CacheManager size-of seing.

Debugging of Size-Of Related Errors

If warnings or errors appear that seem related to size-of measurement (usually caused
by the size-of engine walking the graph), generate more log information on sizing
activities:

Set the net.sf.ehcache.sizeof.verboseDebugLogging system property to true.

Enable debug logs on net.sf.ehcache.pool.sizeof in your chosen
implementation of SLF4J.

Eviction When Using CacheManager-Level Storage
When a CacheManager-level storage pool is exhausted, a cache is selected on which
to perform eviction to recover pool space. The eviction from the selected cache is
performed using the cache's configured eviction algorithm (LRU, LFU, etc...). The cache
from which eviction is performed is selected using the "minimal eviction cost" algorithm
described below:
 eviction-cost = mean-entry-size * drop-in-hit-rate

Eviction cost is defined as the increase in bytes requested from the underlying SOR
(System of Record, e.g., database) per unit time used by evicting the requested number
of bytes from the cache.

If we model the hit distribution as a simple power-law then:
 P(hit n'th element) ~ 1/n^{alpha}

In the continuous limit, this means the total hit rate is proportional to the integral of this
distribution function over the elements in the cache. The change in hit rate due to an
eviction is then the integral of this distribution function between the initial size and the
final size. Assuming that the eviction size is small compared to the overall cache size, we
can model this as:
 drop ~ access * 1/x^{alpha} * Delta(x)

where "access" is the overall access rate (hits + misses), and x is a unit-less measure of the
"fill level" of the cache. Approximating the fill level as the ratio of hit rate to access rate,
and substituting in to the eviction-cost expression, we get:
 eviction-cost = mean-entry-size * access * 1/(hits/access)^{alpha}
 * (eviction / (byteSize / (hits/access)))

Simplifying:
 eviction-cost = (byteSize / countSize) * access * 1/(h/A)^{alpha}
 * (eviction * hits)/(access * byteSize)
 eviction-cost = (eviction * hits) / (countSize * (hits/access)^{alpha})

M
Even Header

Sizing Storage Tiers

Ehcache Configuration Guide Version 2.10.2 26

Removing the common factor of "eviction", which is the same in all caches, lead us to
evicting from the cache with the minimum value of:
 eviction-cost = (hits / countSize) / (hits/access)^{alpha}

When a cache has a zero hit-rate (it is in a pure loading phase), we deviate from this
algorithm and allow the cache to occupy 1/nth of the pool space, where "n" is the
number of caches using the pool. Once the cache starts to be accessed, we re-adjust to
match the actual usage paern of that cache.

M
Odd Header

Managing Data Life

Ehcache Configuration Guide Version 2.10.2 27

4 Managing Data Life

■ Configuration Options that Affect Data Life ... 28

■ Setting Expiration ... 28

■ Pinning Data ... 29

■ How Configuration Affects Element Flushing and Eviction .. 30

■ Data Freshness and Expiration ... 31

M
Even Header

Managing Data Life

Ehcache Configuration Guide Version 2.10.2 28

Configuration Options that Affect Data Life
This topic covers managing the life of the data in each of the data-storage tiers, including
the pinning features of Automatic Resource Control (ARC).

You use the options to manage data life within the data-storage tiers:

Flush – To move an entry to a lower tier. Flushing is used to free up resources while
still keeping data in Ehcache .

Fault – To copy an entry from a lower tier to a higher tier. Faulting occurs when data
is required at a higher tier but is not resident there. The entry is not deleted from the
lower tiers after being faulted.

Eviction – To remove an entry from Ehcache. The entry is deleted; it can only be
reloaded from an outside source. Entries are evicted to free up resources.

Expiration – A status based on Time-To-Live and Time-To-Idle seings. To maintain
performance, expired entries may not be immediately flushed or evicted.

Pinning – To keep data in memory indefinitely.

Setting Expiration
Data entries expire based on parameters with configurable values. When eviction
occurs, expired elements are the first to be removed. Having an effective expiration
configuration is critical to optimizing the use of resources such as heap and maintaining
overall performance.

To add expiration, specify values for the following <cache> aributes, and tune these
values based on results of performance tests:

timeToIdleSeconds – The maximum number of seconds an element can exist in the
cache without being accessed. The element expires at this limit and will no longer be
returned from Ehcache . The default value is 0, which means no TTI eviction takes
place (infinite lifetime).

timeToLiveSeconds – The maximum number of seconds an element can exist in
the cache regardless of use. The element expires at this limit and will no longer be
returned from Ehcache . The default value is 0, which means no TTL eviction takes
place (infinite lifetime).

maxEntriesLocalDisk – The maximum sum total number of elements (cache
entries) allowed on the disk tier for a cache. If this target is exceeded, eviction occurs
to bring the count within the allowed target. The default value is 0, which means no
eviction takes place (infinite size is allowed). A seing of 0 means that no eviction of the
cache's entries takes place, and consequently can cause the node to run out of disk space.

M
Odd Header

Managing Data Life

Ehcache Configuration Guide Version 2.10.2 29

eternal – If the cache's eternal flag is set, it overrides any finite TTI/TTL values
that have been set. Individual cache elements may also be set to eternal. Eternal
elements and caches do not expire, however they may be evicted.

For information about how configuration can impact eviction, see "How Configuration
Affects Element Flushing and Eviction" on page 30.

Pinning Data
Without pinning, expired cache entries can be flushed and eventually evicted, and
even most non-expired elements can also be flushed and evicted as well, if resource
limitations are reached. Pinning gives per-cache control over whether data can be
evicted from Ehcache .

Data that should remain in memory can be pinned. You cannot pin individual entries,
only an entire cache. As described in the following topics, there are two types of
pinning, depending upon whether the pinning configuration should take precedence
over resource constraints or the other way around.

Configuring Pinning

Entire caches can be pinned using the pinning element in the Ehcache configuration.
This element has a required aribute (store) to specify how the pinning will be
accomplished.

The store aribute can have either of the following values:

inCache – Data is pinned in the cache, in any tier in which cache data is stored. The
tier is chosen based on performance-enhancing efficiency algorithms. Unexpired
entries can never be evicted.

localMemory – Data is pinned to the memory store. Entries are evicted only in the
event that the store's configured size is exceeded.

For example, the following cache is configured to pin its entries:
<cache name="Cache1" ... >
 <pinning store="inCache" />
</cache>

The following cache is configured to pin its entries to heap only:
<cache name="Cache2" ... >
 <pinning store="localMemory" />
</cache>

Pinning and Cache Sizing

The interaction of the pinning configuration with the cache sizing configuration depends
upon which pinning option is used.

For inCache pinning, the pinning seing takes priority over the configured cache
size. Elements resident in a cache with this pinning option cannot be evicted if they

M
Even Header

Managing Data Life

Ehcache Configuration Guide Version 2.10.2 30

have not expired. This type of pinned cache is not eligible for eviction at all, and
maxEntriesInCache should not be configured for this cache.

Important: Potentially, pinned caches could grow to an unlimited size. Caches should
never be pinned unless they are designed to hold a limited amount of data
(such as reference data) or their usage and expiration characteristics are
understood well enough to conclude that they cannot cause errors.

For localMemory pinning, the configured cache size takes priority over the pinning
seing. localMemory pinning should be used for optimization, to keep data in heap
memory, unless or until the tier becomes too full. If the number of entries surpasses
the configured size, entries will be evicted. For example, in the following cache the
maxEntriesLocalHeap and maxBytesLocalOffHeap seings override the pinning
configuration. (Off-heap storage is only available in the Terracoa BigMemory
products.)
<cache name="myCache"
 maxEntriesLocalHeap="10000"
 maxBytesLocalOffHeap="8g"
 ... >
 <pinning store="localMemory" />
</cache>

Scope of Pinning

Pinning achieved programmatically will not be persisted — after a restart the pinned
entries are no longer pinned.

Explicitly Removing Data from a Pinned Cache

To unpin all of a cache's pinned entries, clear the cache. Specific entries can be removed
from a cache using Cache.remove(). To empty the cache, Cache.removeAll(). If the cache
itself is removed (Cache.dispose() or CacheManager.removeCache()), then any data
still remaining in the cache is also removed locally. However, that remaining data is not
removed from disk (if localRestartable).

How Configuration Affects Element Flushing and Eviction
The following example shows a cache with certain expiration seings:
<cache name="myCache"
 eternal="false" timeToIdleSeconds="3600"
 timeToLiveSeconds="0" memoryStoreEvictionPolicy="LFU">
</cache>

Note the following about the myCache configuration:

If a client accesses an entry in myCache that has been idle for more than an hour
(timeToIdleSeconds), that element is evicted.

If an entry expires but is not accessed, and no resource constraints force eviction,
then the expired entry remains in place until a periodic evictor removes it.

M
Odd Header

Managing Data Life

Ehcache Configuration Guide Version 2.10.2 31

Entries in myCache can live forever if accessed at least once per 60 minutes
(timeToLiveSeconds). However, unexpired entries may still be flushed based on
other limitations. For details, see "Sizing Storage Tiers" on page 17.

Data Freshness and Expiration
Databases and other systems of record (SORs) that were not built to accommodate
caching outside of the database do not normally come with any default mechanism for
notifying external processes when data has been updated or modified.

When using Ehcache as a caching system, the following strategies can help to keep the
data in the cache in sync:

Data Expiration Use the eviction algorithms included with Ehcache, along with the
timeToIdleSeconds and timetoLiveSeconds seings, to enforce a maximum time
for elements to live in the cache (forcing a re-load from the database or SOR).

Message Bus: Use an application to make all updates to the database. When updates
are made, post a message onto a message queue with a key to the item that was
updated. All application instances can subscribe to the message bus and receive
messages about data that is updated, and can synchronize their local copy of the
data accordingly (for example by invalidating the cache entry for updated data)

Triggers: Using a database trigger can accomplish a similar task as the message bus
approach. Use the database trigger to execute code that can publish a message to
a message bus. The advantage to this approach is that updates to the database do
not have to be made only through a special application. The downside is that not all
database triggers support full execution environments and it is often inadvisable to
execute heavy-weight processing such as publishing messages on a queue during a
database trigger.

The Data Expiration method is the simplest and most straightforward. It gives you the
most control over the data synchronization, and doesn't require cooperation from any
external systems. You simply set a data expiration policy and let Ehcache expire data
from the cache, thus allowing fresh reads to re-populate and re-synchronize the cache.

If you choose the Data Expiration method, you can read more about the cache
configuration seings in "Cache Eviction Algorithms" in the Developer Guide for Ehcache
and review the timeToIdle and timeToLive configuration seings in "Seing Expiration."
The most important consideration when using the expiration method is balancing data
freshness with database load. The shorter you make the expiration seings - meaning
the more "fresh" you try to make the data - the more load you will place on the database.

Try out some numbers and see what kind of load your application generates. Even
modestly short values such as five or ten minutes will produce significant load
reductions.

M
Even Header

Ehcache Configuration Guide Version 2.10.2 32

M
Odd Header

Configuring Restartability and Persistence

Ehcache Configuration Guide Version 2.10.2 33

5 Configuring Restartability and Persistence

■ About Restartability and Persistence ... 34

■ Cache Persistence Implementation ... 34

■ Configuration Examples ... 35

■ Compatibility with Previous Versions ... 36

M
Even Header

Configuring Restartability and Persistence

Ehcache Configuration Guide Version 2.10.2 34

About Restartability and Persistence
Ehcache offers persistence using the local disk as a cache storage tier. While Ehcache
offers various disk usage choices, as of version 2.6, the recommended option for
persistence is the Fast Restart store, which is available in BigMemory Go and
BigMemory Max. Open-source Ehcache offers a limited version of persistence, as noted
in this document.

The Fast Restart feature provides enterprise-ready crash resilience with an option to
store a fully consistent copy of the cache on the local disk at all times. The persistent
storage of the cache on disk means that after any kind of shutdown — planned or
unplanned — the next time that the application starts up, all of the previously cached
data is still available and very quickly accessible.

The advantages of the Fast Restart store include:

A persistent store of the cache on disk survives crashes, providing the fastest restart.
Because cached data does not need to be reloaded from the data source after a crash,
but is instead loaded from the local disk, applications can resume at full speed
after restart. Recovery of even terabytes of data after a failure will be very fast,
minimizing downtime.

A persistent store on disk always contains a real-time copy of the cache, providing
true fault tolerance. Even with BigMemory, where terabytes of data can be held in
memory, the synchronous backup of data to disk provides the equivalent of a hot
mirror right at the application and server nodes.

A consistent copy of the cache on local disk provides many possibilities for business
requirements, such as working with different datasets according to time-based needs
or moving datasets around to different locations. It can range from a simple key-
value persistence mechanism with fast read performance, to an operational store
with in-memory speeds during operation for both reads and writes.

Cache Persistence Implementation
Ehcache has a RestartStore which provides fast restartability and options for cache
persistence. The RestartStore implements an on-disk mirror of the in-memory cache.
After any restart, data that was last in the cache will automatically load from disk into
the RestartStore, and from there the data will be available to the cache.

Data persistence is configured by adding the <persistence> sub-element to a cache
configuration. The <persistence> sub-element includes two aributes: strategy and
synchronousWrites.

Strategy Options

The options for the strategy aribute are:

M
Odd Header

Configuring Restartability and Persistence

Ehcache Configuration Guide Version 2.10.2 35

"localRestartable" — Enables the RestartStore and copies all cache entries (on-
heap and/or off-heap) to disk. This option provides fast restartability with fault
tolerant cache persistence on disk. This option is available for BigMemory Go only. For
more information about this strategy, see the BigMemory Configuration Guide on the
Terracoa Documentation website.

"localTempSwap" — Enables temporary local disk usage. This option provides an
extra tier for storage during cache operation, but this disk storage is not persisted.
After a restart, the disk tier is cleared of any cache data.

"none" — Does not offload data to disk. With this option, all of the working data is
kept in memory only. This is the default mode.

Synchronous Writes Options

If the strategy aribute is set to "localRestartable", then the synchronousWrites
aribute can be configured. The options for synchronousWrites are:

synchronousWrites="false" — This option specifies that an eventually consistent record
of the data is kept on disk at all times. Writes to disk happen when efficient, and
cache operations proceed without waiting for acknowledgment of writing to disk.
After a restart, the data is recovered as it was when last synced. This option is faster
than synchronousWrites="true", but after a crash, the last 2-3 seconds of wrien
data may be lost.

If not specified, the default for synchronousWrites is "false".

synchronousWrites="true" — This option specifies that a fully consistent record of
the data is kept on disk at all times. As changes are made to the data set, they are
synchronously recorded on disk. The write to disk happens before a return to the
caller. After a restart, the data is recovered exactly as it was before shutdown. This
option is slower than synchronousWrites="false", but after a crash, it provides
full data consistency.

For transaction caching with synchronousWrites, soft locks are used to protect
access. If there is a crash in the middle of a transaction, then upon recovery the soft
locks are cleared on next access.

DiskStore Path

he path to the directory where any required disk files will be created is configured with
the <diskStore> sub-element of the Ehcache configuration.For "localTempSwap", if the
DiskStore path is not specified, a default path is used for the disk storage tier, and the
default path will be auto-resolved in the case of a conflict with another CacheManager.

Configuration Examples
This section presents possible disk usage configurations for open-source Ehcache 2.6 and
higher.

http://terracotta.org/documentation/

M
Even Header

Configuring Restartability and Persistence

Ehcache Configuration Guide Version 2.10.2 36

Temporary Disk Storage

The "localTempSwap" persistence strategy allows the cache to use the local disk during
cache operation. The disk storage is temporary and is cleared after a restart.
<ehcache>
 <diskStore path="/auto/default/path"/>
 <cache>
 <persistence strategy="localTempSwap"/>
 </cache>
</ehcache>

Note: With the "localTempSwap" strategy, you can use maxEntriesLocalDisk or
maxBytesLocalDisk at either the Cache or CacheManager level to control the
size of the disk tier.

In-memory Only Cache

When the persistence strategy is "none", all cache stays in memory (with no overflow to
disk nor persistence on disk).
<cache>
 <persistence strategy="none"/>
</cache>

Programmatic Configuration Example

The following is an example of how to programmatically configure cache persistence on
disk:
Configuration cacheManagerConfig = new Configuration()
 .diskStore(new DiskStoreConfiguration()
 .path("/path/to/store/data"));
CacheConfiguration cacheConfig = new CacheConfiguration()
 .name("my-cache")
 .maxBytesLocalHeap(16, MemoryUnit.MEGABYTES)
 .persistence(new PersistenceConfiguration()
 .strategy(Strategy.LOCALTEMPSWAP));
cacheManagerConfig.addCache(cacheConfig);
CacheManager cacheManager = new CacheManager(cacheManagerConfig);
Ehcache myCache = cacheManager.getEhcache("my-cache");

Compatibility with Previous Versions
Comparison of Disk Usage Options

The following table summarizes the configuration options for disk usage in Ehcache 2.6
and higher as compared with previous versions.

Disk Usage Ehcache 2.6 (and higher) Ehcache 2.5 and Earlier

Fast
Restartability

persistence strategy="localRestartable"
synchronousWrites="true" Not available

M
Odd Header

Configuring Restartability and Persistence

Ehcache Configuration Guide Version 2.10.2 37

Disk Usage Ehcache 2.6 (and higher) Ehcache 2.5 and Earlier
with Strong
Consistency

Fast
Restartability
with Eventual
Consistency

persistence strategy="localRestartable"
synchronousWrites="false"

(Enterprise only)

Not available

Persistence
for Clustered
Caches

persistence strategy="distributed"
Remove or edit out
any disk persistence
configuration
elements

Non-Fault-
Tolerant
Persistence

Use one of the fault-tolerant
options above*

overflowToDisk="true"
diskpersistent="true"**

Temporary
Storage Tier

persistence strategy="localTempSwap"overflowToDisk="true"
diskPersistent="false"

In-memory Only
(no disk usage)

persistence strategy="none"

*It is recommended to use one of the fault-tolerant options, however non-fault-tolerant
persistence is still available. If <persistence> has not been specified, you can still use
overflowToDisk="true" diskPersistent="true".

**In Ehcache 2.5 and earlier, cache persistence on disk for standalone Ehcache is
configured with the overflowToDisk and diskPersistent aributes. If both are set
to "true", cached data is saved to disk asynchronously and can be recovered after a
clean shutdown or planned flush. To prevent corrupt or inconsistent data from being
returned, checking measures are performed upon a restart, and if any discrepancy is
found, the cache that was stored on disk is emptied and must be reloaded from the data
source.

Upgrading from Ehcache 2.5 and Earlier

After upgrading from a version of Ehcache previous to 2.6, it is strongly recommended
to add the <persistence> sub-element to your cache configuration, and to delete,
disable, or edit out disk persistence configuration elements from previous versions. The
previous elements include:

overflowToDisk

diskPersistence

DiskStoreBootstrapCacheLoaderFactory

M
Even Header

Configuring Restartability and Persistence

Ehcache Configuration Guide Version 2.10.2 38

Note: If any of the elements above are specified in the same configuration with
either the <persistence> sub-element or the <terracotta> sub-element, it
will cause an Invalid Configuration Exception.

After upgrading, however, it is not mandatory to add the <persistence> sub-element.
In Ehcache 2.6 or higher, disk persistence configuration elements from previous Ehcache
versions will continue to be available with the same functionality, as long as the
<persistence> sub-element has not been specified.

For cache persistence on disk, you should continue to use the overflowToDisk and
diskPersistent aributes. For more information, refer to the "Persistence" section in
the Ehcache 2.5 documentation.

M
Odd Header

Configuring the Update Checker

Ehcache Configuration Guide Version 2.10.2 39

6 Configuring the Update Checker

■ Configuring the Update Checker ... 40

M
Even Header

Configuring the Update Checker

Ehcache Configuration Guide Version 2.10.2 40

Configuring the Update Checker
The update checker is used to see whether you have the latest version of Ehcache. It is
also used to get non-identifying feedback on the operating system architectures using
Ehcache. To disable the check, do one of the following.

Set the following system property:
 -Dnet.sf.ehcache.skipUpdateCheck=true

Set the updateCheck aribute in the outer echace> element in the ehcache configuration
file. This aribute is false, by default.
<ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd"
 updateCheck="false"
 monitoring="autodetect"
 dynamicConfig="true">

M
Odd Header

System Properties

Ehcache Configuration Guide Version 2.10.2 41

A System Properties

■ Special System Properties ... 42

M
Even Header

System Properties

Ehcache Configuration Guide Version 2.10.2 42

Special System Properties
net.sf.ehcache.disabled

Seing this system property to true (using java -Dnet.sf.ehcache.disabled=true
in the Java command line) disables caching in ehcache. If disabled, no elements can be
added to a cache (puts are silently discarded).

net.sf.ehcache.use.classic.lru

When LRU is selected as the eviction policy, set this system property to true (using
java -Dnet.sf.ehcache.use.classic.lru=true in the Java command line) to use the
older LruMemoryStore implementation. This is provided for ease of migration.

	Table of Contents
	Configuring Cache
	About Ehcache Configuration
	XML Configuration
	Dynamically Changing Cache Configuration
	Passing Copies Instead of References

	Configuring Storage Tiers
	About Storage Tiers
	Configuring Memory Store
	Configuring Disk Store

	Sizing Storage Tiers
	The Sizing Attributes
	Pooling Resources Versus Sizing Individual Caches
	Sizing Examples
	Pinning and Size Limitations
	Built-In Sizing Computation and Enforcement
	Eviction When Using CacheManager-Level Storage

	Managing Data Life
	Configuration Options that Affect Data Life
	Setting Expiration
	Pinning Data
	How Configuration Affects Element Flushing and Eviction
	Data Freshness and Expiration

	Configuring Restartability and Persistence
	About Restartability and Persistence
	Cache Persistence Implementation
	Configuration Examples
	Compatibility with Previous Versions

	Configuring the Update Checker
	Configuring the Update Checker

	System Properties
	Special System Properties

