About Ehcache

Version 2.10.3

October 2016

Il EHCACHE

This document applies to Ehcache Version 2.10.3 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: EHC-AE-2103-20161018

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Table of Contents

Table of Contents

ERCACNE OVEIVIEW.......c.c ettt ettt e s sp e e 5
What IS ERCACHEY ...t 6
BASIC TEIMNS ...ttt 6

Why Caching WOTKS..........ccceeimiinincsss s sssss s s ssssse s sssssssssssssssssssssssssssssssssssaens 7
Locality Of REFEIENCE. ... 8
Will an Application Benefit from Caching?.........ccovveceeiicccescee s 8
How Much Will an Application Speed up with Caching?..........cccccovviieeiiiiccceecceee 9

L0 Tod 111 To I [0 e To] (oo 13PTSR PPV 13
TOPOIOGY TYPES...vueiireiieii ittt 14

Storage OPtiONS.......cireuiriensminirs s —————————— 15
SEOTAGE THEIS.cu.vviiecectete ettt bbbt bbb e 16

Automatic Resource CONtrol..........c s ——————— 19
Automatic RESOUICE CONTOL............cuiiiieiiieiricieee e 20

About Ehcache Version 2.10.3 3

About Ehcache Version 2.10.3

Ehcache Overview

1 Ehcache Overview

B WWNat 0S BENCACNET .o ettt et ettt ettt et e ettt et et et e e et teee e 6

LT =TT TR 11414 F TR TSP 6

About Ehcache Version 2.10.3 5

Ehcache Overview

What is Ehcache?

Ehcache is an open-source, standards-based cache for boosting performance, offloading
your database, and simplifying scalability. As a robust, proven, and full-featured
solution, it is today’s most widely used Java-based cache. You can use Ehcache as a
general-purpose cache or a second-level cache for Hibernate. You can additionally
integrate it with third-party products such as ColdFusion, Google App Engine, and
Spring.

Ehcache provides in-process cache, which you can replicate across multiple nodes. It is
also at the core of BigMemory Go and BigMemory Max, Terracotta’s commercial caching
and in-memory data-storage products. The Terracotta Server Array provided with
BigMemory Max enables mixed in-process/out-of-process configurations with terabyte-
size caches. For information about Terracotta’s BigMemory offerings, see the BigMemory
Go and BigMemory Max product documentation at http://terracotta.org/documentation.

Note: BigMemory Max is available in trial and full versions. The open-

source version of the Terracotta Server Array can be found at http://
www.terracotta.org/downloads/open-source/catalog.

Basic Terms

Cache

Wiktionary defines a cache as "a store of things that will be required in the future, and
can be retrieved rapidly." A cache is a collection of temporary data that either duplicates
data located elsewhere or is the result of a computation. Data that is already in the cache
can be repeatedly accessed with minimal costs in terms of time and resources.

Cache hit

When a data element is requested from cache and the element exists for the given key, it
is referred to as a cache hit (or simply, "a hit").

Cache miss

When a data element is requested from cache and the element does not exist for the
given key, it is referred to as a cache miss (or simply, "a miss").

System-of-Record

The authoritative source of truth for the data. The cache acts as a local copy of data
retrieved from or stored to the system-of-record (SOR). The SOR is often a traditional
database, although it might be a specialized file system or some other reliable long-term
storage. For the purposes of using Ehcache, the SOR is assumed to be a database.

About Ehcache Version 2.10.3 6

http://terracotta.org/documentation
http://www.terracotta.org/downloads/open-source/catalog
http://www.terracotta.org/downloads/open-source/catalog

Why Caching Works

2 Why Caching Works

B Locality Of REFEIENCE ... 8
m Will an Application Benefit from Caching? ... 8
m How Much Will an Application Speed up with Caching?ccceeeiiriceeeeceee s 9

About Ehcache Version 2.10.3 7

Why Caching Works

Locality of Reference

While Ehcache concerns itself with Java objects, caching is used throughout computing,
from CPU caches to the Internet Domain Name System (DNS) system. Why? Because
many computer systems exhibit "locality of reference.” Data that is near other data or has
recently been used is more likely to be used again.

The Long Tail

Chris Anderson, of Wired Magazine, coined the term "the long tail" to refer to cases in
e-commerce systems where a small number of items can make up the bulk of sales (or
a small number of blogs can get the most hits) and there is a long "tail" of less popular
items.

The long tail is an example of a power -law probability distribution, such as the Pareto
distribution or 80:20 rule. If 20% of objects are used 80% of the time and a way can be
found to reduce the cost of obtaining that 20%, system performance will improve.

Will an Application Benefit from Caching?

Often the answer is yes, especially if the application is I/O bound. If an application is I/O
bound, it depends on the rate at which data can be obtained. If it is CPU bound, then the
time taken principally depends on the speed of the CPU and main memory. Caching can
improve performance and also reduce the load on a web server.

Speeding up CPU-bound Applications

CPU bound applications are often sped up by:

® Improving algorithm performance

®m Parallelizing the computations across multiple CPUs (SMP) or multiple machines
(clusters).

About Ehcache Version 2.10.3 8

Why Caching Works

® Upgrading the CPU speed.
A cache can temporarily store computations for reuse, including but not limited to:
®m Large web pages that have a high rendering cost

® Authentication status, where authentication requires cryptographic transforms

Speeding up I/0-bound Applications

Many applications are I/O bound, either by disk or network operations. In the case of
databases they can be limited by both.

Network operations can be bound by a number of factors:
® Time to set up and tear down connections

® Latency, or the minimum round trip time

® Throughput limits

® Opverhead for marshalling and unmarshalling

The caching of data can often help significantly with I/O bound applications. For
example, you might use Ehcache for:

m Data Access Object caching for Hibernate

® Web page caching, for pages generated from databases

Increased Application Scalability

The corollary to increased performance is increased scalability. Suppose you have

a database that can perform up to 100 expensive queries per second. Beyond that
threshold, the database backs up and if addition connections occur, the database slowly
dies.

In this case, caching is likely to reduce the workload. If caching can cause 90% of those
100 queries to be cache hits and not impact the database, the database can scale 10 times
higher.

How Much Will an Application Speed up with Caching?

In applications that are I/O bound, which is most business applications, most of the
response time is getting data from a database. In a system where each piece of data is
used only one time, there is no benefit. In a system where a high proportion of the data
is reused, the speed up is significant.

Applying Amdahl's Law

Amdahl’s law finds the total system speedup from a speedup in part of the system.
1 / ((1 - Proportion Sped Up) + Proportion Sped Up / Speed up)

About Ehcache Version 2.10.3 9

Why Caching Works

The following examples show how to apply Amdahl’s law to common situations. In the
interests of simplicity, we assume:

® Asingle server.

B A system with a single thing in it, which when cached, gets 100% cache hits and lives
forever.

Persistent Object Relational Caching

A Hibernate Session.load() for a single object is about 1000 times faster from cache than
from a database. .

A typical Hibernate query will return a list of IDs from the database, and then attempt
to load each. If Session.iterate() is used, Hibernate goes back to the database to load each
object.

Imagine a scenario where we execute a query against the database that returns a
hundred IDs and then loads each one. The query takes 20% of the time and the round
trip loading takes the rest (80%). The database query itself is 75% of the time that the
operation takes. The proportion being sped up is thus 60% (75% * 80%).

The expected system speedup is thus:

/ ((1 - .6) + .6 / 1000)
1/ (.4 + .0006)
2.5 times system speedup

=

Web Page Caching

An observed speed up from caching a web page is 1000 times. Ehcache can retrieve a
page from its SimplePageCachingFilter in a few milliseconds.

Because the web page is the result of a computation, it has a proportion of 100%.

The expected system speedup is thus:

1/ ((1 -1) +1 / 1000)
=1/ (0 + .0001)
= 1000 times system speedup

Web Page Fragment Caching

Caching the entire page is a big win. Sometimes the liveness requirements vary in
different parts of the page. Here the SimplePageFragmentCachingFilter can be used.

Let's say we have a 1000 fold improvement on a page fragment that takes 40% of the
page render time.

The expected system speedup is thus:

1/ ((1 - .4) + .4 / 1000)

=1/ (.6 + .0004)

= 1.6 times system speedup
Cache Efficiency

Cache entries do not live forever. Some examples that come close are:

About Ehcache Version 2.10.3 10

Why Caching Works

m Static web pages or web page fragments, like page footers.
m Database reference data, such as the currencies in the world.
Factors that affect the efficiency of a cache are:

m Liveliness — How live the data needs to be. High liveliness means that the data can
change frequently, so the value in cache will soon be out of date. Low liveliness
means that the data changes only rarely, so the value in cache will often match the
current real value of the non-cached data. In general, the less live an item of data is,
the more it can be cached.

®m Proportion of data cached — What proportion of the data can fit into the resource limits
of the machine. For 32-bit Java systems, there was a hard limit of 2 GB of address
space. 64-bit systems do not have that constraint, but garbage collection issues often
make it impractical to have the Java heap be large. Various eviction algorithms are
used to evict excess entries.

®m Shape of the usage distribution — If only 300 out of 3000 entries can be cached, but the
Pareto (80/20 rule) distribution applies, it might be that 80% of the time, those 300
will be the ones requested. This drives up the average request lifespan.

®m Read/Write ratio — The proportion of times data is read compared with how often it is
written. Things such as the number of empty rooms in a hotel change often, and will
be written to frequently. However the details of a room, such as number of beds, are
immutable, and therefore a maximum write of 1 might have thousands of reads.

Ehcache keeps these statistics for each cache and each element, so they can be measured
directly rather than estimated.
Cluster Efficiency

Assume a round-robin load balancer where each hit goes to the next server. The cache
has one entry which has a variable lifespan of requests, say caused by a time to live
(TTL) setting. The following table shows how that lifespan can affect hits and misses.

Server 1 Server 2 Server 3 Server 4
M M M M
H H H H
H H H H
H H H H
H H H H

The cache hit ratios for the system as a whole are as follows:

Entry

Lifespan Hit Ratio Hit Ratio Hit Ratio Hit Ratio
in Hits 1 Server 2 Servers 3 Servers 4 Servers
2 1/2 0/2 0/2 0/2

4 3/4 2/4 1/4 0/4
10 9/10 8/10 7/10 6/10
20 19/20 18/20 17/20 16/10
50 49/50 48/50 47/20 46/50

The efficiency of a cluster of standalone caches is generally:

(Lifespan in requests - Number of Standalone Caches) / Lifespan in requests

About Ehcache Version 2.10.3 11

Why Caching Works

Where the lifespan is large relative to the number of standalone caches, cache
efficiency is not much affected. However when the lifespan is short, cache efficiency

is dramatically affected. This problem can be solved using the distributed caching
capability provided in Terracotta BigMemory Max. With distributed cache, entries put
into a local cache are propagated to other servers in the cluster.

A Cache Version of Amdahl's Law

Applying Amdahl's law to caching, we now have:

1 / ((1 - Proportion Sped Up * effective cache efficiency) +
(Proportion Sped Up * effective cache efficiency)/ Speed up)

where:

effective cache efficiency = (cache efficiency) * (cluster efficiency)

Web Page Example

Applying this formula to the earlier web page cache example where we have cache
efficiency of 35% and average request lifespan of 10 requests and two servers:

cache efficiency = .35
cluster efficiency = . (10 - 1) / 10
= .9
effective cache efficiency = .35 * .9

= .315
system speedup:
1/ ((1 -1 * .315) + 1 * .315 / 1000)
=1/ (.685 + .000315)
= 1.45 times system speedup

If the cache efficiency is 70% (two servers):

cache efficiency = .70
cluster efficiency = . (10 - 1) / 10
= .9
effective cache efficiency = .70 * .9
.63

system speedup:
1/ ((L -1 * .63) +1* .63 / 1000)
=1/ (.37 + .00063)

2.69 times system speedup

If the cache efficiency is 90% (two servers):

cache efficiency = .90
cluster efficiency = . (10 - 1) / 10
= .9
effective cache efficiency = .9 * .9
= .81

system speedup:

1/ ((L -1* .81) +1 * .81 / 1000)

=1/ (.19 + .00081)
5.24 times system speedup

The benefit is dramatic because Amdahl’s law is most sensitive to the proportion of the
system that is sped up.

About Ehcache Version 2.10.3 12

Caching Topologies

3 Caching Topologies

m Topology Types

About Ehcache Version 2.10.3 13

Caching Topologies

Topology Types

Standalone — The data set is held in the application node. Any other application nodes
are independent with no communication between them. If a standalone topology

is used where there are multiple application nodes running the same application,
then there is Weak Consistency between them. They contain consistent values

for immutable data or after the time-to-live on an element has completed and the
element needs to be reloaded.

Distributed — The data is held in a remote server (or array of servers) with a subset of
recently used data held in each application node. This topology offers a rich set of
consistency options.

A distributed topology is the recommended approach in a clustered or scaled-out
application environment. It provides the highest level of performance, availability,
and scalability. The distributed topology is available only with BigMemory Max.

Replicated — The cached data set is held in each application node and data is copied or
invalidated across the nodes without locking. Replication can be either asynchronous
or synchronous, where the writing thread blocks while propagation occurs. The only
consistency mode supported in this topology is Weak Consistency.

Many production applications are deployed in clusters of multiple instances for
availability and scalability. However, without a distributed or replicated cache,
application clusters exhibit a number of undesirable behaviors, such as:

Cache Drift - If each application instance maintains its own cache, updates made to
one cache will not appear in the other instances. This also happens to web session
data. A distributed or replicated cache ensures that all of the cache instances are kept
in sync with each other.

Database Bottlenecks - In a single-instance application, a cache effectively shields

a database from the overhead of redundant queries. However, in a distributed
application environment, each instance must load and keep its own cache fresh. The
overhead of loading and refreshing multiple caches leads to database bottlenecks as
more application instances are added. A distributed or replicated cache eliminates
the per-instance overhead of loading and refreshing multiple caches from a database.

About Ehcache Version 2.10.3 14

Storage Options

4 Storage Options

m Storage Tiers

About Ehcache Version 2.10.3 15

Storage Options

Storage Tiers

You can divide a cache or in-memory data set across the following storage areas,
referred to as tiers:

B MemoryStore — On-heap memory used to hold cache elements. This tier is subject to
Java garbage collection.

m OffHeapStore — Provides overflow capacity to the MemoryStore. Limited in size only
by available RAM. Not subject to Java garbage collection (GC). Available only with
Terracotta BigMemory products.

m DiskStore — Backs up in-memory cache elements and provides overflow capacity to
the other tiers.
MemoryStore

The memory store is always enabled and exists in heap memory. It has the following
characteristics:

®m It accepts all data, whether serializable or not.
m Itis the fastest storage option.
m Is thread safe for use by multiple concurrent threads.

If you use OffHeapStore (available with the BigMemory products only), MemoryStore
holds a copy of the hottest subset of data from the OffHeapStore.

All caches specify their maximum in-memory size, in terms of the number of elements,
at configuration time.

When an element is added to a cache and it goes beyond its maximum memory size, an
existing element is either deleted, if overflow is not enabled, or evaluated for spooling to
another tier, if overflow is enabled.

If overflow is enabled, a check for expiry is carried out. If it is expired it is deleted; if not
it is spooled.

For information about sizing and configuring the MemoryStore, see "Configuring
Memory Store" in the Ehcache Configuration Guide.

OffHeapStore

The OffHeapStore extends a cache to memory outside the of the Java heap. This store,
which is not subject to Java garbage collection (GC), is limited only by the amount

of RAM available. Using OffHeapStore, you can create extremely large local caches.
OffHeapStore is only available with the Terracotta BigMemory products.

Because off-heap data is stored in bytes, only data that is Serializable is suitable for the
OffHeapStore. Any non serializable data overflowing to the OffHeapMemoryStore is
simply removed, and a WARNING level log message is emitted.

About Ehcache Version 2.10.3 16

Storage Options

Since serialization and deserialization take place on putting and getting from the off-
heap store, it is theoretically slower than the MemoryStore. This difference, however, is
mitigated when garbage collection associated with larger heaps is taken into account.

For the best performance, you should allocate to a cache as much heap memory as
possible without triggering GC pauses. Then, use the OffHeapStore to hold the data that
cannot fit in heap (without causing GC pauses).

For information about sizing and configuring OffHeapStore, see "Configuring
OffHeapStore" in the Configuration Guide for your BigMemory product.

DiskStore

The DiskStore provides a thread-safe disk-spooling facility that can be used for either
additional storage or persisting data through system restarts.

Note: The DiskStore tier is available only for local (standalone) instances of cache.
When you use a distributed cache (available only in BigMemory Max), a
Terracotta Server Array is used instead of a disk tier.

Only data that is Serializable can be placed in the DiskStore. Writes to and from the disk
use ObjectInputStream and the Java serialization mechanism. Any non-serializable data
overflowing to the disk store is removed and a NotSerializableException is thrown. Be
aware that serialization speed is affected by the size of the objects being serialized and
their type. For example, it has been shown that:

® The serialization time for a Java object consisting of a large Map of String arrays was
126ms, where the serialized size was 349,225 bytes.

® The serialization time for a byte[] was 7ms, where the serialized size was 310,232
bytes.

Byte arrays are 20 times faster to serialize, making them a better choice for increasing
disk-store performance.

Configuring a disk store is optional. If all caches use only memory and off-heap stores,
then there is no need to configure a disk store. This simplifies configuration, and uses
fewer threads.

For more information about configuring and sizing the DiskStore, see the "Persistence
and Restartability" section in the Ehcache Configuration Guide.

About Ehcache Version 2.10.3 17

About Ehcache Version 2.10.3

18

Automatic Resource Control

5 Automatic Resource Control

m Automatic Resource Control

About Ehcache Version 2.10.3

19

Automatic Resource Control

Automatic Resource Control

Automatic Resource Control (ARC) gives you fine-grained controls for tuning
performance and enabling trade-offs between throughput, latency and data access.
Independently adjustable configuration parameters include differentiated tier-based
sizing and pinning hot or eternal data in the most effective tier.

ARC offers a wealth of benefits, including;:

B Sizing limitations on in-memory caches to avoid OutOfMemory errors
B Pooled sizing — no requirement to size caches individually

m Differentiated tier-based sizing for flexibility
|

Sizing by bytes, entries, or percentages for more flexibility

Dynamically Sizing Stores

Tuning often involves sizing stores appropriately. There are a number of ways to

size the different Ehcache storage tiers using simple configuration sizing attributes.
For information about how to tune tier sizing by configuring dynamic allocation of
memory and automatic balancing, see "Sizing Storage Tiers" in the Confiquration Guide
for Ehcache.

Pinning Data

One of the most important aspects of running a cache involves managing the life of

the data in each tier. For more information about managing life of data in a tier using
pinning, expiration, and eviction, see "Managing Data Life" in the Configuration Guide for
Ehcache.

About Ehcache Version 2.10.3 20

	Table of Contents
	Ehcache Overview
	What is Ehcache?
	Basic Terms

	Why Caching Works
	Locality of Reference
	Will an Application Benefit from Caching?
	How Much Will an Application Speed up with Caching?

	Caching Topologies
	Topology Types

	Storage Options
	Storage Tiers

	Automatic Resource Control
	Automatic Resource Control

