
Ehcache Cache Server User Guide

Version 2.10.3

October 2016

This document applies to Ehcache Version 2.10.3 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: EHC-CSUG-2103-20161018

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Ehcache Cache Server User Guide Version 2.10.3 3

Table of Contents

About Cache Server.. 5
What is Cache Server?.. 6

Installing the Cache Server Module...7
Requirements..8
Downloading... 8
Installing the WAR File...9
Using the Cache Server with WebLogic.. 9
Installing the Standalone Server.. 10

Monitoring the Cache Server..13
About Monitoring the Cache Server...14
Remotely Monitoring the Standalone Server with JMX..14

Using the RESTful Services... 15
About RESTful Web Services.. 16
The RESTful Web Services API...16
CacheManager Resource Operations.. 16
Cache Resource Operations.. 16
Element Resource Operations... 17
Resource Representations... 18
RESTful Code Samples..18

Curl Code Samples... 18
Ruby Code Samples... 19
Python Code Samples...20
Java Code Samples.. 20
Scala Code Samples...22
PHP Code Samples.. 22

Creating Massive Caches with Load Balancers and Partitioning...23

Using the W3C (SOAP) Web Services...27
About W3C (SOAP) Web Services.. 28
The W3C Web Services API..28
Security... 28

M
Even Header

Ehcache Cache Server User Guide Version 2.10.3 4

M
Odd Header

About Cache Server

Ehcache Cache Server User Guide Version 2.10.3 5

1 About Cache Server

■ What is Cache Server? .. 6

M
Even Header

About Cache Server

Ehcache Cache Server User Guide Version 2.10.3 6

What is Cache Server?
Ehcache comes with a Cache Server, available as a WAR for most web containers, or as a
standalone server.

Note: If using with Terracoa BigMemory, the Cache Server works only with
versions prior to 4.0. The Cache Server does not work with BigMemory 4.0
and higher.

The Cache Server has two APIs: RESTful resource oriented and SOAP. Both support
clients in any programming language. (On terminology: Leonard Richardson and Sam
Ruby have done a great job of clarifying the different Web Services architectures and
distinguishing them from each other. We use their taxonomy in describing web services.
See the O'Reilly catalog.)

http://www.oreilly.com/catalog/9780596529260/

M
Odd Header

Installing the Cache Server Module

Ehcache Cache Server User Guide Version 2.10.3 7

2 Installing the Cache Server Module

■ Requirements ... 8

■ Downloading ... 8

■ Installing the WAR File .. 9

■ Using the Cache Server with WebLogic .. 9

■ Installing the Standalone Server .. 10

M
Even Header

Installing the Cache Server Module

Ehcache Cache Server User Guide Version 2.10.3 8

Requirements

Java

Java 5 or 6.

Web Container (WAR packaged version only)

The standalone server comes with its own embedded Glassfish web container. The
web container must support the Servlet 2.5 specification. The following web container
configurations have been tested:

Glassfish V2/V3

Tomcat 6

Jey 6

Downloading
The server is available as follows:

SourceForge

Download from hp://sourceforge.net/project/showfiles.php?group_id=93232. There are
two tarball archives in tar.gz format:

ehcache-server - this contains the WAR file which must be deployed in your own
web container.

ehcache-standalone-server - this contains a complete standalone directory structure
with an embedded Glassfish V3 web container together with shell scripts for starting
and stopping.

Maven

The Ehcache Server is in the central Maven repository packaged as type war. Use the
following Maven pom snippet:
 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-server</artifactId>
 <version>enter_version_here</version>
 <type>war</type>
 </dependency>

It is also available as a jar-only version, which makes it easier to embed. This version
excludes all META-INF and WEB-INF configuration files, and also excludes the
ehcache.xml. You need to provide these in your maven project.
<dependency>
 <groupId>net.sf.ehcache</groupId>

http://sourceforge.net/project/showfiles.php?group_id=93232

M
Odd Header

Installing the Cache Server Module

Ehcache Cache Server User Guide Version 2.10.3 9

 <artifactId>ehcache-server</artifactId>
 <version>enter_version_here</version>
 <type>jar</type>
 <classifier>jaronly</classifier>
 </dependency>

Installing the WAR File
Use your Web container's instructions to install the WAR or include the WAR in your
project with Maven's war plugin. Container-specific configuration is provided in the
WAR as follows:

sun-web.xml - Glassfish V2/V3 configuration

jey-web.xml - Jey V5/V6 configuration

Tomcat V6 passes all integration tests. It does not require a specific configuration.

Configuring the Web Application

Expand the WAR. Edit the web.xml.

Disabling the RESTful Web Service

Comment out the RESTful web service section.

Disabling the SOAP Web Service

Comment out the RESTful web service section.

Configuring Caches

The ehcache.xml configuration file is located in WEB-INF/classes/ehcache.xml.
Follow the instructions in this config file, or the core Ehcache instructions to configure.

Using the Cache Server with WebLogic
We have tested with 10.3.2, but the SOAP libraries are not compatible. Either comment
out the SOAP service from web.xml or do the following:

1. Unzip ehcache-server.war to a folder called ehcache.

2. Remove the following jars from WEB-INF/lib:

jaxws-rt-2.1.4.jar

metro-webservices-api-1.2.jar

metro-webservices-rt-1.2.jar

metro-webservices-tools-1.2.jar

3. Deploy the folder to WebLogic.

M
Even Header

Installing the Cache Server Module

Ehcache Cache Server User Guide Version 2.10.3 10

4. Use the SoapUI GUI in WebLogic to add a project from hp://<hostname>:<port>/
ehcache/soap/EhcacheWebServiceEndpoint?wsdl

Installing the Standalone Server
The WAR also comes packaged with a standalone server, based on Glassfish V3
Embedded. The quick start is:

Untar the download.

bin/start.sh to start. By default it will listen on port 8080, with JMX listening on
port 8081, will have both RESTful and SOAP web services enabled, and will use a
sample Ehcache configuration from the WAR module.

bin/stop.sh to stop.

Configuring the Standalone Server

Configuration is by editing the war/web.xml file as per the instructions for the WAR
packaging.

Starting and Stopping the Standalone Server

The following describes ways to start and stop the server.

Using Commons Daemon jsvc

jsvc creates a daemon which returns once the service is started. jsvc works on all
common Unix-based operating systems including Linux, Solaris and Mac OS X. It
creates a pid file in the pid directory. This is a Unix shell script that starts the server as a
daemon. To use jsvc you must install the native binary jsvc from the Apache Commons
Daemon project. The source for this is distributed in the bin directory as jsvc.tar.gz.
Untar it and follow the instructions for building it or download a binary from the
Commons Daemon project. Convenience shell scripts are provided as follows:

start - daemon_start.sh

stop - daemon_stop.sh

jsvc is designed to integrate with Unix System 5 initialization scripts (/etc/rc.d). You can
also send Unix signals to it. Meaningful ones for the Ehcache Standalone Server are:

Meaning Effect

1 HUP Restarts the server.

2 INT Interrupts the server.

M
Odd Header

Installing the Cache Server Module

Ehcache Cache Server User Guide Version 2.10.3 11

Meaning Effect

9 KILL The process is killed. The server is not given a chance to
shutdown.

15 TERM Stops the server, giving it a chance to shutdown in an orderly
way.

Executable jar

The server is also packaged as an executable jar for developer convenience which will
work on all operating systems. A convenience shell script is provided as follows:

start - startup.sh

From the bin directory you can also invoke the following command directly:
unix - java -jar ../lib/ehcache-standalone-server-0.7.jar 8080 ../war
windows - java -jar ..\lib\ehcache-standalone-server-0.7.jar 8080 ..\war

M
Even Header

Ehcache Cache Server User Guide Version 2.10.3 12

M
Odd Header

Monitoring the Cache Server

Ehcache Cache Server User Guide Version 2.10.3 13

3 Monitoring the Cache Server

■ About Monitoring the Cache Server .. 14

■ Remotely Monitoring the Standalone Server with JMX ... 14

M
Even Header

Monitoring the Cache Server

Ehcache Cache Server User Guide Version 2.10.3 14

About Monitoring the Cache Server
The Cache Server registers Ehcache MBeans with the platform MBeanServer. Remote
monitoring of the MBeanServer is the responsibility of the Web container or application
server vendor. For example, some instructions for Tomcat are available at hps://
wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX. See your
product documentation for how to do this for your web container.

Remotely Monitoring the Standalone Server with JMX
The standalone server automatically exposes the MBeanServer on a port 1 higher than
the HTTP listening port.

To connect with JConsole, simply fire up JConsole, enter the host in the Remote field and
port. In the above example that is 192.168.1.108:8686.

Then click Connect. To see the Ehcache MBeans, click on the Mbeans tab and expand the
net.sf.ehcache tree node. You will see something like the following.

CacheStatistics MBeans in JConsole

Of course, from there you can hook the Cache Server up to your monitoring tool of
choice. For more information, see "JMX Management and Monitoring" in the Ehcache
Operations Guide.

https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX
https://wiki.internet2.edu/confluence/display/CPD/Monitoring+Tomcat+with+JMX

M
Odd Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 15

4 Using the RESTful Services

■ About RESTful Web Services .. 16

■ The RESTful Web Services API .. 16

■ CacheManager Resource Operations .. 16

■ Cache Resource Operations .. 16

■ Element Resource Operations ... 17

■ Resource Representations ... 18

■ RESTful Code Samples ... 18

■ Creating Massive Caches with Load Balancers and Partitioning .. 23

M
Even Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 16

About RESTful Web Services
Roy Fielding coined the acronym REST, denoting Representational State Transfer, in his
PhD thesis. The Ehcache implementation strictly follows the RESTful resource-oriented
architecture style. Specifically:

The HTTP methods GET, HEAD, PUT/POST and DELETE are used to specify the
method of the operation. The URI does not contain method information.

The scoping information, used to identify the resource to perform the method on, is
contained in the URI path.

The RESTful Web Service is described by and exposes a Web Application Description
Language (WADL) file. It contains the URIs you can call, and what data to pass and
get back. Use the OPTIONS method to return the WADL.

Roy is on the JSR311 expert group. JSR311 and Jersey, the reference implementation, are
used to deliver RESTful web services in Ehcache server.

The RESTful Web Services API
The Ehcache RESTful Web Services API exposes the singleton CacheManager, which
typically has been configured in ehcache.xml or an Inversion of Control (IoC) container.
Multiple CacheManagers are not supported. Resources are identified using a URI
template. The value in parentheses should be substituted with a literal to specify a
resource. Response codes and response headers strictly follow HTTP conventions.

CacheManager Resource Operations
OPTIONS /{cache}}

Retrieves the WADL for describing the available CacheManager operations.

GET} /

Lists the Caches in the CacheManager.

Cache Resource Operations
OPTIONS /{cache}}

Retrieves the WADL describing the available Cache operations.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

M
Odd Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 17

HEAD /{cache}}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is
no body returned.

GET /{cache}

Gets a cache representation. This includes useful metadata such as the configuration and
cache statistics.

{PUT} /{cache}

Creates a Cache using the default Cache configuration.

{DELETE} / {cache}

Deletes the Cache.

Element Resource Operations
OPTIONS /{cache}}

Retrieves the WADL describing the available Element operations.

HEAD /{cache}/{element}

Retrieves the same metadata a GET would receive returned as HTTP headers. There is
no body returned.

GET /{cache}/{element}

Gets the element value.

HEAD /{cache}/{element}

Gets the element's metadata.

PUT /{cache}/{element}

Puts an element into the Cache. The time to live of new Elements defaults to
that for the cache. This may be overridden by seing the HTTP request header
ehcacheTimeToLiveSeconds. Values of 0 to 2147483647 are accepted. A value of 0
means eternal.

DELETE / {cache}/{element}

Deletes the element from the cache. The resource representation for all elements is *.
DELETE/\{cache\}/* will call cache.removeAll().

M
Even Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 18

Resource Representations
We deal with resource representations rather than resources themselves.

Element Resource Representations

When Elements are PUT into the cache, a MIME Type should be set in the request
header. The MIME Type is preserved for later use. The new MimeTypeByteArray is
used to store the byte[] and the MimeType in the value field of Element. Some common
MIME Types which are expected to be used by clients are:

text/plain Plain text

text/xml Extensible Markup Language. Defined
in RFC 3023

application/json JavaScript Object Notation JSON.
Defined in RFC 4627

application/x-java-serialized-object A serialized Java object

Because Ehcache is a distributed Java cache, in some configurations the Cache server
may contain Java objects that arrived at the Cache server via distributed replication.
In this case no MIME Type will be set and the Element will be examined to determine
its MIME Type. Because anything that can be PUT into the cache server must be
Serializable, it can also be distributed in a cache cluster i.e. it will be Serializable.

RESTful Code Samples
These are RESTful code samples in multiple languages.

Curl Code Samples
These samples use the popular curl command line utility.

OPTIONS

This example shows how calling OPTIONS causes Ehcache server to respond with the
WADL for that resource
curl --request OPTIONS http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
 <resources base="http://localhost:8080/ehcache/rest/">

M
Odd Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 19

 <resource path="sampleCache2/2">
 <method name="HEAD"><response><representation mediaType="
 ...
 </resource>
 </resources>
</application>

HEAD
curl --head http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:
HTTP/1.1 200 OK
X-Powered-By: Servlet/2.5
Server: GlassFish/v3
Last-Modified: Sun, 27 Jul 2008 08:08:49 GMT
ETag: "1217146129490"
Content-Type: text/plain; charset=iso-8859-1
Content-Length: 157
Date: Sun, 27 Jul 2008 08:17:09 GMT

PUT
echo "Hello World" | curl -S -T - http://localhost:8080/ehcache/rest/sampleCache2/3

The server will put Hello World into sampleCache2 using key 3.

GET
curl http://localhost:8080/ehcache/rest/sampleCache2/2

The server responds with:
<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>

Ruby Code Samples
GET
require 'rubygems'
require 'open-uri'
require 'rexml/document'
response = open('http://localhost:8080/ehcache/rest/sampleCache2/2')
xml = response.read
puts xml

The server responds with:
<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>

M
Even Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 20

</oldjoke>

Python Code Samples
GET
import urllib2
f = urllib2.urlopen('http://localhost:8080/ehcache/rest/sampleCache2/2')
print f.read()

The server responds with:
<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>
</oldjoke>

Java Code Samples
Create and get a Cache and Entry
mport java.io.InputStream;
import java.io.OutputStream;
import java.net.HttpURLConnection;
import java.net.URL;
/**
* A simple example Java client which uses the built-in java.net.URLConnection.
*
* @author BryantR * @author Greg Luck
*/
public class ExampleJavaClient {
private static String TABLE_COLUMN_BASE =
 "http://localhost:8080/ehcache/rest/tableColumn";
private static String TABLE_COLUMN_ELEMENT =
 "http://localhost:8080/ehcache/rest/tableColumn/1";
/**
* Creates a new instance of EHCacheREST
*/
public ExampleJavaClient() {
}
public static void main(String[] args) {
 URL url;
 HttpURLConnection connection = null;
 InputStream is = null;
 OutputStream os = null;
 int result = 0;
 try {
 //create cache
 URL u = new URL(TABLE_COLUMN_BASE);
 HttpURLConnection urlConnection =
 (HttpURLConnection) u.openConnection();
 urlConnection.setRequestMethod("PUT");
 int status = urlConnection.getResponseCode();
 System.out.println("Status: " + status);
 urlConnection.disconnect();
 //get cache

M
Odd Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 21

 url = new URL(TABLE_COLUMN_BASE);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.connect();
 is = connection.getInputStream();
 byte[] response1 = new byte[4096];
 result = is.read(response1);
 while (result != -1) {
 System.out.write(response1, 0, result);
 result = is.read(response1);
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {
 } System.out.println("reading cache: " +
 connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();
 //create entry
 url = new URL(TABLE_COLUMN_ELEMENT);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestProperty("Content-Type", "text/plain");
 connection.setDoOutput(true);
 connection.setRequestMethod("PUT");
 connection.connect();
 String sampleData = "Ehcache is way cool!!!";
 byte[] sampleBytes = sampleData.getBytes();
 os = connection.getOutputStream();
 os.write(sampleBytes, 0, sampleBytes.length);
 os.flush();
 System.out.println("result=" + result);
 System.out.println("creating entry: " + connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();
 //get entry
 url = new URL(TABLE_COLUMN_ELEMENT);
 connection = (HttpURLConnection) url.openConnection();
 connection.setRequestMethod("GET");
 connection.connect();
 is = connection.getInputStream();
 byte[] response2 = new byte[4096];
 result = is.read(response2);
 while (result != -1) {
 System.out.write(response2, 0, result);
 result = is.read(response2);
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {
 } System.out.println("reading entry: "
 + connection.getResponseCode()
 + " " + connection.getResponseMessage());
 if (connection != null) connection.disconnect();
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (os != null) try {
 os.close();
 } catch (Exception ignore) {
 }
 if (is != null) try {
 is.close();
 } catch (Exception ignore) {

M
Even Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 22

 }
 if (connection != null) connection.disconnect();
 }
}
}

Scala Code Samples
GET
import java.net.URL
 import scala.io.Source.fromInputStream
object ExampleScalaGet extends Application {
val url = new URL("http://localhost:8080/ehcache/rest/sampleCache2/2")
fromInputStream(url.openStream).getLines.foreach(print)
 }

Run it with:
scala -e ExampleScalaGet

The program outputs:
<?xml version="1.0"?>
<oldjoke>
<burns>Say <quote>goodnight</quote>,
Gracie.</burns>
<allen><quote>Goodnight,
Gracie.</quote></allen>
<applause/>

PHP Code Samples
GET
 ?<php
$ch = curl_init();
curl_setopt ($ch, CURLOPT_URL, "http://localhost:8080/ehcache/rest/sampleCache2/3");
 curl_setopt ($ch, CURLOPT_HEADER, 0);
curl_exec ($ch);
curl_close ($ch);
 ?>

The server responds with:
Hello Ingo

PUT
 ?<php
$url = "http://localhost:8080/ehcache/rest/sampleCache2/3";
$localfile = "localfile.txt";
$fp = fopen ($localfile, "r");
$ch = curl_init();
curl_setopt($ch, CURLOPT_VERBOSE, 1);
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_PUT, 1);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_INFILE, $fp);
curl_setopt($ch, CURLOPT_INFILESIZE, filesize($localfile));

M
Odd Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 23

$http_result = curl_exec($ch);
$error = curl_error($ch);
$http_code = curl_getinfo($ch ,CURLINFO_HTTP_CODE);
curl_close($ch);
fclose($fp);
print $http_code;
print "

$http_result";
if ($error) {
 print "

$error";
}
?>

The server responds with:
About to connect() to localhost port 8080 (#0)
Trying ::1... * connected
Connected to localhost (::1) port 8080 (#0)
> PUT /ehcache/rest/sampleCache2/3 HTTP/1.1
Host: localhost:8080
Accept: */*
Content-Length: 11
Expect: 100-continue
< HTTP/1.1 100 Continue
< HTTP/1.1 201 Created
< Location: http://localhost:8080/ehcache/rest/sampleCache2/3
< Content-Length: 0
< Server: Jetty(6.1.10)
<
Connection #0 to host localhost left intact
Closing connection #0

Creating Massive Caches with Load Balancers and
Partitioning
The RESTful Ehcache Server is designed to achieve massive scaling using data
partitioning - all from a RESTful interface. The largest Ehcache single instances run at
around 20GB in memory. The largest disk stores run at 100Gb each. Add nodes together,
with cache data partitioned across them, to get larger sizes. 50 nodes at 20GB gets you to
1 Terabyte. Two deployment choices need to be made:

where is partitioning performed, and

is redundancy required?

These choices can be mixed and matched with a number of different deployment
topologies.

M
Even Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 24

Non-redundant, Scalable with client hash-based routing

This topology is the simplest. It does not use a load balancer. Each node is accessed
directly by the cache client using REST. No redundancy is provided. The client can be
implemented in any language because it is simply a HTTP client. It must work out a
partitioning scheme. Simple key hashing, as used by memcached, is sufficient. Here is a
Java code sample:
String[] cacheservers = new String[]{
"cacheserver0.company.com",
"cacheserver1.company.com",
"cacheserver2.company.com",
"cacheserver3.company.com",
"cacheserver4.company.com",
"cacheserver5.company.com"};
Object key = "123231";
int hash = Math.abs(key.hashCode());
int cacheserverIndex = hash % cacheservers.length;
String cacheserver = cacheservers[cacheserverIndex];

M
Odd Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 25

Redundant, Scalable with client hash-based routing

Redundancy is added as shown in the above diagram by: Replacing each node with
a cluster of two nodes. One of the existing distributed caching options in Ehcache is
used to form the cluster. Options in Ehcache 1.5 are RMI and JGroups-based clusters.
Ehcache-1.6 will add JMS as a further option. Put each Ehcache cluster behind VIPs on a
load balancer.

M
Even Header

Using the RESTful Services

Ehcache Cache Server User Guide Version 2.10.3 26

Redundant, Scalable with load balancer hash-based routing

Many content-switching load balancers support URI routing using some form of regular
expressions. So, you could optionally skip the client-side hashing to achieve partitioning
in the load balancer itself. For example:
/ehcache/rest/sampleCache1/[a-h]* => cluster1
/ehcache/rest/sampleCache1/[i-z]* => cluster2

Things get much more sophisticated with F5 load balancers, which let you create
iRules in the TCL language. So rather than regular expression URI routing, you could
implement key hashing-based URI routing. Remember in Ehcache's RESTful server,
the key forms the last part of the URI. e.g. In the URI hp://cacheserver.company.com/
ehcache/rest/sampleCache1/3432, 3432 is the key. You hash using the last part of the URI.

M
Odd Header

Using the W3C (SOAP) Web Services

Ehcache Cache Server User Guide Version 2.10.3 27

5 Using the W3C (SOAP) Web Services

■ About W3C (SOAP) Web Services .. 28

■ The W3C Web Services API ... 28

■ Security ... 28

M
Even Header

Using the W3C (SOAP) Web Services

Ehcache Cache Server User Guide Version 2.10.3 28

About W3C (SOAP) Web Services
The W3C is a standards body that defines Web Services as follows:

"The World Wide Web is more and more used for application-to-application
communication. The programmatic interfaces made available are referred to as Web
services."

They provide a set of recommendations for achieving this. An interoperability
organization, WS-I, seeks to achieve interoperability between W3C Web Services. The
W3C specifications for SOAP and WSDL are required to meet the WS-I definition.
Ehcache is using Glassfish's libraries to provide it's W3C web services. The project
known as Metro follows the WS-I definition.

Finally, OASIS defines a Web Services Security specification for SOAP: WS-Security.
The current version is 1.1. It provides three main security mechanisms: ability to send
security tokens as part of a message, message integrity, and message confidentiality.
Ehcache's W3C Web Services support the stricter WS-I definition and use the SOAP and
WSDL specifications. Specifically:

The method of operation is in the entity-body of the SOAP envelope and a HTTP
header. POST is always used as the HTTP method.

The scoping information, used to identify the resource to perform the method on, is
contained in the SOAP entity-body. The URI path is always the same for a given Web
Service - it is the service "endpoint."

The Web Service is described by and exposes a {WSDL} (Web Services Description
Language) file. It contains the methods, their arguments and what data types are
used.

The {WS-Security} SOAP extensions are supported.

The W3C Web Services API
The Ehcache W3C Web Services API exposes the singleton CacheManager, which
typically has been configured in ehcache.xml or an Inversion of Control (IoC) container.
Multiple CacheManagers are not supported. The API definition is as follows:

WSDL - EhcacheWebServiceEndpointService.wsdl

Types - EhcacheWebServiceEndpointService_schema1.xsd

Security
By default no security is configured. Because it is simply a Servlet 2.5 web application, it
can be secured in all the usual ways by configuration in the web.xml.

http://www.w3.org/2002/ws/
http://www.ws-i.org/
http://oasis-open.org
http://ehcache.org/wsdl/EhcacheWebServiceEndpointService.wsdl
http://ehcache.org/wsdl/EhcacheWebServiceEndpointService_schema1.xsd

M
Odd Header

Using the W3C (SOAP) Web Services

Ehcache Cache Server User Guide Version 2.10.3 29

In addition the cache server supports the use of XWSS 3.0 to secure the Web Service.
All required libraries are packaged in the war for XWSS 3.0. A sample, commented out
server_security_config.xml is provided in the WEB-INF directory. XWSS automatically
looks for this configuration file. A simple example, based on an XWSS example,
net.sf.ehcache.server.soap.SecurityEnvironmentHandler, which looks
for a password in a System property for a given user name is included. This is not
recommended for production use but is handy when you are geing started with XWSS.
To use XWSS:

1. Add configuration in accordance with XWSS to the server_security_config.xml
file.

2. Create a class which implements the CallbackHandler interface and provide its
fully qualified path in the SecurityEnvironmentHandler element.

3. Use the integration test EhcacheWebServiceEndpoint to see how to use the XWSS
client side.

4. On the client side, make sure configuration is provided in a file called
client_security_config.xml, which must be in the root of the classpath.

5. To add client credentials into the SOAP request do:
cacheService = new EhcacheWebServiceEndpointService().getEhcacheWebServiceEndpointPort();
//add security credentials
((BindingProvider)cacheService).getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
"Ron");
((BindingProvider)cacheService).getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
"noR");
String result = cacheService.ping();

https://xwss.java.net/

	Table of Contents
	About Cache Server
	What is Cache Server?

	Installing the Cache Server Module
	Requirements
	Downloading
	Installing the WAR File
	Using the Cache Server with WebLogic
	Installing the Standalone Server

	Monitoring the Cache Server
	About Monitoring the Cache Server
	Remotely Monitoring the Standalone Server with JMX

	Using the RESTful Services
	About RESTful Web Services
	The RESTful Web Services API
	CacheManager Resource Operations
	Cache Resource Operations
	Element Resource Operations
	Resource Representations
	RESTful Code Samples
	Curl Code Samples
	Ruby Code Samples
	Python Code Samples
	Java Code Samples
	Scala Code Samples
	PHP Code Samples

	Creating Massive Caches with Load Balancers and Partitioning

	Using the W3C (SOAP) Web Services
	About W3C (SOAP) Web Services
	The W3C Web Services API
	Security

