Ehcache Replication Guide

Version 2.10.3

October 2016

B EH HE

This document applies to Ehcache Version 2.10.3 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2010-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: EHC-RG-2103-20161018

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Table of Contents

Table of Contents

LU g0 =T o] o o o 5
Supported Types of RePliCAtION.........ccccvviicececccs e 6
Minimum Configuration for REPICALION...........ccccciiveieiiccee e, 6
Adding Replication to an EXiSting Cache...........cccvirniiniiiiceseese e 7

Replicated Caching Using RMI...........cccornmnnnssssssssssssssssssssssssssssssssessssssssses 9
Using RMI for Replicated Caching..........ccceeviicrceiiccccsscce s 10
SUItabIE EIBMENE TYPES.....iieiveieiceicee ettt sttt bbb 1
Configuring the PEEr PrOVIAEN............cciiieicirice et 11
Configuring the CacheManagerPeerListener..........ccccvviceiiiicee e 12
Configuring Cache RepliCALONS.ccocueuiiviiiicercece et 13
Configuring Bootstrap from @ Cache PEer ..o 14
CoMPIEte EXAMPIE......c.cviviiiiccee sttt 15
Common Issues with RMI REPICALION..........cccovviiviieieiricicrce et 15

Replicated Caching USing JGroUPS........cvrcecvmminencnsnsnnesesssssssese s ssssesesssssssssssssssssssssssesens 17
Using JGroups for Replicated Caching..........cveriinicinierceniesessseeesese s 18
Suitable EIBMENE TYPES.....vieeiiiccees ettt 18
PEEI DISCOVEIY.....ciiiiiiisisisisiet ettt ettt bbb bbbttt ettt enesennrenas 18
CONFIGUPALION. ... 18
Example Configuration using UDP MUItICaSL...........ccccoviiieeeiiicces e 19
Example Configuration using TCP UNICast..........cccceiiiiceiiiicce e 19
Protocol CONSIAEIAtIONS.c.cvvieeieeeiririeie ettt 19
Configuring CacheREPICALOrS.........cccviiicrcrercce s 19
Complete Sample ConfigUIration...........ccceueueiiiiceeeecce e 20
Common Issues with JGroups RePlCAtioN...........ccovveerrriiicrescceee s 21

Replicated Caching Using JMS...........ccconinnssss s 23
Using JMS for Replicated Caching.........cccceuiiiiiicreeiicees e 24
Ehcache Replication and External PUDIIShErs.............cccceeeccncicnciiciec s 24

CONFIGUPALION. ... 25
External JMS PUDIISRENS...........coiieieirieccse s 28
COUE SAMPIES.......coiiiiectetceeceece et bbb bbb bbb bbb 29
Using the JMSCaChELOAAE...........coiiuiiiicee s 31
Configuring Clients for Message Queue Reliability...........c.ooevirnirnnrcrsesescsene 34
Tested MeSSAZE QUEUES...........ceuireieieieieieeie sttt 34
Common Issues using JMS-based Replication..............cccoererrirninnienseeseens 35

Ehcache Replication Guide Version 2.10.3 3

Ehcache Replication Guide Version 2.10.3

Using Replication

1 Using Replication

B Supported Types of REPHCALIONccueveiiiicieeeee e 6
m Minimum Configuration for RepliCation ... 6
m Adding Replication to an EXiSting Cachecoueriririirnesse s 7

Ehcache Replication Guide Version 2.10.3 5

Using Replication

Supported Types of Replication

Ehcache provides three mechanisms for replicating a cache across multiple nodes:

RMI Replicated Caching

Ehcache provides replicated caching using RMI. To set up RMI replicated

caching, you need to configure the CacheManager with a PeerProvider and a
CacheManagerPeerListener. Then for each cache that will be replicated, you need to add
one of the RMI cacheEventListener types to propagate messages. You can also optionally
configure a cache to bootstrap from other caches in the cluster.

JGroups Replicated Caching

JGroups can be used as the underlying mechanism for the replication operations in
Ehcache. JGroups offers a very flexible protocol stack, reliable unicast, and multicast
message transmission. To set up replicated caching using JGroups, you need to
configure a PeerProviderFactory. For each cache that will be replicated, you then need to
add a cacheEventListenerFactory to propagate messages.

JMS Replicated Caching

JMS can also be used as the underlying mechanism for replication operations in Ehcache.
The Ehcache jmsreplication module lets organisations with a message queue investment
leverage it for caching. It provides replication between cache nodes using a replication
topic, pushing of data directly to cache nodes from external topic publishers, and a
JMSCacheLoader, which sends cache load requests to a queue.

Minimum Configuration for Replication

The minimum configuration you need to get replicated caching going is:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic,
multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446"/>
<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"/>

and then at least one cache declaration with

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>

in it. An example cache is:

<cache name="sampleDistributedCachel"
maxEntriesLocalHeap="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100">

Ehcache Replication Guide Version 2.10.3 6

Using Replication

<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
</cache>

Each peer server can have the same configuration.

Adding Replication to an Existing Cache

The cache event listening works but it does not get plumbed into the peering
mechanism. The current API does not have a CacheManager event for cache
configuration change. You can however make it work by calling the notifyCacheAdded
event.

getCache () .getCacheManager () .
getCacheManagerEventListenerRegistry () .notifyCacheAdded ("cacheName") ;

Ehcache Replication Guide Version 2.10.3 7

Ehcache Replication Guide Version 2.10.3

Replicated Caching Using RMI

2

Replicated Caching Using RMI

Using RMI for Replicated Cachingccoeeieirieiriseesiesee s 10
Suitable EIBMENE TYPES ...vviviiciciccee sttt nn 1
Configuring the PEEr ProVIEN ..ot 11
Configuring the CacheManagerPeerLiStenercccrviierrce s 12
Configuring Cache ReplICAOrSccoeuriiiriinieireeee s 13
Configuring Bootstrap from @ Cache PEEr ... 14
Complete EXAMPIE ..ottt 15
Common Issues With RMI REPICALIONceurueiiiiiiieiersiceie e 15

Ehcache Replication Guide Version 2.10.3 9

Replicated Caching Using RMI

Using RMI for Replicated Caching

Replicated caching using RMI is desirable because:
® RMlis the default remoting mechanism in Java
m it allows tuning of TCP socket options

® Element keys and values for disk storage must already be Serializable, therefore
directly transmittable over RMI without the need for conversion to a third format
such as XML

B it can be configured to pass through firewalls

G
Application
Server 1

G
Application
Server 2

L

RMI N RMI
Put, Reﬂﬁm, RemnveAIK Bootstrap
(Sync orsync)

RMI RMI

-

Application
Server 4 | Ehcache

Application
Server 3

While RMI is a point-to-point protocol, which can generate a lot of network traffic,
Ehcache manages this through batching of communications for the asynchronous
replicator.

To set up replicated caching with RMI you need to configure the CacheManager with:
® aPeerProvider
® a CacheManagerPeerListener

For each cache that will be replicated, you then need to add one of the RMI
cacheEventListener types to propagate messages. You can also optionally configure a
cache to bootstrap from other caches in the cluster.

Ehcache Replication Guide Version 2.10.3 10

Replicated Caching Using RMI

Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element
itself. In this case the operation will be replicated provided the key is Serializable, even if
the Element is not.

Configuring the Peer Provider

Peer Discovery

Ehcache has the notion of a group of caches acting as a replicated cache. Each of the
caches is a peer to the others. There is no master cache. How do you know about
the other caches that are in your cluster? This problem can be given the name Peer
Discovery. Ehcache provides two mechanisms for peer discovery: manual and
automatic.

To use one of the built-in peer discovery mechanisms, specify the class attribute of
cacheManagerPeerProviderFactory as net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory
in the ehcache.xml configuration file.

Automatic Peer Discovery

Automatic discovery uses TCP multicast to establish and maintain a multicast group.

It features minimal configuration and automatic addition to and deletion of members
from the group. No a priori knowledge of the servers in the cluster is required. This is
recommended as the default option. Peers send heartbeats to the group once per second.
If a peer has not been heard of for 5 seconds it is dropped from the group. If a new peer
starts sending heartbeats it is admitted to the group.

Any cache within the configuration set up as replicated will be made available for
discovery by other peers.

To set automatic peer discovery, specify the properties attribute of
cacheManagerPeerProviderFactory as follows:

peerDiscovery=automatic

multicastGroupAddress=multicast address | multicast host name
multicastGroupPort=port

timeToLive=0-255 (See below in common problems before setting this)
hostName=the hostname or IP of the interface to be used for

sending and receiving multicast packets
(relevant to mulithomed hosts only)

Example

Suppose you have two servers in a cluster, serverl and server2. You wish to distribute
sampleCachell and sampleCachel2. The configuration required for each server is
identical, so the configuration for both serverl and server?2 is the following;:

Ehcache Replication Guide Version 2.10.3 1"

Replicated Caching Using RMI

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=automatic, multicastGroupAddress=230.0.0.1,
multicastGroupPort=4446, timeToLive=32"/>

Manual Peer Discovery

Manual peer configuration requires the IP address and port of each listener to be known.
Peers cannot be added or removed at runtime. Manual peer discovery is recommended
where there are technical difficulties using multicast, such as a router between servers in
a cluster that does not propagate multicast datagrams. You can also use it to set up one
way replications of data, by having server2 know about serverl but not vice versa.

To set manual peer discovery, specify the properties attribute of
cacheManagerPeerProviderFactory as follows:

peerDiscovery=manual
rmiUrls=//server:port/cacheName,

The rmiUrls is a list of the cache peers of the server being configured. Do not include the
server being configured in the list.

Example

Suppose you have two servers in a cluster, serverl and server2. You wish to distribute
sampleCachell and sampleCachel2. The following is the configuration required for
serverl:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"

properties="peerDiscovery=manual,
rmiUrls=//server2:40001/sampleCachell|//server2:40001/sampleCachel2"/>

The following is the configuration required for server2:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerProviderFactory"
properties="peerDiscovery=manual,
rmiUrls=//serverl:40001/sampleCachell|//serverl:40001/sampleCachel2" />

Configuring the CacheManagerPeerListener

A CacheManagerPeerListener listens for messages from peers to the current
CacheManager.

You configure the CacheManagerPeerListener by specifiying a
CacheManagerPeerListenerFactory which is used to create the
CacheManagerPeerListener using the plugin mechanism.

The attributes of cacheManagerPeerListenerFactory are:
m class - a fully qualified factory class name

B properties - comma separated properties having meaning only to the factory.

Ehcache Replication Guide Version 2.10.3 12

Replicated Caching Using RMI

Ehcache comes with a built-in RMI-based distribution system. The listener
component is RMICacheManagerPeerListener which is configured using
RMICacheManagerPeerListenerFactory. It is configured as per the following example:
<cacheManagerPeerListenerFactory
class="net.sf.ehcache.distribution.RMICacheManagerPeerListenerFactory"

properties="hostName=localhost, port=40001,
socketTimeoutMillis=2000"/>

Valid properties are:

® hostName (optional) - the hostName of the host the listener is running on. Specify
where the host is multihomed and you want to control the interface over which
cluster messages are received. The hostname is checked for reachability during
CacheManager initialisation. If the hostName is unreachable, the CacheManager
will refuse to start and an CacheException will be thrown indicating connection was
refused. If unspecified, the hostname will use InetAddress.getLocalHost().getHostAddress),
which corresponds to the default host network interface. Warning: Explicitly setting
this to localhost refers to the local loopback of 127.0.0.1, which is not network visible
and will cause no replications to be received from remote hosts. You should only use
this setting when multiple CacheManagers are on the same machine.

® port (mandatory) - the port the listener listens on.

®m socketTimeoutMillis (optional) - the number of seconds client sockets will wait when
sending messages to this listener until they give up. By default this is 2000ms.

Configuring Cache Replicators

Each cache that will be replicated needs to set a cache event listener which then
replicates messages to the other CacheManager peers. This is done by adding a
cacheEventListenerFactory element to each cache's configuration.

<!-- Sample cache named sampleCache2. -->
<cache name="sampleCache2"

maxEntriesLocalHeap="10"

eternal="false"

timeToIdleSeconds="100"

timeToLiveSeconds="100"

overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true, replicateUpdates=true,
replicateUpdatesViaCopy=false, replicateRemovals=true "/>
</cache>

class - use net.sf.ehcache.distribution.RMICacheReplicatorFactory
The factory recognises the following properties:

m replicatePuts=true | false - whether new elements placed in a cache are replicated to
others. Defaults to true.

m replicateUpdates=true | false - whether new elements which override an element
already existing with the same key are replicated. Defaults to true.

Ehcache Replication Guide Version 2.10.3 13

Replicated Caching Using RMI

B replicateRemovals=true - whether element removals are replicated. Defaults to true.

m replicateAsynchronously=true | false - whether replications are asyncrhonous (true)
or synchronous (false). Defaults to true.

m replicateUpdatesViaCopy=true | false - whether the new elements are copied to
other caches (true), or whether a remove message is sent. Defaults to true.

To reduce typing if you want default behaviour, which is replicate everything in
asynchronous mode, you can leave off the RMICacheReplicatorFactory properties as per the
following example:

<!-- Sample cache named sampleCache4. All missing RMICacheReplicatorFactory properties
default to true -->
<cache name="sampleCache4d"
maxEntriesLocalHeap="10"
eternal="true"
overflowToDisk="false"
memoryStoreEvictionPolicy="LFU">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.RMICacheReplicatorFactory"/>
</cache>

Configuring Bootstrap from a Cache Peer

When a peer comes up, it will be incoherent with other caches. When the bootstrap
completes it will be partially coherent. Bootstrap gets the list of keys from a random
peer, and then loads those in batches from random peers. If bootstrap fails then the
Cache will not start. However if a cache replication operation occurs which is then
overwritten by bootstrap there is a chance that the cache could be inconsistent.

Here are some scenarios:

Delete overwritten by bootstrap put:

1. Cache A keys with values: 1, 2, 3, 4, 5
2. Cache B starts bootstrap

3. Cache A removes key 2

4. Cache B removes key 2 and then bootstrap puts it back
Put overwritten by bootstrap put:

1. Cache A keys with values: 1, 2, 3, 4, 5
2. Cache B starts bootstrap

3. Cache A updates the value of key 2

4

Cache B updates the value of key 2 and then bootstrap overwrites it with the old
value

The solution is for bootstrap to get a list of keys and write them all before committing
transactions.

Ehcache Replication Guide Version 2.10.3 14

Replicated Caching Using RMI

This could cause synchronous transaction replicates to back up. To solve this problem,
commits will be accepted, but not written to the cache until after bootstrap. Coherency
is maintained because the cache is not available until bootstrap has completed and the
transactions have been completed.

Complete Example

Ehcache's own integration tests provide complete examples of RMI-based replication.

The best example is the integration test for cache replication. You can see it online

in the source code example RMICacheReplicatorIT java at this location: https://
fisheye.terracotta.org/browse/Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/
java/net/sf/ehcache/distribution/

The test uses five ehcache.xml files representing five CacheManagers set up to replicate
using RML

Common Issues with RMI Replication

Tomcat on Windows

Any RMI listener will fail to start on Tomcat, if the installation path has spaces in it.
Because the default on Windows is to install Tomcat in "Program Files", this issue will
occur by default. The workaround is to remove the spaces in your Tomcat installation
path.

Multicast Blocking

The automatic peer discovery process relies on multicast. Multicast can be blocked by
routers. Virtualisation technologies like Xen and VMWare may be blocking multicast.
If so enable it. You may also need to turn it on in the configuration for your network
interface card. An easy way to tell if your multicast is getting through is to use the
Ehcache remote debugger and watch for the heartbeat packets to arrive.

Multicast Not Propagating Far Enough or Propagating Too Far

You can control how far the multicast packets propagate by setting the badly misnamed
time to live. Using the multicast IP protocol, the timeToLive value indicates the scope or
range in which a packet may be forwarded.

By convention:

m 0 is restricted to the same host

m 1 isrestricted to the same subnet
B 32 is restricted to the same site
|

64 is restricted to the same region

Ehcache Replication Guide Version 2.10.3 15

https://fisheye.terracotta.org/browse/Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/distribution/
https://fisheye.terracotta.org/browse/Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/distribution/
https://fisheye.terracotta.org/browse/Ehcache/branches/ehcache-2.10.1/ehcache-core/src/test/java/net/sf/ehcache/distribution/

Replicated Caching Using RMI

B 128 is restricted to the same continent
®m 255 is unrestricted

The default value in Java is 1, which propagates to the same subnet. Change the
timeToLive property to restrict or expand propagation.

Ehcache Replication Guide Version 2.10.3 16

Replicated Caching Using JGroups

3 Replicated Caching Using JGroups

m Using JGroups for Replicated Cachingcocveviiieeieiiceseee e 18
B Suitable EIEment TYPEScoiieece e 18
B PEEI DISCOVEIY ..ottt nererens 18
B CONfIQUIALION ...ttt 18
m Example Configuration using UDP MUIICASEccceveiriiiiiiccccec e 19
m Example Configuration using TCP UNICastcccovueuriirniiiicresiceiese s 19
B ProtoCol CONSIABIAtIONSc..cuiiiieiciiireice s 19
B Configuring CacheREPlICAIONScoviiiririiiceee e 19
B Complete Sample ConfIgUrationcccceueeiiiiicieisseeeee e 20
m Common Issues with JGroups REPHCALIONcccvviiiiieiiiecee e 21

Ehcache Replication Guide Version 2.10.3 17

Replicated Caching Using JGroups

Using JGroups for Replicated Caching

JGroups can be used as the underlying mechanism for the replication operations in
ehcache. JGroups offers a very flexible protocol stack, reliable unicast and multicast
message transmission.

On the down side JGroups can be complex to configure and some protocol stacks have
dependencies on others.

To set up replicated caching using JGroups you need to configure a PeerProviderFactory
of type JGroupsCacheManagerPeerProviderFactory which is done globally for a
CacheManager

For each cache that will be replicated, you then need to add a cacheEventListenerFactory
of type JGroupsCacheReplicatorFactory to propagate messages.

Suitable Element Types

Only Serializable Elements are suitable for replication.

Some operations, such as remove, work off Element keys rather than the full Element
itself. In this case the operation will be replicated provided the key is Serializable, even if
the Element is not.

Peer Discovery

If you use the UDP multicast stack there is no additional configuration. If you use a TCP
stack you will need to specify the initial hosts in the cluster.

Configuration

There are two things to configure:

B The JGroupsCacheManagerPeerProviderFactory which is done once per
CacheManager and therefore once per ehcache.xml file.

B The JGroupsCacheReplicatorFactory which is added to each cache's configuration.

The main configuration happens in the JGroupsCacheManagerPeerProviderFactory
connect sub-property.

A connect property is passed directly to the JGroups channel and therefore all the
protocol stacks and options available in JGroups can be set.

If you use the UDP multicast stack there is no additional configuration. If you use a TCP
stack you will need to specify the initial hosts in the cluster.

Ehcache Replication Guide Version 2.10.3 18

Replicated Caching Using JGroups

Example Configuration using UDP Multicast

Suppose you have two servers in a cluster. You want to replicate sampleCachell and
sampleCachel2 and you want to use UDP multicast as the underlying mechanism. The
configurations for serverl and server2 are identical and will look like this:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
properties="connect=UDP (mcast addr=231.12.21.132;mcast port=45566;) : PING:
MERGEZ2:FD SOCK:VERIFY SUSPECT:pbcast.NAKACK:UNICAST:pbcast.STABLE:FRAG:pbcast.GMS"
propertySeparator="::"

/>

Example Configuration using TCP Unicast

The TCP protocol requires the IP address of all servers to be known. They are configured
through the TCPPING protocol of JGroups.

Suppose you have two servers: hostl and host2. The configuration is:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"
properties="connect=TCP (start port=7800) :

TCPPING (initial hosts=hostl[7800],host2[7800];port range=10;timeout=3000;

num initial members=3;up thread=true;down thread=true) :

VERIFY SUSPECT (timeout=1500;down thread=false;up thread=false) :

pbcast .NAKACK (down thread=true;up thread=true;gc 1ag=100;retransmit timeout=3000) :

pbcast.GMS(join_tiﬁeout=5000;join:retry_timeout=§OOO;shun=false;
print local addr=false;down thread=true;up thread=true)"
propertySeparator="::" />

Protocol Considerations

You should read the JGroups documentation to configure the protocols correctly.
See http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html.

If using UDP you should at least configure PING, FD_SOCK (Failure detection),
VERIFY_SUSPECT, pbcast NAKACK (Message reliability), pbcast. STABLE (message
garbage collection).

Configuring CacheReplicators

Each cache that will be replicated needs to set a cache event listener which then
replicates messages to the other CacheManager peers. This is done by adding a
cacheEventListenerFactory element to each cache's configuration. The properties are
identical to the one used for RMI replication. The listener factory must be of type
JGroupsCacheReplicatorFactory.

Ehcache Replication Guide Version 2.10.3 19

http://www.jgroups.org/javagroupsnew/docs/manual/html_single/index.html

Replicated Caching Using JGroups

<!-- Sample cache named sampleCache2. -->
<cache name="sampleCache2"
maxEntriesLocalHeap="10"
eternal="false"
timeToIdleSeconds="100"
timeToLiveSeconds="100"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false, replicateRemovals=true" />
</cache>

The configuration options are explained below:
class - use net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory
The factory recognizes the following properties:

B replicatePuts=true | false - whether new elements placed in a cache are replicated to
others. Defaults to true.

m replicateUpdates=true | false - whether new elements which override an element
already existing with the same key are replicated. Defaults to true.

B replicateRemovals=true - whether element removals are replicated. Defaults to true.

m replicateAsynchronously=true | false - whether replications are asyncrhonous (true)
or synchronous (false). Defaults to true.

m replicateUpdatesViaCopy=true | false - whether the new elements are copied to
other caches (true), or whether a remove message is sent. Defaults to true.

® asynchronousReplicationIntervalMillis default 1000ms Time between updates when
replication is asynchronous.

Complete Sample Configuration

A typical complete configuration for one replicated cache configured for UDP will look
like:

<Ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="../../../main/config/ehcache.xsd">
<diskStore path="java.io.tmpdir/one"/>
<cacheManagerPeerProviderFactory class="net.sf.ehcache.distribution.jgroups
.JGroupsCacheManagerPeerProviderFactory"
properties="connect=UDP (mcast addr=231.12.21.132;mcast port=45566;ip ttl=32;
mcast send buf size=150000;mcast recv buf size=80000) :
PING (timeout=2000;num initial members=6) :
MERGEZ2 (min interval=5000;max interval=10000) :
FD SOCK:VERIFY SUSPECT (timeout=1500) :
pbcast .NAKACK (gc_lag=10;retransmit timeout=3000) :
UNICAST (timeout=5000) :
pbcast.STABLE (desired avg gossip=20000) :
FRAG:
pbcast.GMS (join timeout=5000;join retry timeout=2000;
shun=false;print local addr=true)"
propertySeparator="::"

/>

Ehcache Replication Guide Version 2.10.3 20

Replicated Caching Using JGroups

<cache name="sampleCacheAsync"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />
</cache>
</ehcache>

Common Issues with JGroups Replication

If replication using JGroups doesn't work the way you have it configured, try this
configuration which has been extensively tested:

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheManagerPeerProviderFactory"/>
<cache name="sampleCacheAsync"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jgroups.JGroupsCacheReplicatorFactory"
properties="replicateAsynchronously=true, replicatePuts=true,
replicateUpdates=true, replicateUpdatesViaCopy=false,
replicateRemovals=true" />
</cache>

If this fails to replicate, see the example programs in the JGroups documentation at
http://www jgroups.org/manual/html/ch02.html.

Once you have figured out the connection string that works in your
network for JGroups, you can directly paste it in the connect property of
JGroupsCacheManagerPeerProviderFactory.

Ehcache Replication Guide Version 2.10.3 21

http://www.jgroups.org/manual/html/ch02.html

Ehcache Replication Guide Version 2.10.3

22

Replicated Caching Using JMS

4

Replicated Caching Using JMS

Using JMS for Replicated CaChingcceviiiriiniireseeeese s 24
Ehcache Replication and External PUBIISNErS ... 24
Using the JMSCAChELOAUET ..o 31
Configuring Clients for Message Queue Reliability ... 34
Tested MeSSage QUEUESc.oviuiriieiiieisieie et 34
Common Issues using JMS-based Replication ..o 35

Ehcache Replication Guide Version 2.10.3 23

Replicated Caching Using JMS

Using JMS for Replicated Caching

As of version 1.6, JMS can be used as the underlying mechanism for the replicated
operations in Ehcache with the jmsreplication module.

JMS (Java Message Service) is a mechanism for interacting with message queues.
Message queues themselves are a very mature piece of infrastructure used in many
enterprise software contexts. Because they are a required part of the Java EE standard,
the large enterprise vendors all provide their own implementations. There are also
several open source choices including Open MQ and Active MQ. Ehcache is integration
tested against both of these.

The Ehcache jmsreplication module lets organizations with a message queue investment
leverage it for caching.

It provides:

® Replication between cache nodes using a replication topic, in accordance with
Ehcache's standard replication mechanism

® Pushing of data directly to cache nodes from external topic publishers, in any
language. This is done by sending the data to the replication topic, where it is
automatically picked up by the cache subscribers.

® A JMSCacheLoader, which sends cache load requests to a queue. Either an Ehcache
cluster node, or an external queue receiver can respond.

Ehcache Replication and External Publishers

Ehcache replicates using JMS as follows:

m Each cache node subscribes to a predefined topic, configured as the
<topicBindingName> in ehcache.xml.

®m Each replicated cache publishes cache Elements to that topic. Replication is
configured per cache.

To set up replicated caching based on JMS you need to configure a
JMSCacheManagerPeerProviderFactory which is done globally for a CacheManager.

For each cache that wishing to replicate, you add a JGroupsCacheReplicatorFactory
element to the cache element.

Ehcache Replication Guide Version 2.10.3 24

Replicated Caching Using JMS

Uar Applicatian
[$ode 1
ghcache
Elzmant subscriber
Object A
Message Toxt
Queue HML -v"'". cachez
Non cache """.______..: chcha
: blishar
publisher Object all pb
[Jawva) Tt ———
XML 4 ament
topic
Object Element * u
Tt Object
ML Texd
Mon cache XML
publisnar Usar Applicatian
(non Java) Mode n
ghcacne
Element \" subscriber
cached
pubdisher
A

Configuration

Message Queue Configuration

Each cluster needs to use a fixed topic name for replication. Set up a topic using the tools
in your message queue. Out of the box, both ActiveMQ and Open MQ support auto
creation of destinations, so this step may be optional.

Ehcache Configuration

Configuration is done in the ehcache.xml.

There are two things to configure:

® The JMSCacheManagerPeerProviderFactory which is done once per CacheManager
and therefore once per ehcache.xml file.

B The JMSCacheReplicatorFactory which is added to each cache's configuration if you
want that cache replicated.

Ehcache Replication Guide Version 2.10.3 25

Replicated Caching Using JMS

The main configuration happens in the JGroupsCacheManagerPeerProviderFactory
connect sub-property. A connect property is passed directly to the JGroups channel and
therefore all the protocol stacks and options available in JGroups can be set.

Configuring the JMSCacheManagerPeerProviderFactory

Following is the configuration instructions as it appears in the sample ehcache.xml
shipped with ehcache:

{Configuring JMS replication}.

The JMS PeerProviderFactory uses JNDI to maintain message queue independence.
Refer to the manual for full configuration examples using ActiveMQ and Open Message Queue.
Valid properties are:

* initialContextFactoryName (mandatory) - the name of the factory used to create
* the message queue initial context.

* providerURL (mandatory) - the JNDI configuration information for the service

* provider to use.

* topicConnectionFactoryBindingName (mandatory) - the JNDI binding name for the
* TopicConnectionFactory

* topicBindingName (mandatory) - the JNDI binding name for the topic name

* securityPrincipalName - the JNDI java.naming.security.principal

* securityCredentials - the JNDI java.naming.security.credentials

* urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs

* userName - the user name to use when creating the TopicConnection to the

* Message Queue

* password - the password to use when creating the TopicConnection to the Message
* Queue

* acknowledgementMode - the JMS Acknowledgement mode for both publisher and

*

subscriber.
The available choices are
AUTO ACKNOWLEDGE, DUPS OK ACKNOWLEDGE and SESSION TRANSACTED.
The default is AUTO ACKNOWLEDGE .
listenToTopic - true or false. If false, this cache will send to the JMS topic
* but will not listen for updates.
Default is true.

Example - JMSCacheManagerPeerProviderFactory for Active MQ
This configuration works with Active MQ out of the box.

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
properties="initialContextFactoryName=ExampleActiveMQInitialContextFactory,
providerURL=tcp://localhost:61616,
topicConnectionFactoryBindingName=topicConnectionFactory,
topicBindingName=ehcache"
propertySeparator=","

/>

You need to provide your own ActiveMQInitialContextFactory for the
initialContextFactoryName. An example which should work for most purposes is:

public class ExampleActiveMQInitialContextFactory
extends ActiveMQInitialContextFactory {

/**
* {@inheritDoc}
=/

@Override

@SuppressWarnings ("unchecked")

public Context getInitialContext (Hashtable environment)

Ehcache Replication Guide Version 2.10.3 26

Replicated Caching Using JMS

throws NamingException

Map<String, Object> data = new ConcurrentHashMap<String, Object>();
String factoryBindingName =
(String)environment.get (JMSCacheManagerPeerProviderFactory
.TOPIC CONNECTION FACTORY BINDING NAME) ;
try {
data.put (factoryBindingName, createConnectionFactory(environment)) ;
} catch (URISyntaxException e) {
throw new NamingException ("Error initialisating ConnectionFactory"
+ " with message "
+ e.getMessage());
}
String topicBindingName =
(String) environment.get (JMSCacheManagerPeerProviderFactory
.TOPIC BINDING NAME) ;
data.put (topicBindingName, createTopic (topicBindingName)) ;
return createContext (environment, data);

Example - JMSCacheManagerPeerProviderFactory for Open MQ
This configuration works with an out of the box Open MQ.

<cacheManagerPeerProviderFactory
class="net.sf.ehcache.distribution.jms.JMSCacheManagerPeerProviderFactory"
properties="initialContextFactoryName=
com.sun.jndi.fscontext.RefFSContextFactory,
providerURL=file:///tmp,
topicConnectionFactoryBindingName=MyConnectionFactory,
topicBindingName=ehcache"
propertySeparator=","

/>

To set up the Open MQ file system initial context to work with this example use the
following imqobjmgr commands to create the requires objects in the context.

imgobjmgr add -t tf -1 'MyConnectionFactory' -j java.naming.provider.url \

=file:///tmp -j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -f
imgobjmgr add -t t -1 'ehcache' -o 'imgDestinationName=EhcacheTopicDest'

-j java.naming.provider.url\

=file:///tmp -j java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory -f

Configuring the JMSCacheReplicatorFactory

This is the same as configuring any of the cache replicators. The class should be
net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory.

See the following example:

<cache name="sampleCacheAsync"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
properties="replicateAsynchronously=true,
replicatePuts=true,
replicateUpdates=true,
replicateUpdatesViaCopy=true,

Ehcache Replication Guide Version 2.10.3 27

Replicated Caching Using JMS

replicateRemovals=true,
asynchronousReplicationIntervalMillis=1000"

propertySeparator=","/>
</cache>

External JMS Publishers

Anything that can publish to a message queue can also add cache entries to ehcache.

These are called non-cache publishers.

Required Message Properties

Publishers need to set up to four String properties on each message: cacheName, action,

mimeType and key.

Property

Description

cacheName

A JMS message property which contains
the name of the cache to operate on. If

no cacheName is set the message will be
<ignored>. A warning log message will
indicate that the message has been ignored.

action

A JMS message property which contains the
action to perform on the cache.

Available actions are strings labeled PUT,
REMOVE and REMOVE_ALL.

If not set no action is performed. A warning
log message will indicate that the message has
been ignored.

mimeType

A JMS message property which contains
the mimeType of the message. Applies to
the PUT action. If not set the message is
interpreted as follows:

® ObjectMessage - If it is an

net.sf.ehcache.Element, then it is treated

as such and stored in the cache. For other
objects, a new Element is created using the
object in the ObjectMessage as the value and
the key property as a key. Because objects
are already typed, the mimeType is ignored

TextMessage - Stored in the cache as value of
MimeTypeByteArray. The mimeType should
be specified. If not specified it is stored as
type text/plain.

Ehcache Replication Guide Version 2.10.3

28

Replicated Caching Using JMS

Property Description

B BytesMessage - Stored in the cache as value
of MimeTypeByteArray. The mimeType
should be specified. If not specified it is
stored as type application/octet-stream.

Other message types are not supported.

To send XML use a TextMessage or
BytesMessage and set the mimeType to
application/xml. It will be stored in the cache
as a value of MimeTypeByteArray.

The REMOVE and REMOVE_ALL actions do
not require a mimeType property.

key The key in the cache on which to operate on.
The key is of type String.

The REMOVE_ALL action does not require a
key property.

If an ObjectMessage of type
net.sf.ehcache.Element is sent, the key is

contained in the element. Any key set as a
property is ignored.

If the key is required but not provided, a
warning log message will indicate that the
message has been ignored.

Code Samples

These samples use Open MQ as the message queue and use it with out of the box
defaults. They are heavily based on Ehcache's own JMS integration tests. See the test
source for more details.

Messages should be sent to the topic that Ehcache is listening on. In these samples it is
EhcacheTopicDest.

All samples get a Topic Connection using the following method:

private TopicConnection getMQConnection () throws JMSException {
com.sun.messaging.ConnectionFactory factory =
new com.sun.messaging.ConnectionFactory() ;
factory.setProperty (ConnectionConfiguration.imgAddressList, "localhost:7676");
factory.setProperty (ConnectionConfiguration.imgReconnectEnabled, "true");
TopicConnection myConnection = factory.createTopicConnection () ;
return myConnection;

Ehcache Replication Guide Version 2.10.3 29

Replicated Caching Using JMS

PUT a Java Object into an Ehcache Cluster

String payload = "this is an object";

TopicConnection connection = getMQConnection () ;

connection.start () ;

TopicSession publisherSession =
connection.createTopicSession(false, Session.AUTO ACKNOWLEDGE) ;

ObjectMessage message = publisherSession.createObjectMessage (payload) ;

message.setStringProperty (ACTION PROPERTY, "PUT");

message.setStringProperty (CACHE NAME PROPERTY, "sampleCacheAsync");

//don't set. Should work.

//message.setStringProperty (MIME TYPE PROPERTY, null);

//should work. Key should be ignored when sending an element.

message.setStringProperty (KEY PROPERTY, "1234");

Topic topic = publisherSession.createTopic ("EhcacheTopicDest") ;

TopicPublisher publisher = publisherSession.createPublisher (topic) ;

publisher.send (message) ;

connection.stop () ;

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a Java
class String value of "this is an object".

PUT XML into an Ehcache Cluster

TopicConnection connection = getMQConnection() ;
connection.start () ;
TopicSession publisherSession = connection.createTopicSession (false,
Session.AUTO ACKNOWLEDGE) ;

String value = "<?2xml version=\"1.0\"?>\n" +

"<oldjoke>\n" +

"<burns>Say <quote>goodnight</quote>,\n" +

"Gracie.</burns>\n" +

"<allen><quote>Goodnight, \n" +

"Gracie.</quote></allen>\n" +

"<applause/>\n" +

"</oldjoke>";
TextMessage message = publisherSession.createTextMessage (value) ;
message.setStringProperty (ACTION PROPERTY, "PUT");
message.setStringProperty (CACHE NAME PROPERTY, "sampleCacheAsync");
message.setStringProperty (MIME TYPE PROPERTY, "application/xml");
message.setStringProperty (KEY PROPERTY, "1234");
Topic topic = publisherSession.createTopic ("EhcacheTopicDest") ;
TopicPublisher publisher = publisherSession.createPublisher (topic) ;
publisher.send (message) ;
connection.stop () ;

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" and a
value of type MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache
value object from which a mimeType and byte[] can be retrieved. The mimeType will
be "application/xml". The byte[] will contain the XML String encoded in bytes, using the
platform's default charset.

PUT arbitrary bytes into an Ehcache Cluster

byte[] bytes = new byte[]{0x34, (byte) 0xe3, (byte) 0x88};
TopicConnection connection = getMQConnection () ;

connection.start () ;

TopicSession publisherSession = connection.createTopicSession (false,

Ehcache Replication Guide Version 2.10.3 30

Replicated Caching Using JMS

Session.AUTO ACKNOWLEDGE) ;
BytesMessage message = publisherSession.createBytesMessage() ;
message.writeBytes (bytes) ;
message.setStringProperty (ACTION PROPERTY, "PUT");
message.setStringProperty (CACHE NAME PROPERTY, "sampleCacheAsync");
message.setStringProperty (MIME TYPE PROPERTY, "application/octet-stream");
message.setStringProperty (KEY PROPERTY, "1234");
Topic topic = publisherSession.createTopic ("EhcacheTopicDest") ;
TopicPublisher publisher = publisherSession.createPublisher (topic);
publisher.send (message) ;

Ehcache will create an Element in cache "sampleCacheAsync" with key "1234" in and a
value of type MimeTypeByteArray.

On a get from the cache the MimeTypeByteArray will be returned. It is an Ehcache
value object from which a mimeType and byte[] can be retrieved. The mimeType will be
"application/octet-stream". The byte[] will contain the original bytes.

REMOVE

TopicConnection connection = getMQConnection() ;

connection.start () ;

TopicSession publisherSession = connection.createTopicSession (false,
Session.AUTO ACKNOWLEDGE) ;

ObjectMessage message = publisherSession.createObjectMessage () ;

message.setStringProperty (ACTION PROPERTY, "REMOVE");

message.setStringProperty (CACHE NAME PROPERTY, "sampleCacheAsync");

message.setStringProperty (KEY PROPERTY, "1234");

Topic topic = publisherSession.createTopic ("EhcacheTopicDest") ;

TopicPublisher publisher = publisherSession.createPublisher (topic);

publisher.send (message) ;

Ehcache will remove the Element with key "1234" from cache "sampleCacheAsync" from
the cluster.

REMOVE ALL

TopicConnection connection = getMQConnection () ;

connection.start () ;

TopicSession publisherSession = connection.createTopicSession (false,
Session.AUTO ACKNOWLEDGE) ;

ObjectMessage message = publisherSession.createObjectMessage () ;
message.setStringProperty (ACTION PROPERTY, "REMOVE ALL");
message.setStringProperty (CACHE NAME PROPERTY, "sampleCacheAsync");
Topic topic = publisherSession.createTopic ("EhcacheTopicDest") ;
TopicPublisher publisher = publisherSession.createPublisher (topic) ;
publisher.send (message) ;

connection.stop() ;

Ehcache will remove all Elements from cache "sampleCacheAsync" in the cluster.

Using the JMSCacheLoader

The JMSCacheLoader is a CacheLoader which loads objects into the cache by sending
requests to a JMS Queue.

The loader places an ObjectMessage of type JMSEventMessage on the getQueue with an
Action of type GET.

Ehcache Replication Guide Version 2.10.3 31

Replicated Caching Using JMS

It is configured with the following String properties, loaderArgument.

The defaultLoaderArgument, or the loaderArgument if specified on the load request.
To work with the J]MSCacheManagerPeerProvider this should be the name of the cache
to load from. For custom responders, it can be anything which has meaning to the
responder.

A queue responder will respond to the request. You can either create your own or use
the one built-into the JMSCacheManagerPeerProviderFactory, which attempts to load
the queue from its cache.

The JMSCacheLoader uses JNDI to maintain message queue independence. Refer to the
manual for full configuration examples using ActiveMQ and Open Message Queue.

It is configured as per the following example:

<cacheloaderFactory class="net.sf.ehcache.distribution.jms.JMSCachelLoaderFactory"
properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,
providerURL=file:///tmp,
replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=20000
defaultLoaderArgument=/>

Valid properties are:

® inijtialContextFactoryName (mandatory) - the name of the factory used to create the
message queue initial context.

® providerURL (mandatory) - the JNDI configuration information for the service
provider to use.

m getQueueConnectionFactoryBindingName (mandatory) - the JNDI binding name for
the QueueConnectionFactory

B getQueueBindingName (mandatory) - the JNDI binding name for the queue name
used to do make requests.

® defaultLoaderArgument - (optional) - an application specific argument. If not
supplied as a cache.load() parameter this default value will be used. The argument is
passed in the JMS request as a StringProperty called loaderArgument.

timeoutMillis - time in milliseconds to wait for a reply.
securityPrincipalName - the JNDI java.naming.security.principal
securityCredentials - the JNDI java.naming.security.credentials

urlPkgPrefixes - the JNDI java.naming.factory.url.pkgs

userName - the user name to use when creating the TopicConnection to the Message
Queue

®m password - the password to use when creating the TopicConnection to the Message
Queue

Ehcache Replication Guide Version 2.10.3 32

Replicated Caching Using JMS

® acknowledgementMode - the JMS Acknowledgement mode for both
publisher and subscriber. The available choices are AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE and SESSION_TRANSACTED. The default is
AUTO_ACKNOWLEDGE.

Example Configuration Using Active MQ

<cache name="sampleCacheNorep"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="1000"
timeToLiveSeconds="1000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
properties="replicateAsynchronously=false, replicatePuts=false,
replicateUpdates=false, replicateUpdatesViaCopy=false,
replicateRemovals=false, loaderArgument=sampleCacheNorep"
propertySeparator=","/>
<cachelLoaderFactory
class="net.sf.ehcache.distribution.jms.JMSCacheloaderFactory"
properties="initialContextFactoryName=net.sf.ehcache.distribution.jms.
TestActiveMQInitialContextFactory,
providerURL=tcp://localhost:61616,
replicationTopicConnectionFactoryBindingName=topicConnectionFactory,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=10000"/>
</cache>

Example Configuration Using Open MQ

<cache name="sampleCacheNorep"
maxEntriesLocalHeap="1000"
eternal="false"
timeToIdleSeconds="100000"
timeToLiveSeconds="100000"
overflowToDisk="false">
<cacheEventListenerFactory
class="net.sf.ehcache.distribution.jms.JMSCacheReplicatorFactory"
properties="replicateAsynchronously=false, replicatePuts=false,
replicateUpdates=false, replicateUpdatesViaCopy=false,
replicateRemovals=false"
propertySeparator=","/>
<cacheloaderFactory
class="net.sf.ehcache.distribution.jms.JMSCachelLoaderFactory"
properties="initialContextFactoryName=com.sun.jndi.fscontext.RefFSContextFactory,
providerURL=file:///tmp,
replicationTopicConnectionFactoryBindingName=MyConnectionFactory,
replicationTopicBindingName=ehcache,
getQueueConnectionFactoryBindingName=queueConnectionFactory,
getQueueBindingName=ehcacheGetQueue,
timeoutMillis=10000,
userName=test,
password=test"/>
</cache>

Ehcache Replication Guide Version 2.10.3 33

Replicated Caching Using JMS

Configuring Clients for Message Queue Reliability

Ehcache replication and cache loading is designed to gracefully degrade if the message
queue infrastructure stops. Replicates and loads will fail. But when the message queue
comes back, these operations will start up again.

For this to work, the ConnectionFactory used with the specific message queue needs
to be configured correctly. For example, with Open MQ, reconnection is configured as
follows:

® imqReconnect="true' - without this reconnect will not happen

B imgPingInterval='5"' - Consumers will not reconnect until they notice the connection
is down. The ping interval

® does this. The default is 30. Set it lower if you want the Ehcache cluster to reform
more quickly.

® Finally, unlimited retry attempts are recommended. This is also the default.

For greater reliability consider using a message queue cluster. Most message
queues support clustering. The cluster configuration is once again placed in the
ConnectionFactory configuration.

Tested Message Queues

Open MQ

This open source message queue is tested in integration tests. It works perfectly.

Active MQ

This open source message queue is tested in integration tests. It works perfectly

other than having a problem with temporary reply queues which prevents the use of
JMSCacheLoader. JMSCacheLoader is not used during replication.

Oracle AQ

Versions up to and including 0.4 do not work, due to Oracle not supporting the unified
API (send) for topics.

JBoss Queue

Works as reported by a user.

Ehcache Replication Guide Version 2.10.3 34

Replicated Caching Using JMS

Common Issues using JMS-based Replication

Active MQ Temporary Destinatons

ActiveMQ seems to have a bug in at least ActiveMQ 5.1 where it does not cleanup
temporary queues, even though they have been deleted. That bug appears to be long
standing but was though to have been fixed. See http://issues.apache.org/activemq/
browse/AMQ-1255.

The JMSCacheLoader uses temporary reply queues when loading. The Active MQ
issue is readily reproduced in Ehcache integration testing. Accordingly, use of the
JMSCacheLoader with ActiveMQ is not recommended. Open MQ tests fine.

Active MQ works fine for replication.

WebSphere 5 and 6

WebSphere Application Server prevents MessageListeners, which are not MDBs, from
being created in the container.

While this is a general Java EE limitation, most other app servers either are permissive
or can be configured to be permissive. WebSphere 4 worked, but 5 and 6 enforce the
restriction.

Accordingly, Ehcache together with JMS cannot be used with WebSphere 5 and 6.

Ehcache Replication Guide Version 2.10.3 35

	Table of Contents
	Using Replication
	Supported Types of Replication
	Minimum Configuration for Replication
	Adding Replication to an Existing Cache

	Replicated Caching Using RMI
	Using RMI for Replicated Caching
	Suitable Element Types
	Configuring the Peer Provider
	Configuring the CacheManagerPeerListener
	Configuring Cache Replicators
	Configuring Bootstrap from a Cache Peer
	Complete Example
	Common Issues with RMI Replication

	Replicated Caching Using JGroups
	Using JGroups for Replicated Caching
	Suitable Element Types
	Peer Discovery
	Configuration
	Example Configuration using UDP Multicast
	Example Configuration using TCP Unicast
	Protocol Considerations
	Configuring CacheReplicators
	Complete Sample Configuration
	Common Issues with JGroups Replication

	Replicated Caching Using JMS
	Using JMS for Replicated Caching
	Ehcache Replication and External Publishers
	Configuration
	External JMS Publishers
	Code Samples

	Using the JMSCacheLoader
	Configuring Clients for Message Queue Reliability
	Tested Message Queues
	Common Issues using JMS-based Replication

